
Moderated group authoring among
weakly connected workgroups

Surendar Chandra (surendar@acm.org) and Nathan Regola (nregola@nd.edu)
University of Notre Dame, Notre Dame, IN 46556, USA

Tom

Alice

~
~~~
---
~f"'"

~'""

Bob

Fig. 1. Shared modification among Alice, Bob and Tom

transaction roll-backs. More importantly, the worst
performance in all these systems was observed
during the peak availability durations; these systems
fail when all the group members were available.
We highlighted the inadequacy of prior systems that
attempt to maintain a single copy of the shared
document.

Instead, we develop a moderated collaboration
mechanism that maintains multiple copies of the
shared object. We maintain one updateable copy of
the shared content on each group member's node.
We also hoard read-only copies of each of these
updateable copies in any interested group member's
node. Our system introduces additional storage and
conflict resolution overhead. We show this behavior
for our group in Figure 2. In our illustration, each
group member can potentially maintain three copies
of the shared document. Depending on the user
availability patterns, the hoarded copies on each user
might not be current. For a group of size n, each
user can potentially maintain one updateable copy
(the author) and (n-l) read-only copies (from other
users in the collaboration group). Given the vast
improvements in laptop storage (a 500GB 2.5" hard
disk retails for less than USD$120), extra copies
are a reasonable overhead. Group members can
reduce the replica maintenance overhead by explic-

Our goal is to develop a practical groupware
system that allows any group member to modify
a shared file. Each user can modify any part of
the document; the documents cannot be easily de
composed into sections that can be independently
modified. Updates from different users will con
flict and the goal is to resolve these conflicts and
eventually produce a consistent document. Consider
a group of users: Alice, Bob and Tom who are
modifying a single document (illustrated in Figure
1). Each user creates updates on a shared document:
Alice creates updates ab a2, and as, Bob creates
b1 and b2 and Tom creates updates t b t 2 and
ts. Traditionally, groupware systems ordered these
updates using their causality relationships [1] in
order to achieve consistency. The updates are then
applied in this particular order. However, the system
performance and the duration for all the updates to
be applied to produce a consistent version depends
on the availability patterns of the group members.

Contemporary users are wireless. Wireless net
works are ubiquitous, allowing users to operate from
a variety of locations. Our empirical analysis of the
availability patterns of wireless LAN users in a vari
ety of locations showed that the user sessions are be
coming smaller. The users also exhibited significant
node churn. Further analysis of prior group collab
oration systems [2] using wireless user availability
traces from a variety of locales showed the practical
limitations of prior collaboration systems. Systems
such as Coda [3] and Ficus [4] had assumed fewer
conflicting updates and better user availability than
was observed among wireless users. We observed
that a mandatory locking scheme will reject many
updates because of simultaneous requests. Similarly,
AFS [5] like last writer wins semantics causes
a large number of inconsistent updates with an
observable loss of update causality. Also, asyn
chronous propagation systems such as Bayou [6]
experiences a large number of update conflicts and

Digital Object Identifier: 10.410B/ICST.MOBIQUITOUS2009.7011
http://dx.doi.org/10.410B/ICST.MOBIQUITOUS2009.7011



[5]

~ ~
Alice

~ ~ ~ ~
=--':".=:'.:-.::::-

~
t 2 a2 --- a2~f";""

t 3
!......;,-

~
a3

Bob Tom

Fig. 2. Moderated collaboration among Alice, Bob and Tom

itly specifying the group members whose contents
are replicated. Also, since the document versions
are similar, deduplication can achieve good storage
savings.

To resolve the update conflicts, each author manu
ally moderates and incorporates modifications from
other group members using these read-only replicas.
For groups of size two, moderation operations are
similar to reconciliation operations in Coda [7]
and Ficus [8]. For larger groups, the moderator
simultaneously incorporates updates from all the
other group members into their copy. The groupware
system can use the hoarded copies and help the
user in identifying parts of the document that were
modified by other group collaborators. Moderation
operation is likely not scalable for large group sizes.
The challenge is to evaluate the ease of moderation
for typical shared documents.

The various versions of the shared document will
eventually converge through independent modera
tion operations. The system automatically logs the
provenance of all causal reads of contents from
other replicas into the author versions. We assume
that if an user opened a file from their colleagues,
then they have incorporated the relevant updates
into their own version. These provenance records
allows any users to independently decide whether
their updates had been incorporated into the final
version of a particular file.

Using the wireless access traces, we show that
our system avoids many of the problems of prior
systems. Except for small groups, our distributed
approach achieves similar performance as a server
based system. We have built a prototype of our sys-

Digital Object Identifier: 10.410811CST.MOBIQUITOUS2009.7011
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7011

2

tem using Git l , an open source distributed version
control system and the Fuse? userspace file system.
Git is designed to be fast and efficient (space and
time) and we inherit these advantages. We use our
middleware, Yenta, to propagate updates across the
group participants. Our analysis showed that pull
mechanisms naturally randomized the times when
updates are propagated and thus achieved better
performance than push based mechanisms. The fun
damental impediment to the system performance
is the wireless user availability behavior and node
churn characteristics. Update propagation is im
proved when members with good availability shares
all copies regardless of whether they themselves
were interested in the shared documents. Bench
marks show that our system achieves performance
similar to a baseline fuse file system. This system
is in regular use within our group. We are in the
process of releasing it to a larger audience.

ACKNOWLEDGMENT

This work was supported in part by the U.S.
National Science Foundation (CNS-0447671).

REFERENCES

[1] L. Lamport, "Time, clocks, and the ordering of events in a
distributed system," Commun. ACM, vol. 21, no. 7, pp. 558-565,
1978.

[2] S. Chandra and N. Regola, "ftockfs, a moderated group authoring
system for wireless workgroups," in Mobiquitous 09, Toronto,
CA, Jul. 2009.

[3] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki , E. H.
Siegel, and D. C. Steere, "Coda : A highly available file system
for a distributed workstation environment," IEEE Transactions
on Computers, vol. 39, no. 4, Apr. 1990.

[4] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher,
A. Gael, G. H. Kuenning, and G. J. Popek, "Perspectives on
optimistically replicated peer-to-peer filing," Software-Practice
and Experience, vol. 28, no. 2, pp. 155-180, February 1998.

[5] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard,
D. S. Rosenthal , and F. D. Smith, "Andrew: a distributed personal
computing environment," Commun. ACM, vol. 29, no. 3, pp.
184-201, 1986.

[6] A. Demers, K. Petersen, M. J. Spreitzer, D. Terry, M. Theimer,
and B. Welch, ''The bayou architecture : support for data shar
ing among mobile users," in Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, Dec. 1994, pp. 2-7.

[7] P. Kumar and M. Satyanarayanan, "Flexible and safe resolution
of file conflicts," in USENIX Technical Conference, New Orleans,
Louisiana, Jan. 1995, pp. 8-8.

[8] P. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J.
Popek, "Resolving file conflicts in the Ficus file system," in
USENIX Technical Conference, Boston, MA, Jun. 1994, pp. 183
195.

1http://git.or.czJ
2http://fuse.sourceforge.netl


