
A SystemC-centric Approach for Simulation and
Generation of WSN Applications Targeted to

ZigBee
F. Fummi", G. Perbellinil, D. Quaglia", s. Vinco!

tDep. of Computer Science - University of Verona, Italy
+EDALab - Networked Embedded Systems, Italy

I. INTRODUCTION

Fig. 1. Mapping of the AME-based application onto ZigBee.

II. ABSTRACT MIDDLEWARE ENVIRONMENT
Abstract Middleware Environment (AME) is a SystemC

framework to write applications using a set of communication
services (Abstract Middleware) and following well-known
programming paradigms (i.e., Object-Oriented, Tuplespace,
Message-Oriented and Database) . This environment allows to
design WSN applications through three steps: the first step
(named AME System View (SYSV» simulates and validates
application functional requirements by using middleware-like
services with different programming paradigms . During the
second step (AME Network View (NWV» , a simulated net­
work infrastructure is involved in the whole framework. AME
NWV provides the same API of the previous step, even if
opportunely modified to establish a communication with a
network simulator. At the third step (called AME Platform
View(PLV» HW/SW partitioning is applied to each node to
map functionalities to HW and SW components according to
several constraints (e.g., performance, cost, and component
availability). Communication is provided by AME PLY ser­
vices through HW/SW/network simulators.

In this work we chose the object-oriented programming
paradigm for its spread among programmers. A typical object­
oriented middleware [2] provides: a mechanism to describe
an object interface and to map it onto an actual object ; a
public repository in which instances of actual objects are
registered, so that a client can obtain a local reference of a
remote object; a protocol to remotely invoke object's methods
with transmission of parameters and results. Let name and
obj be the public name of a given object and its actual im­
plementation, respectively. Object-oriented AME provides the
following services: registerobj (obj , name) to register
an instance of the actual object into the public repository with
the given public name; lookup (name) to obtain a local
object reference of the remote instance.

III. MAPPING ONTO ZIGBEE/Z-STACK

The mapping process consists of three key concepts :
Compliance with Z-Stack: Mapping of AME code onto a
Z-Stack application might seems straightforward: initialization
code can be put in the Ini t () function, while the core of the
application code becomes the ProcessEvent () function .
Actually, a problem arises with blocking calls such as the

ZigBee-b ased application
ove r the target platform

(Texas Instruments'
ZigBee Deve lopmen t Kit)

Zig Bee Service
Description

&
Target platform

execution
model

Networked Embedded
System Applicat ion

1 ~7------=--l ~~I e:; 1 Mapping Ie:; Ir-------, r==----, I

Ambient intelligence and ubiquitous computing are the
center of a great deal of attention because of their promise to
bring benefits for end-users , higher revenues for manufacturers
and new challenges for researchers [1]. The key aspects of
these applications are their distributed nature and the presence
of very limited HW resources , as in case of WSNs. Their wide
adoption requires interoperability across different manufactur­
ers, simplification of application development , simulation tools
for functional validation and the fulfilment of tight HW/SW
constraints.

The literature does not report a complete design method­
ology for WSN applications integrating all these aspects. The
proposed methodology allows programmers to write WSN ap­
plications by using the system description language SystemC
and the Abstract Middleware Environment (AME) framework
for fast simulation (leftmost side of Figure 1). AME behaves as
an abstraction of the services provided by the actual platform,
e.g., ZigBee profiles. The SystemC framework allows to
model and simulate concurrent processing, synchronization,
and communication. Finally, the implemented application is
automatically mapped over an actual platform, e.g., ZigBee
nodes by Texas Instruments (rightmost side of Figure 1). Main
advantages of the proposed methodology are: (i) abstraction:
of the actual middleware peculiarities on AME to rapidly sim­
ulate and validate WSN applications ; (ii) automatic mapp ing:
of WSN applications from AME to the actual WSN platform.

Digital Object Identifier: 10.410B/fCST.MOBIQUITOUS2009.6934

http://dx.doi.org/10.410B/ICST.MOBIQUITOUS2009.6934

Fig. 2. AME to Z-Stack mapping process.

TABLE I

RE SULTS ON MAPPING EFFICIEN CY.

GenericApp 565 III 1
AME_GA-Mapped 1261 118 2.30
HomeAutomation 720 99+100 1
AMEJlA-Mapped 1590 123+105 1.02

[I] Paolo Remagnino, Gian Luca Foresti , Tim Ellis, "Ambient Intelligence: A Novel
Paradigm ", Springer-Verlag Telos. 2004.

[2] Michi Henning, '"A New Approach to Object-Oriented Middleware", IEEE Internet
Computing , Vol. 8, No. I, pp. 66-75, 2004.

[3] Zigbee Alliance , '"ZigBee Specification , ZigBee Document 053474r13, Version
1.0·', http://www.zigbee.org, December I , 2006

AME2z igbee_in itO {
r Initi alization function ./
r Start TlMER_EVENT ·/

AME2zigbee Fin al Appli cati on
(Z-Stack compliant (C))

AME2z igbee_pr oc ess_event 0 {
if (TIMER_EVENT) {

~:::::::::::::::::::::::::::J
if (MESSAG E_EVENT) (

r Catch
Over The Air
Messages -/

)

r:
! ··;:~i~;~·~~~·~~~;~~-~·:/·_··_ ·_·]

i looku~ ...) { } i
i registerobJ..) {...J i
L!~~~.~~::-!_ !::L_. . . ._..i

AME2zigbee Int erm edi ate
Applicati on (HIF)AME Applicati on (SystemC)

r ' ;~~~;'~ " "-" " " " " "-" " "-"l r··--------···--------····--------···---i

i "~~~~t=~~:;;b~e~t) ~.. iwi
i else ."" 8 1 82 i

l . ~ . : .~.t_~ :~_~~.~:~~~~~~_...._...! ('-'»<>:'-) i
r;~~::~~:;~~~: :~:::.·:··.·=::;·· ~. ~
i ~~f.>method2(pan , •.. , parN) i l i
l l -' L .i

· ·~·If:;::~~:::::- ···~~::;·;····-i i· ·~~;~~;;;~·:,~ ·~·~: -;~·~;;· · - · · · · - · ·i

! methoCb (pafl , •.. , parN) (~- 1 rnethoc!2(p an , ..., parN) (,

L~ ~_J l~ ~~
r·~-~~~~~~-~-~~~~~~-~;--·-- · ·-i

i IOO~up(...) { } i
: regl stero bJ..) { J :

l j

IV. EXPERIMENTAL ANALYSIS

The proposed SystemC-centric approach has been evalu­
ated by considering two different ZigBee applications con­
tained in the Texas Instruments ' Z-Stack distribution, i.e.,
GenericApp and HomeAutomation. GenericApp estab­
lishes a connection between two nodes and periodically ex­
changes a string between them; HomeAutomation implements
the light-control application. The former application does not
use any ZigBee Application Profile while the latter uses
the Home Automation Profile. AME-GA-Mapped has been
generated from AME-GenericApp ; AMEJIA-Mapped has
been generated from AMEJIomeAutomation. Automatically­
generated applications have been compared with the original
Texas Instruments' examples and results are shown in Table I.

II Lines I Size (KB) I Transm Overhead

Results show that the translation always increases the num­
ber of code lines and the binary code size but the limit
of 128 KB is still satisfied. For the light-control example,
binary code size has been reported for both light and switch
components, respectively. Transmission overhead reveals the
impact of translation on wireless communications. There is
a significant difference of the transmission overhead between
non-profile-enabled (2.30) and profile-enabled (1.02) applica­
tions. Without using Profiles, the emulation of the OOM pro­
gramming paradigm requires more data transfers while profile­
based applications already use part of these data transfers.

REFERENCES

lookup () service and remote method invocations: they need
to stop the calling process until a response arrives. The Z-Stack
operating system does not support pre-emption, thus blocking
calls interrupt the event listener and prevent the processing of
system events. The basic idea to solve this problem consists
in replacing each blocking call by a loop in which its non­
blocking version is periodically invoked. We rely on finite state
machines (FSM): code statements are assigned to transitions
and states are used to remember which function has to be
periodically polled. Therefore, the AME-based application is
converted into an FSM scheduled by using a timer: when the
timer expires then a TIMER_EVENT is generated by the as
and the FSM re-starts from the last state reached.
ZigBee OOM Services: Once the application becomes really
distributed, object references used in the AME environment
have to be replaced by addresses of the nodes where the
objects reside. Therefore, the public repository must link the
public name of an object and its node location. The AME
services are implemented on the ZigBee stack as described in
the following. The register service is implemented by sending
a message to the coordinator with the object public name and
the node address, plus indicating that this is a register request.
On receipt, the coordinator adds the new entry to the public
repository and the new information becomes available to the
other nodes. The lookup service is implemented by sending
a lookup message containing the public name of the remote
object, indicating that this is a lookup request. On receipt, the
coordinator sends back a message containing the address of
the node. In this way, the caller obtains the node address and
can interact with it directly. The implementation of remote
method invocation depends on the support of ZigBee Profiles.
Two mechanisms are possible.
Non-profile-enabled platform: Node A wants to invoke a
method on node B. A sends a message to B containing the
name of the method and the parameters, plus indicating that
this is a method invocation message. On receipt, node B
executes the method. Then node B sends to A the parameters
received and the execution result, plus indicating that this is a
method execution result message. On receipt, node A obtains
the result of its invocation and the application flow goes on.
Profile-enabled platform: If the target platform supports Pro­
files, the application can use some advanced communication
mechanisms. If method invocations refer to objects supported
by the profile, they can be implemented by native profile
mechanisms without the need of additional code.
SystemC to C language conversion: Figure 2 shows the three
steps performed to transform the AME application (written in
SystemC language) into a Z-Stack compliant one (written in C
language): (i) The AME application is automatically translated
into an intermediate format which captures the basic syntax
elements of the source code. (ii) The intermediate representa­
tion is manipulated to separate initialization statements from
application statements; extract the application FSM; identify
remote method invocations and calls to OOM services. (iii)
The intermediate representation is automatically converted into
a C-Ianguage application.

Digital Object Identifier: 10.4108lfCST.MOBIQUITOUS2009.6934

http://dx.doi.org/10.4108lfCST.MOBIQUITOUS2009.6934

