
MDD-based agent-oriented software engineering for
ubiquitous deployment

Jorge Aguero, Miguel Rebollo, Carlos Carrascosa,Vicente Julian
Departamento de Sistemas Informaticos y Computaci6n

Universidad Politecnica de Valencia
Camino de Vera SIN 46022 Valencia (Spain)

Email: {jaguero.mrebollo.carrasco.vinglada}@dsic.upv.es

A. Using MDD to develop embedded agents

The proposed design of embedded agents for mobile or,
more generally, ubiquitous environments follows the approach
offered by the MDD technology. The design process starts
trying to modelize the agents using the abstract concepts and
relationships established in the agent meta-model. The unified
agent meta-models proposed in this work is called agent-it,
agent-Platform Independent (detailed in Aguero et al [1]).

Next, the process continues transforming agent meta-models
(PIM) into an agent model that depends of the chosen target

to concentrate the development of the application from an
unified agent model and to apply different transformations
to get implementations for different platforms. Currently,
most common methodologies for multi-agent systems have
identified a set of models that specify their characteristics.
This abstraction level is known as Computation Independent
Model (CIM). These models can be adjusted as MDD models
that specifies the concepts of the MAS, as roles, behaviors,
tasks, interactions or protocols. The models can be used to
model a MAS without focus on platform-specific details and
requirements, as a Platform Independent Model (PIM), which
represents the system functionalities without consider the final
implementation platform. After that, it is possible to transform
PIM models into Platform Specific Models (PSM). Figure 1
shows possible relationships between the concepts of different
MDD models and their transformations [2].

Abstract-This work presents a Model Driven Development
(MOD) approach to agent-oriented software engineering in order
to design and deploy application prototypes in a fast and simple
way. This approach is specifically addressed to systems including
agents that must be executed on mobile or embedded devices.
The user will design the system for different platforms by means
of unified agent models (UML-Iike). There will exist different
automatic transformations to obtain the specific code for different
target platforms from these unified models. On this way, the
deployment process of mobile/embedded agent-based applications
is simplified.

Index Terms-Multi-Agent Systems, Agent-Oriented Software
Engineering.

I. INTRODUCTION

MDD is a technique allowing to obtain code for different
execution platforms from models by means of consecutive
transformations. Currently, this approach is being adopted
in several software developing areas such as Multi-Agent
Systems (MAS), to improve not only the development process,
but also the quality of the software based on agents. This
work presents a method to obtain embedded agents code
to be executed in different mobile platforms. That is, to
design ubiquitous applications with agents using models or
abstract concepts forgetting the implementation details and any
platform detail (using a set of visual components generated
for the tools supporting the MDD). After that, the specific
embedded agent for the platform where it must be executed
is generated by transformations. In this way, a non-expert
programmer will be able to develop systems with ubiquitous
agents, reducing the gap between design and implementation.
This document is structured as follows. Section II shows how
to apply the MDD approach to develop ubiquitous agents
according to the approach of the present work. Finally, some
conclusions are presented in section III.

II. MDD FOR MAS

The purpose of MDD is to create models legible by com
puters that can be understood by automatic tools to generate
templates, proof models and even code, integrating them in
multiple platforms [4].

From the viewpoint of the design of agent oriented systems,
applications development consists in the obtaining of the agent
code that could be executed in many platforms. That is,

Digital Object Identifier: 10.4108I/CST.MOBIQUITOUS2009.6980

http://dx.doi.orgI10.41081ICST.MOBIQUITOUS2009.6980

Agent
methodology

Agent
Meta-models

JADE:!eap
Code

Fig. 1. MDD for MAS

Key

1Abstract
concepts
and relationship

~- ~r~~~~~r~lat ion
I Vertica l

, Transformation

Agent
platform

Agent
code

platform (PSM), by defining a set of mapping rules. After this,
it is necessary to convert the model into code templates. This
code can be optionally combined with hand-made code written
by the user. See Figure 2 to illustrate the process (dotted lines
represent the correlation between the concepts of the two meta
models).

(agent-1r). In this first version, the work has been focused
to generate code for two agent platforms (study of agent
model transformations into two mobile agent platforms): AN
DROMEDA I [2] and JADE-Leap2 [3]. JADE-Leap, which is
one of the most known agent platforms for mobile devices and
the ANDROMEDA platform, specifically designed to execute
agents over the Google's Android OS.

models .
..... code

Agent ~IMplatform
independent

~ TranSformati~
Agent
platform
specific

, Transformation'

~~~~t 0 dB) (MeT)

[I] 1. Aguero , M. Rebollo, C. Carrascosa, and V. Julian. Towards on
embedded agent model for android mobiles. In The Fifth Annual
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (Mobiquitous 2008), volume CD Press, ISBN:
978-963-9799-21-9, pages 1-4, Dublin, Ireland, 2008.

[2] J. Aguero, M. Rebollo, C. Carrascosa, and V. Julian. Agent design using
model driven development. In 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems (PAAMS2009), volume
55, ISBN 978-3-642-00486-5, pages 60-69, Salamanca, Spain, 2009.

[3] F. Bergenti and A. Poggi. Leap: A fipa platform for handheld and
mobile devices. In Intelligent Agents VIII, Proceedings of the Eighth
International Workshop on Agent Theories, Architectures, and Languages
(ATAL-200I), 2001.

[4] A. Kleppe, J. B. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Professional,
2003.

Fig. 4. Transformation process to different platforms

1http://users.dsic.upv.es/grupos/ialsmaltools/Andromeda
2http://jade.tilab.com

III . CONCLUSIONS

This paper presents the application of the ideas proposed
by the MDD for the design of embedded agents into mobile
device platforms. So, this work has checked the simplification
of the agent design, since that some implementation details
are hidden to the designer. The automatic transformations
allow generating code templates for different platforms using a
unified agent model (favoring inter-operability). Future work
will focus on developing new automatic transformations to
other embedded agent platforms, simplifying the creation of
real heterogeneous ubiquitous systems.

IV. ACKNOWLEDGMENT

This work was partially supported by the Spanish govern
ment under grant CSD2007-00022 and under FEDER grant
TIN2006-14630-C0301 project and in part by the Valencian
Government under grant PROMETEO 2008/051

REFERENCES

...
Code

UML rules UML rules code= =

1 ·1 ~ ~ t2
- - - T-

~rML model-to-code I f~

Fig. 3. Model-to-code transformation

• Step I : to create diagrams (through graphical tools) which
model the different behaviors, tasks, interactions, etc. of
the agents. To perform this step, the Eclipse IDE with
a set of plugins is employed. These plug-ins are mainly
EMF, Ecore, GMF and GEF, which allow the user to
draw the models that represent the agent.

• Step 2: to select which platform the user wants to execute
the agent. This phase corresponds with the PSM model
definition of each agent. To do this , it is necessary to
apply a model-to-model transformation (PIM-to-PSM).
This is done using the Eclipse IDE and the ATL plug-in
incorporating the appropriated set of transformation rules.

• Step 3: to apply a transformation to convert the model
into the agent code. To do this, we must use a PSM
to-code transformation, In this case, we use MOFScript
which is an Eclipse plug-in that uses templates to do the
translation.

Summarizing, Figure 4 illustrates how it is possible to
obtain code for different agent platforms from unified models

Fig. 2. Implementing an agent using MDD transformations

B. Development process

According to the process previously explained, the agent
design is formed by a set of steps or phases (mainly transfor
mations) that will obtain the executable code. In order to do
these steps, a set of of tools, which support the process, are
required. The tools employed at each stage of the design can
be summarized as follows (see Figure 3):

Digital Object Identifier: 10.41081/CST.MOBIQUITOUS2009. 6980

http://dx.doi.org/10.4108/1CST.MOBIQUITOUS2009.6980


