
DiaSim: A Parameterized Simulator for
Pervasive Computing Applications

Julien Bruneau*, Wilfried Jouve, Charles Consel
INRIA / ENSEIRB, Talence, France

{julien.bruneau, wilfried.jouve, charles.consel} @inria.fr

Abstract-Pervasive computing applications involve both soft
ware concerns, like any software system, and integration con
cerns, for the constituent networked devices of the pervasive
computing environment. This situation is problematic for testing
because it requires acquiring, testing and interfacing a variety of
software and hardware entities. This process can rapidly become
costly and time-consuming when the target environment involves
many entities.

This paper introduces DiaSim, a simulator for pervasive com
puting applications. To cope with widely heterogeneous entities,
DiaSim is parameterized with respect to a description of a
target pervasive computing environment. This description is used
to generate both a programming framework to develop the
simulation logic and an emulation layer to execute applications.
Furthermore, a simulation renderer is coupled to DiaSim to
allow a simulated pervasive system to be visually monitored and
debugged.

DiaSim has been implemented and used to simulate vari
ous pervasive computing systems in different application areas,
demonstrating the generality of our parameterized approach.

I. INTRODUCTION

Numerous pervasive computing applications coordinate a
variety of networked entities collecting context data from
sensors and reacting by triggering actuators. To collect context
data, sensors process stimuli that are observable changes of
the environment (e.g., fire and motion). Trigerring actuators is
assumed to change the state of the environment. Developing a
pervasive computing application requires to address a number
of issues such as entity heterogeneity, physical constraints,
and types of stimuli present in the target environment. Also,
such an application needs to implement strategies to manage
a variety of scenarios e.g., fire situations, intrusions, and
crowd emergency-escape plans. Consequently, in addition to
the challenges of developing any software system, a pervasive
computing system needs to validate the environment entities
both individually and globally, to identify potential conflicts.
For example, a fire manager and an entrance manager could
issue contradicting commands to a building's door to respec
tively enable evacuation and ensure security. In practice, the
many parameters to take into account for the development of
a pervasive computing application can considerably lengthen
this process. Not only does this situation has an impact on the
application code, but it also involves changes to the physical
layout of the target environment, making each iteration time
consuming and error-prone.

*Current affiliation: Thales Airborne Systems.

Digital Object Identifier: 10.410BIICST.MOBIQUITOUS2009.6907
http://dx.doi.orgl10.41OBIICST. MOBIQUITOUS2009. 6907

Various middlewares and programming frameworks have
been proposed to ease the development of pervasive computing
applications [1], [2], [3]. However, they require a fully
equipped pervasive computing environment for an application
to be run and tested. As a result, an iteration process is still
needed, involving the physical setting of the target environ
ment and the application code.

In fact, the development of a pervasive computing system
is very similar to the development of an embedded system.
Like a pervasive computing system, an embedded system
coordinates a number of heterogeneous hardware components
that can be viewed as sensors (e.g., microphones and buttons)
and actuators (e.g., displays and speakers). Some embedded
systems are capable of discovering components dynamically,
such as a smartphone detecting bluetooth components. As in
the pervasive computing domain, embedded systems devel
opers need to anticipate as wide a range of usage scenarios
as possible to program their support. Despite similarities,
the embedded systems domain differs from the pervasive
computing domain in that it provides approaches and tools
to facilitate software development for a system under design.
Indeed, embedded systems applications can be tested and
debugged using simulators [4]. Hardware components are sim
ulated via software components that faithfully duplicate their
observable behavior. And, the embedded systems application
is emulated, executing as if it relied on hardware components,
without requiring any code change. The study of embedded
systems simulators gives us a practical basis for identifying
the requirements for pervasive computing systems. Let us now
examine these requirements.

a) Area-specific simulator: Like embedded systems, per
vasive computing systems target a variety of application areas,
including home automation, building surveillance and assisted
living. Each area corresponds to specific pervasive computing
environments, consisting of classes of entities dedicated to
a given activity (e.g., a light sensor, a motion detector or
a wireless heart rate monitor). Correspondingly, the related
stimuli drastically vary with respect to the target area. As a
consequence, a simulation tool for the pervasive computing
domain is required to deal with different application areas,
enabling new classes of entities and stimuli to be introduced
easily.

b) Transparent simulation: A key feature of most embed
ded systems simulators is that they emulate the execution of
an application without requiring any change in the application



code. As a result, when the testing phase is completed, the
application code can be uploaded as is and its logic does not
require further debugging. The same functionality should be
provided by a simulator for pervasive computing applications.

c) Testing a wide range of scenarios: Some pervasive
computing applications address scenarios that cannot be tested
because of the nature of stimuli involved (e.g., fire and smoke).
In other situations, the scenarios to be tested are large scale
in terms of stimuli, entities and physical space they involve.
These situations would benefit from a simulation phase to
refine the requirements on the constituent entities of the
environment, before acquiring them. Regardless of the nature
of the target pervasive computing system, its application logic
is best tested on a wide range of scenarios, while the system is
under design. This strategy allows improvements to be made
as early as possible in both its architecture and logic.

d) Simulation renderer: Like an embedded systems sim
ulator, one for pervasive computing systems needs to visualize
the simulation of scenarios. This simulation renderer needs to
take into account various features of the pervasive computing
domain. Specifically, it should support visual representations
for an open-ended set of entities and stimuli, visual support
for scenario monitoring, and debugging facilities to navigate
in scenarios in terms of time and space.

Some existing approaches propose to visualize the simu
lation of pervasive computing applications [5], [6]. However,
these approaches are limited because they require significant
programming effort to address new pervasive computing areas.
Furthermore, they do not provide a setting to test applications
deterministically. The Lancaster simulator addresses this issue
but does not support scenario definition [7]. The PiCSE
simulator provides a comprehensive simulation model and
generic libraries to create new scenarios. However, users have
to manually specialize the simulator for every new application
area [8].

II. OUR APPROACH

Our approach has been implemented in DiaSim, a simulator
for pervasive computing applications based on sensors and
actuators. This simulator is parameterized with respect to
a high-level description of the target pervasive computing
environment. Such a description defines the classes of entities,
whether hardware or software, relevant to a target pervasive
computing area. Both simulated and actual environments must
conform to the same environment description, ensuring a
functional correspondence between the two. Furthermore, the
environment description is used to generate an emulation layer
to run pervasive computing applications and a simulation
programming framework for developing the simulation logic.
Our approach makes it possible for the same application code
to be simulated or executed in the actual environment. The
resulting simulated pervasive computing environment enables
to test the application logic against the full range of scenarios
corresponding to the environment description. This simulation
phase allows the pervasive computing system to be refined in

Digital Object Identifier: 10.410B/ICST.MOBIQUITOUS2009.6907

http://dx.doi.org/10.410B/ICST.MOBIQUITOUS2009.6907

terms of application logic and environment entities. DiaSim in
cludes a simulation renderer enabling the developer to visually
monitor and debug a pervasive computing system, navigating
in terms of time and space in a simulation.

The contributions of our approach are as follows.

• Parameterized simulator. We present a simulator that is
parameterized with respect to a high-level description of
a pervasive computing environment.

• Transparent simulation. Our approach makes it possible
for the same code to be simulated or executed in the
actual environment. We ensure a functional correspon
dence between a simulated environment and an actual one
by requiring both implementations to be in conformance
with the pervasive computing environment description.

• Hybrid environments. An application can be executed in
a hybrid environment, combining simulated and actual
services. Hybrid simulation is a key feature to success
fully transition to an actual environment: it allows actual
services to be added incrementally in the simulation, as
the implementation and deployment progress.

• Generated simulation support. A pervasive computing
environment description is used to generate both an
emulation layer, to execute applications, and a simulation
programming framework, to develop simulated entities.

• Simulation renderer. We present a simulation renderer
that enables the developer to visually monitor and debug
a pervasive computing system.

• Validation. Our approach has been implemented in a tool
called DiaSim. The generality of our parameterized ap
proach has been demonstrated by simulating applications
in a variety of pervasive computing areas. The practicality
of DiaSim has been shown on a large-scale simulation of
an engineering school.

REFERENCES

[1] A. Ranganathan, S. Chetan, J. AI-Muhtadi, R. H. Campbell, and M. D.
Mickunas. Olympus: A high-level programming model for pervasive
computing environments. In PERCOM'05, pages 7-16, 2005.

[2] R. Grimm. One.world: Experiences with a pervasive computing architec
ture. IEEE Pervasive Computing, 3(3):22-30, 2004.

[3] W. Jouve, J. Lancia, N. Palix, C. Consel, and J. Lawall. High-level
programming support for robust pervasive computing applications. In
Proceedings of the 6th IEEE Conference on Pervasive Computing and
Communications (PERCOM'08), pages 252-255, mar 2008.

[4] iPhone SDK, http://developer.apple.comliphone/program/download.html.
[5] J. J. Barton and V. Vijayaraghavan. Ubiwise, a ubiquitous wireless

infrastructure simulation environment. Technical report, Hewlett Packard,
2002.

[6] E. O'Neill, M. Klepal, D. Lewis, T. O'Donnell, D. O'Sullivan, and
D. Pesch. A testbed for evaluating human interaction with ubiquitous
computing environments. In TRIDENTCOM '05. Proceedings of the First
International Conference on Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities, 2005.

[7] R. Morla and N. Davies. Evaluating a location-based application: A
hybrid test and simulation environment. IEEE Pervasive Computing,
3(3):48-56, Juil-Sep 2004.

[8] V. Reynolds, V. Cahill, and A. Senart. Requirements for an ubiquitous
computing simulation and emulation environment. In InterSense '06.
Proceedings of the First International Conference on Integrated Internet
Ad hoc and Sensor Networks, 2006.


