flockfs, a moderated group authoring system for
wireless workgroups

Surendar Chandra (surendar@acm.org) and Nathan Regola (nregola@nd.edu)
University of Notre Dame, Notre Dame, IN 46556, USA

Abstract—This paper describes the design and implementation
of a group authoring system for wireless users. Our analysis
of the behavior of various groupware systems using wireless
user availability traces showed that prior systems would have
performed poorly, especially during peak availability durations
when many group members were simultaneously available. These
results motivate our design choices. flockfs maintains one up-
dateable copy of the shared content on each group member’s
node. It also hoards read-only copies of each of these updateable
copies in any interested group member’s node. The various
copies are reconciled using a moderation operation; each group
member manually incorporates updates from all the other group
members into their own copy. The various document versions
will eventually converge into a single version through successive
moderations. The system assists with this process by automati-
cally logging the provenance of all causal reads of contents from
other replicas into the author versions. A prototype userspace file
system implementation of flockfs exhibits acceptable file system
performance and update propagation latency.

I. INTRODUCTION

We designed a group authoring system that is initially
targeted towards university users. Recently we observed over
13K active wireless devices in our campus (as opposed to 1.3K
wired desktops); wireless laptops are the primary computing
platform in our campus as well as at other universities [1].
Hence, we design our system to operate among wireless users.

First, we describe an application scenario to motivate the
need for our system. Consider a group of students Alice,
Bob, Emily and Tom working on a class project. Together,
they develop the source code for their experiments, write a
Word report and create a Powerpoint presentation. Alice and
Tom work on the Word report while Bob browses the latest
draft of the Word report and incorporates any changes into the
Powerpoint presentation. Emily and Tom conduct experiments
and report their results that will be incorporated by Alice and
Tom into the report and then by Bob into the presentation.
Tom explains the significance of the results to Alice and Bob
using video clips. Even though the group members divide the
labor, all of them require the ability to access and modify the
source code, report and the presentation. Note that our primary
concern is on objects that are modified by the group and not
on objects such as video clips that are created by a single user.

Many students in our campus use emails to modify shared
documents. In the earlier example, after each update session,
Alice emails her Word report to Bob, Emily and Tom; Bob,
Emily and Tom store this email in some private location.
Bob is free to either ignore Alice’s report or incorporate
components of the report into his Powerpoint presentation.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

Eventually, the group creates a definitive version. This version
is loosely defined by consensus among the various group
members; whether Bob incorporates Alice’s changes into
his Powerpoint presentation is not enforced by the system.
Frequent session updates can potentially create a large number
of email messages. Manually managing these email messages
is tedious. However, as we will see in Section V, flockfs
provides much of this functionality in a far more seamless
fashion. Recently, our campus subscribed to the web based
Google Docs thereby creating another venue for collaboration.

In general, shared modifications can be realized as follows:

— same-time mechanisms are synchronous; group mem-
bers operate on the shared document at the same time. They
require the participating group members to be simultaneously
online and available. The collaboration can be implemented
directly through peer-to-peer mechanisms or can be mediated
through storage servers. For example, storage systems such
as AFS [2] or NFS [3] can be used to store the contents in
a shared folder. The sharing semantics depends on the file
system: e.g., AFS uses last writer wins semantics. In order to
avoid update conflicts, some systems lock the entire file (or the
conflicting portions: either explicitly or by splitting the single
document into multiple files) during a shared update. Other
systems allow non-blocking edits of the same document by
all the group members. The usability of such non-blocking
edits depends on the structure of the document. A source
code file can compromise of well designed functions, each of
which may be independently modified. However, the project
report document is complex; e.g., significant changes in the
experimental results affects the entire document.

— different-time mechanisms are asynchronous and do not
require the group members to be simultaneously available.
The group members update their own local copies which are
then reconciled. The reconciliation can either be mediated by
servers (e.g., Coda [4], Ficus [5], Apple iDisk, Windows Live
SkyDrive). Peer-to-peer (P2P) mechanisms (e.g., Bayou [6],
Windows Live Sync) have also been used.

The expected performance of prior authoring systems de-
pend on the characteristics of the shared document. In this
work, we consider complex documents in which updates from
different group members are not easily reconciled using auto-
mated mechanisms. The system performance also depends on
the number of group members who simultaneously modify the
shared document. In order to understand the group dynamics,
first we collected the availability traces of wireless users in

our university (campus as well as in the dormitories) in Sep.
2006 and Dec. 2007 through Aug. 2008. The data exhibited
a diurnal pattern with more users available during the day
times. The number of users decreased during the weekend
even though the available time for such users was better over
the weekends. Session durations were becoming shorter and
duration between sessions were getting larger.

Using these access traces, we analyze the expected per-
formance of prior sharing systems that was built among
wireless users. For synchronous mechanisms, we show that
a mandatory locking scheme rejects many updates because of
simultaneous requests. On the other hand, lock-free mecha-
nisms allow a large number of simultaneous modifications.
Also, AFS [2] like last writer wins semantics causes a large
number of inconsistent updates with an observable loss of
update causality. On the other hand, asynchronous peer-to-
peer propagation systems such as Bayou [6] experience a
large number of update conflicts and transaction roll-backs.
More importantly, the worst performance in all these systems
was observed during the peak availability durations; these
systems failed when all the group members were available.
Our analysis highlights the inadequacy of prior systems that
attempt to maintain a single copy of the shared document.

flockfs addresses the poor sharing performance of prior
systems. flockfs exports a file system interface, allowing the
users to use conventional tools. On the other hand, flockfs does
not have the rich semantic knowledge that would be available
if flockfs was implemented directly into a document editing
program. flockfs avoids conflicts by requiring each group
member (2) to exclusively maintain their own updateable copy
of the shared document (S;). Published updates are available
for automatic read-only hoarding by other group members.
For a group of size n, each group member maintains utmost n
copies of the shared document; a copy that they author (S;) and
up to n—1 read-only replicas from other group members. Since
the versions are similar, compression mechanisms achieve
excellent storage size savings. Given the improvements in
storage cost and capacity (a 500GB 2.5” hard disk retails
for less than USD$100) extra storage is a reasonable over-
head. Group members can reduce the replica maintenance
overhead by explicitly specifying the group members whose
contents are replicated. Each author manually moderates and
incorporates modifications from other group members using
these read-only replicas. Moderation operations are similar
to manual reconciliation operations in Coda [7] and Ficus
[8]. However, a flockfs user reconciles the changes from all
the group members. Automatic moderation is the subject of
future research. All these copies are presented seamlessly via
the flockfs file system interface. The document versions will
eventually converge through successive moderation operations.
The system assists in the convergence process by automatically
logging the provenance of causal reads in order to quantify
whether updates from a particular user had been incorporated
into the final version. The distributed implementation of flockfs
provides performance comparable to a centralized system for
large groups. Update propagation can be improved when

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

members with good availability become a member of all
groups regardless of whether they themselves were interested
in the particular shared document.

We built a prototype of flockfs using Git', an open source
distributed version control system and Fuse?, a userspace file
system. Git is designed to be fast and efficient (space and
time). flockfs inherits these advantages. Note that Git itself
does not directly support the flockfs functionality. Benchmarks
show that flockfs achieves performance similar to a fuse file
system. flockfs is in regular use within our group and is being
released to a larger audience.

For the rest of the paper: Section II discusses prior research.
Section IV analyzes prior sharing systems using empirical
wireless user availability data (Section III). Section V de-
scribes flockfs with concluding remarks in Section VI.

II. RELATED WORK

In our application scenario, students modify the shared
objects from anywhere on campus or the dormitory using ubig-
uitous high speed wireless LAN network. Groupware systems
can then be broadly classified by whether the modifications are
synchronous (same-time) or asynchronous (different-time).

A. Synchronous: same-time, different-place groupware

Synchronous systems allow the group members to simulta-
neously modify the shared object. These systems can either be
implemented using a server based approach or a peer-to-peer
based approach. Storage systems such as AFS [2] and NFS [3]
as well as applications such as MoonEdit®> and GoogleDocs*
use a server based approach while SubEthaEdit> and UNA®
use a peer-to-peer based approach.

The performance of these systems depend on the network
delay among the group members; as the latency increases, it
becomes difficult to coordinate the shared modifications. One
approach to deal with the latency is to avoid simultaneous
modifications by exclusively locking the shared contents. On
the other hand, systems such as GoogleDocs and SubEthaEdit
allow non-locking and non-blocking access to the shared doc-
uments; group members can modify anywhere in a document
at any time. Non-blocking systems might be inappropriate for
complex documents (the focus of this paper), where changes
by individual members can have global consequences in the
document. For example, a different experimental outcome (like
in Section V-D) showing poor file system performance of
flockfs would require changes in the Abstract, Introduction
as well as the Conclusion sections. Group members who
are simultaneously modifying the Conclusion section might
not realize the global change triggered by their modification.
Our performance analysis of systems that require exclusive
access to shared documents show that exclusive modifications

Lhttp://git.or.cz/
2http://fuse.sourceforge.net/
3http://moonedit.com
4http://docs.google.com
Shttp://www.codingmonkeys.de/subethaedit/
Shttp://n-brain.net

can cause inordinate amounts of delay in modifying shared
contents. Conversely, allowing simultaneous modification can
cause observable conflicts, especially since user availability
behavior was observed to be temporally consistent.

Another approach to mitigate the effects of network latency
is to use client side caching and use cache consistency
protocols. The performance of this approach depends on the
periodicity of the cache consistency algorithms. For example,
NEFS [9] uses limited client block caching. NFSv4 servers [3]
can delegate cache consistency responsibilities to the clients.
AFS [2] achieves server scalability by requiring full file
caching at the clients. AFS also uses the last writer wins
consistency model. In Section IV-A2, we show that the number
of write conflicts in our application scenario adversely affects
AFS style collaboration mechanisms, especially when many
group members are available.

B. Asynchronous: different-time, different-place groupware

When the group availability is poor, asynchronous systems
can allow the group members to maintain a local copy of
the shared contents; local updates are then reconciled with
the shared object. Conflict resolution of the hoarded contents
with the server contents can either be manual or automatic [8],
[7]. When the automatic reconciliation fails, many systems
(including Windows Live Sync) allow the user to manually
reconcile the updates. The reconciliation can be mediated
using servers or directly in a peer-to-peer fashion.

Applications such as Windows Live SkyDrive’ and Apple
iDisk® reconcile the local updates of each group member with
a global storage. Coda [10] extends AFS to support discon-
nected access to the distributed storage system; wireless users
hoard contents that were required for proper functioning while
disconnected. Mummert et al. [11] reduced the reconciliation
overhead of Coda. Based on the Berkeley file usage study [12],
Ficus and Coda assumed that conflicting shared writes were
rare. However, shared updates among disconnected clients still
followed the last writer wins consistency model; updates while
disconnected are reconciled on reconnection.

Leonard et al. [13] described a replicated document man-
agement system that formed the basis for the Lotus notes
system. Their system was optimized for rarely connected
clients and used asynchronous communication mechanisms to
propagate updates to the shared databases. Ficus [5] built a
highly available system with NFS semantics using optimistic
replication. Similarly, Bayou [6] uses asynchronous communi-
cation for collaborative applications. Nodes exchange updates
using a pair-wise anti-entropy protocol. Each update contained
a programmable means to detect and respond to conflicting
updates. Updates eventually reach all the participants. The
system provides some bounds by using a primary commit
protocol. In Section IV-B2, we show that the campus users
will likely experience a large number of transaction roll-backs.

In a work-in-progress report, Howard et al. [14] introduce
the notion of maintaining multiple autonomous versions that

Thttp://skydrive. live.com
8hitp://www.apple.com/mobileme/

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

reconcile rarely with no single authoritative version. flockfs
also maintains n different versions which are reconciled using
the moderation option. Recently, Google released its moder-
ated collaboration system called Knol®. Knols defines a single
author; everyone is allowed to comment on the articles written
by the author. The authors decide on whether to incorporate
any of these comments. Each user in our system also performs
moderated collaboration to their copy of the shared document.

III. WIRELESS USER AVAILABILITY ANALYSIS

flockfs is designed to be practical; the design decisions are
driven by the observed behavior of wireless users. First, we
collected application level wireless user availability behav-
ior in our campus where wireless access is provided using
over 1,300 access points (AP), both in the campus and in
dormitories. During our data collection interval, users self-
reported 8,977 Windows, 3,319 Mac and 49 Linux clients.
We collected application level availability using the Zeroconf'?
protocol. By default, clients running Mac OSX and the Linux
(with Avahi) report the durations when they are available using
the _workstation._tcp service. Note that the flockfs prototype
has been ported to Mac OSX and Linux platforms. Zeroconf
uses (non routed) link-local multicast for service discovery;
a single wireless monitoring client cannot discover all the
wireless users in our campus. Hence, we configured all the
APs in our campus to use a single wired VLAN. We used
appropriate packet filtering on the APs to reduce the amount
of wireless traffic bridged onto the wired VLAN. We then
installed a monitoring client on this wired VLAN to capture
the user availability using the dns-sd tool. Our recent data
collection lasted from Dec. 3, 2007 to Aug. 25, 2008. For
our experiments, we show the first fifteens days worth of data
when we observed 2,716 unique users. During this end-of-
fall-semester duration, users were likely busy collaborating
with other colleagues while preparing for final course projects
and exams. Note that they would not be using flockfs or a
similar collaboration system. We observed that user behavior
depended on the day of the week. Hence, we especially focus
on the two days from Dec. 6, 2007 (Thu.) to Dec. 8, 2007
(Sat.) to highlight the behavior on weekdays and on weekends.
Note that it is possible that some devices used either the wired
and wireless infrastructure. Any user who is offline (based on
the wireless study) might actually be available using a wired
connection. We could not correlate the MAC addresses or
Zeroconf names of wired and wireless interfaces of the same
laptop. Given the smaller number of wired devices sighted
during the data collection interval (12,825 wireless devices vs
1,445 wired student VLAN), such a behavior was unlikely.

Figure 1 plots the number of simultaneously online users
which gives an indication of the behavior of synchronous col-
laboration mechanisms. From Figure 1, we note that the user
availability exhibits a diurnal pattern with the total number
of users varying between ten and four hundred. Its important

9http://knol.google.com
10http://www.zeroconf.org/

450

400

350

300 -

250 |

200

150

100

Number of simultaneously available users

50

, . L , . \ \
[2: 4 6 8 10 12 14
Days since start (12/03/2007)

Fig. 1. Number of simultaneously available clients

to note that, during the time when the number of users was
small (early morning hours), the demand for collaboration is
also minimal (i.e., not enough members to request services).

Next, we analyze the session lengths (time that an user was
online) as well as the time between two consecutive available
sessions (not illustrated for lack of space). 50% of the sessions
were under 20 minutes and 95% of the sessions were less
than 75 minutes while the duration between sessions can be
as high as four days. Earlier analysis of our campus users in
2006 ([15] showed that 50% of the sessions were under 1 hour
with 95% of the sessions were under 6.7 hours. Even though
the number of devices had increased (from 2,036 in 2006 to
2,730 devices 2007), the session durations had decreased. The
systems exhibited constant node churn which places heavy
load on epidemic propagation systems that need to transmit
prior updates to newer nodes.

IV. ANALYSIS OF PRIOR COLLABORATION SYSTEMS

Next, we investigate the expected performance of prior
synchronous and asynchronous group authoring systems us-
ing our wireless availability traces (Section III). flockfs will
address any shortcomings. For our analysis, we consider
shared updates on a single object. Since wireless networks
are ubiquitous and free in our campus, we assume that users
only modify their shared documents when they are online.
This assumption might not hold in wide area scenarios where
wireless access is neither ubiquitous nor inexpensive. Also,
we define session as the duration between when an author
started to modify a document and when they are ready to
share the draft with other members. In our motivating example,
Alice goes through multiple open, update and close phases.
However, Alice does not want others to see her drafts until the
document reaches an acceptable form (as defined by Alice).
The end of a session is explicitly defined by the author; file
system close() does not mark the end of a session. Sessions
are longer during the early stages of document creation; later
sessions are shorter as users only make minor changes.

Ideally, we prefer empirical data on when users update
shared contents. However, there are no such empirical data as
systems similar to our target system are not widely deployed.

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

Hence, we synthetically create update sessions using the wire-
less availability traces. We randomly selected groups of five,
ten, twenty and thirty users. While online, each of these users
randomly waited for some duration before starting a session
that lasted for 0.5, one and two hours. Section III showed that
duration when users were unavailable was long. Hence, users
were assumed to end a session before going offline. Hence the
average session lengths can be shorter than the target. When
online, the users did not always modify the shared object, we
considered cases where the user created sessions (on average)
every one, two, three or four times that they were available.
Next, we illustrate our session creation mechanism. Consider
Tom who is online from 1:00-2:15, 4:00-4:15 and 9:00-10:00
(available from our wireless user availability traces). Assume
that the session length is 30 minutes long and that the user
requests an update session (on average) once every three times
that they are online. Our random traces might create update
sessions from 1:55-2:15 and from 9:00-9:30. Note that some
sessions can be less than the thirty minutes. For brevity, we
present the results from two setups: Busy (session length: 2
hours, group size: 30, update frequency: every time) and Light
(session length: 30 mins, group size: 10, update frequency:
every four times that user was available). We repeated each
experiment with 1,000 randomly selected user groups and
present the average values across the groups.

Note that it is possible that collaborating groups will tailor
their availability behavior in order to facilitate the editing task.
Our analysis in Sections IV-A and IV-B will show that the
ideal coordination mechanism that is appropriate for existing
systems is to stagger their availability durations and operate
on the documents sequentially (and not use a more natural
model of all users being simultaneously available).

A. Synchronous: same-time, different-place groupware

We investigated the behavior of systems that exclusively
lock the shared objects, as well as a last writer wins scheme.

1) Exclusive access: One way to avoid update conflicts
is to exclusively lock the object during the entire session.
Other group members continue to read the prior version of the
document until the exclusive update session is completed (they
can then read the new updated version). Conflicting attempts
to modify the object are handled as follows:

— user waits: if the new user was still available when
the current exclusive session completed, then the new user
is allowed to exclusively acquire the object for updating. Note
that the actual session length achieved can be smaller than
the originally requested session length if the user became
unavailable sooner (users end a session before going offline).

— request fails: If the user could not acquire the object for
exclusive access, then the user tries the next time when the
user becomes available. When the exclusive session could not
acquired till the next update session for this particular user,
the session is considered to have failed.

Consider two users: Alice who is online from 1:00-3:00 and
Tom who is online from 1:00-2:15, 4:00-4:15 and 9:00-10:00
(gleaned from the user availability traces). Assume that the

Fig. 2.

Fig. 3.

4000

Success —+—

ail -
3500 Delayed =

3000

2500

2000 |]

Count

1500 | fi

1000 !

500 | \X / \ 1
\ /

o 35 . a5 5
Time (in days since start)
(a) Busy (sess.: 2 hrs, group: 30, freq: every time)

600

500

300

Count

i | \ |
200 || | |

; 4 * *

_—] ¥k N K s e % S e

3 35 4 45 5
Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)
Session success for exclusive access (cumulative from 1000 groups)

07

06
g O05h
5
2
£ o04f ‘
g ‘ ‘
8 |
o 03[| |
=3 | |
|4 | | ‘
g w e
001 | ‘ | i
| i
0.1 “ | | “‘
1
I \
, L Bl AU AR
3 35 4 45 5
Time (in days since start)
(a) Busy (sess.: 2 hrs, group: 30, freq: every time)
60
50
v
3 40r
2
£
o |
%30- |
@
g ‘
320- i‘
|
10| M‘ H
1 sl
‘ ‘
5 b
3 35 4 45 5

Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)

Average delay for exclusive access (cumulative from 1000 groups)

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

time

Fig. 4. last writer wins consistency model

session lengths are 30 minutes long and that the user requests
an update session (on average) once every three times that
they are online. Now suppose that Alice requests an update
session at 1:50 and Tom requests update sessions at 1:55 and
at 9:00. Alice’s request will succeed at 1:50 and the document
will be exclusively available to her until 2:20. However, Tom’s
request will be delayed and rescheduled at 4:00, a potential
delay of 2:05. Had Tom been available at 2:20, the delay
would have only been 25 minutes. Now, if the document was
exclusively used by some other user at 4:00, Tom’s request
will fail because of the new update session requested by Tom
at 9:00. Note that if the update succeeded at 4:00, Tom will
only achieve 15 minutes of session length.

We plot the number of successful, delayed and failed ses-
sions for the Busy and Light scenarios with the time of day in
Figure 2. We also plot the actual amount of delay experienced
by the delayed sessions in Figure 3. We prefer the system to
require no delayed or failed transactions. From Figure 2(b),
we note that the users experience minimal delay under lightly
loaded scenarios (session: 30 min., group size: 10, frequency:
once every four times). Since the user only requests exclusive
sessions once in every four times that they are available and the
session durations were small, most sessions can be rescheduled
to a later time. On the other hand, the delays incurred can be
quite large: from Figure 3(b), we note that the delays can be
as high as 55 hours. Busy scenarios (Figures 2(a) and 3(a))
show that more transactions fail as compared to succeed. Few
transactions are delayed with a delay duration of up to 0.6
hours. The delay is small because most transactions cannot
be rescheduled (session length is long and users initiate an
exclusive session every time they come online).

More importantly, the system performance is worse during
times when all the users are available (daytime). For good per-
formance, users will have to be uniformly available throughout
the day including durations when they are not currently online
(night times). Our system, flockfs, addresses this concern by
not requiring exclusive access to contents; only the author is
allowed to modify their own copy of the shared document.

2) last writer wins: Next, we analyze optimistic mech-
anisms that allowed concurrent sessions and resolved any
conflicts. For example, AFS [2] used a last writer wins policy
in which simultaneous updates are allowed with the latest
update becoming persistent and replacing all prior updates re-
gardless of when the update session actually started. Consider
an illustration of several sessions (.S;) in Figure 4. Sessions Sy
and S, produce consistent results because they do not overlap.
However, sessions S3, S4 and Ss can lead to inconsistent
results because updates created by Sy and S5 are superseded

6000

'Success —+—
Conflicts -

5000

4000 |

3000

2000

Average number of write conflicts

1000 ||

/ N

3 35 4 45 5
Time (in days since start)

(a) Busy (sess.: 2 hrs, group: 30, freq: every time)

500 T T T

Success —+—

) Conflicts - |

400

as0 Yool

300 | | \ | \ x/ \

250 - | \ | | | a

200 | M | v
| X

150 F |

Average number of write conflicts

100 | |4

50

]

Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)

Fig. 5. Session success for last writer wins (cumulative from 1000 groups)

by Ss even though S3 was concurrent with Sy and Ss. The
inconsistent state of the system is observable by other users.
For example, the document view changes from S5 to S4 to Ss
before finally changing to S3. Update S3 will not incorporate
any of the changes created in updates S4 and Ss. S3, S4 and
Sy are in conflict with a count of three.

Next, we analyzed the behavior of this optimistic mecha-
nism for the various session lengths, group sizes and update
frequencies. We illustrate the number of conflicting and suc-
cessful updates for the Busy and Light scenarios in Figure 5.
For conflicting updates, we also plot the number of conflicting
sessions in Figure 6. Figure 6 shows the average, maximum
and the minimum number of sessions that cause the conflict
(we need at least two overlapping sessions to cause a conflict).

Figure 5 shows high conflict rates. As compared to a
mechanism that required the sessions to be exclusive (Section
IV-A1l), the last writer wins protocol allows more sessions
to proceed even though the resulting system with its write
conflicts can make the collaboration mechanism unusable.
For example, the Busy scenario showed that the conflicting
sessions can be over 5,500 (in 1,000 experiment runs) as
compared to less than 1,000 that succeed at the same time.
Even for Light session, the system exhibits conflicts. From
Figure 6, we note that the number of sessions that participate
in a single conflicting update can be as high as forty five.

As we observed in Section IV-A1, the performance follows
a diurnal pattern with higher conflicts during the times when
more users are available (daytimes). A possible solution is to

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

45

40 -

35

30

25

20

Average number of write conflicts

l
e
M[|
i

3 35 4 45 5
Time (in days since start)

\
|
|
|
!
[

(a) Busy (sess.: 2 hrs, group: 30, freq: every time)

4

35

3t

{
251 1

Average number of write conflicts

3 35 4 45 5
Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)

Fig. 6. conflicting updates (max, avg and min) (cumulative from 1000 groups)

require user availability to spread uniformly throughout the
day, though such a requirement is impractical. flockfs should
provide a consistent view of the documents.

B. Asynchronous sharing

Asynchronous protocols update local copies of shared doc-
uments. At the end of a session, the local updates are either
reconciled with a server copy or with each of the local copies
on other users using a P2P pairwise reconciliation process.

1) Server mediated: Coda [10] extends AFS to support dis-
connected access by hoarding contents. On reconnection, each
user reconciled their hoarded updates with the server. Shared
updates among disconnected clients still followed the last
writer wins consistency model; updates while disconnected are
reconciled on reconnection. Similar to AFS (Section IV-A2),
conflicting updates are hard to reconcile using pair-wise rec-
onciliation because concurrent updates require reconciliation
by both the users. The number of conflicting updates (not
illustrated for lack of space) also exhibit a diurnal pattern with
more conflicts during times when many users are available.

2) Peer-to-peer: Epidemic algorithms [16] are a popular
P2P mechanism to propagate local updates. For example,
Bayou [6] uses an epidemic based pair-wise anti-entropy
protocol to reconcile updates; out of order updates require
rolling back the local state in order to apply them in the correct
order. High values of roll backs and roll forwards are not
preferable; high roll forwards imply that the user was operating
using an older version while high roll backs affect the causality
relationships. In our motivating scenario, suppose Alice had

20000

Roll backs
18000 ¥ Roll forwards ------

16000

14000

12000

10000

Count

8000

3 35 4 45 5
Time (in days since start)

(a) Busy (sess.: 2 hrs, group: 30, freq: every time)

1800 T
Roll backs —+—

Roll forwards ---+---
1600 |

1400 |
1200

1000 |

Count

800
600 |

400 [

200 | |

0 L . AN

Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)
Fig. 7. Asynchronous update propagation (cumulative from 1000 groups)

350

300

250

200 ‘
150 | v[*- ‘
|

Count

100 -

e A S

I
|

0

|

|

\

|

T
45 5
Time (in days since start)

(a) Busy (sess.: 2 hrs, group: 30, freq: every time)

100

80

Count

20t ‘< !
| l

Time (in days since start)

(b) Light (sess.: 30 min, group: 10, freq: every 4 times)

Fig. 8. Number of roll backs per session (cumulative from 1000 groups)

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

created updates [1, 4, 5] (in logical clock order) and Tom
had created updates [2, 3]. If Bob first received updates from
Alice, he will incorporate this version [5] of the report into his
presentation. Now, if Bob received updates from Tom, he will
roll back by 3, and then roll forward by 5 by applying updates
[2, 3, 4, 5]. Bob will now need to revisit the presentation to
keep it consistent with the new state of the report.

Next, we investigated the behavior of an epidemic propaga-
tion mechanism using our wireless user traces and measured
the number of roll backs and roll forwards incurred by 1,000
random groups. We plotted the results for the Busy and Light
scenarios in Figure 7. For updates that required a roll-back, we
also plotted the minimum, average and maximum number of
actual roll-backs per conflicted operation in Figure 8. The user
will incur large roll backs immediately after they were offline
for long durations as compared to other group members. We
prefer the roll backs and roll forwards to be small.

We observe significant roll backs for both the Busy and
Light scenarios in Figure 7. Using the cumulative results from
1,000 different groups, we note that Busy scenario required as
much as 7,000 roll backs and about 19,000 roll forwards. For
the Light scenario, we still required up to 500 roll backs and
1,600 roll forwards. From Figure 8, we note that the maximum
roll back for a single session can be as high as 300 updates for
the Busy scenario. Such a large number of sessions would lead
to unacceptable behavior. As was observed in earlier sections,
the worst system behavior was observed during the intervals
when the users were highly available. The high roll backs
during the daytime was caused by night times when the users
were unavailable for longer durations.

V. OUR SYSTEM: Flockfs

We showed that operating on a single shared copy is unten-
able for wireless users: both in synchronous and asynchronous
scenarios (Sections IV-A and IV-B). The worst performance
was observed when many users were simultaneously available.
Hence, we designed flockfs to address this limitation. As
articulated by Howard et al. [14], flockfs does not maintain
a single shared copy. Each user is responsible for updating
and maintaining their own copy. The system provides read-
only access to other group member’s versions.

flockfs can be structured as a centralized or a P2P mech-
anism. Centralized approaches provide good management
control and availability of the shared contents to the group
members. Distributed approaches do not require the university
to provide the necessary storage infrastructure before flockfs
can be deployed. However, distributed mechanisms increase
the storage requirements in each of the users laptops; each
user may need to hold n*S where n is the group size and S is
the size of the shared document. Given the vast improvements
in laptop storage cost and capacity (a S00GB 5400 RPM 2.5”
hard disk retails for less than USD$100) extra copies are a
reasonable overhead. Also, since the document versions are
similar, deduplication can achieve good storage savings (our
prototype uses Git which reduces storage requirements using

Cumulative distribution (%)

Wireless laptop
| Wired server --------:

\ . L \
0 2 4 6 8 10 12 14
Time for update to reach group members (in days)

(a) group: 30

Cumulative distribution (%)

Wireless laptop
| Wired server =-se==-=

0 2 4 6 8 10 12 14

Time for update to reach group members (in days)

(b) group: 5

Fig. 9. Time to propagate single update to group (ave. of 1,000 groups)

similar techniques). Besides, we do not require that all group
members must maintain copies of contents from other users.

We prefer the P2P approach for the ease of deployment.
Next, we investigate the performance loss of a distributed
approach. Using our campus wireless user availability traces,
we analyzed the time it took for an update created by one
group member to be available to the other group members
using both these approaches. Contents are available when
a particular group member is online; P2P approaches also
require the message to be propagated to the user through
other group members. Suppose Alice created an update at 1:00
AM; in a centralized approach, if Bob came online at 11:00
AM, then this new content will be available to Bob at 11:00
AM. Assume that no other group member was simultaneously
available with Bob at 11:00 AM. If Tom (who has a read-only
copy of Alice’s contents) came online at 11:30 AM, then Bob
has access to the contents at 11:30 AM.

For this experiment, we chose groups of size five, ten,
twenty and thirty, injected an update into a random node. We
measured the time it took for the content to be available to
every other group member using a centralized and distributed
approaches and plot the results in Figure 9. We note that the
system requires as much as fifteen days to reach all the group
members. For large group sizes (Figure 9(a): thirty users), the
centralized approach performs nearly identical to a distributed
approach. For small groups (Figure 9(b): five users), the server

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

me * i

yoa v

tom report.doc report.doc iresultstxti :/src

observation. L BN
mp4 dO0b

01 0 O

Fig. 10. Alice’s view of her flockfs space

drastically improves the availability; from requiring over two
days to reach 50% of the group members in about one day. We
can incrementally improve performance by creating a dummy
user who operates from a machine with good availability (e.g.
wired desktop) and subscribes to all the group members even
though he himself does not create any contents.

A. System Architecture

We designed flockfs as a distributed, moderated document
sharing system. Each user updates and maintains their own
copy. Allowing updates exclusively by the author has the
added benefit that updates are always propagated in-order,
obviating the need for roll-backs. The system provides read-
only access to other group members versions. flockfs allows the
user to participate in many workgroups and is agnostic to the
content data types. Each user individually chooses the group
members for a particular workgroup; flockfs does not maintain
global group membership lists. All contents are shared with
everyone though one can imagine a white list mechanism that
can be used to limit the group members who are allowed
to directly interact with the local copy of flockfs. Secure
collaboration using flockfs is a topic for future enhancement.

Users interact with flockfs using the POSIX file system inter-
face. By convention, flockfs is mounted under the user home
directory as ~/flockfs. The workgroups are available as
directories at the root of the ~/flockfs directory. Within
each workgroup, flockfs maintains the shared contents from
each group member in a separate tree. For convenience, we
create a soft-link from the current user to a directory called
me. We illustrate flockfs name space with an example. Suppose
Alice belongs to workgroups vacation, mobiquitous09
and OS-Fallo08. As discussed earlier, Alice collaborates with
Emily and Tom for the mobiquitous09 workgroup. The
file system view depends on the particular user (each user
works with different workgroups and group members); Alice’s
view of the collaboration system is illustrated in Figure 10.
Alice can modify her copy of the report; while Alice is in
the middle of an update session, she operates on a local
copy of report.doc. At the end of the update session, the
local copy becomes the authoritative copy. Alice has access
to the shared contents from Tom (tom observation.mp4
and report.doc) and Emily (src and results.txt).
Sflockfs behaves like a traditional POSIX file system; Alice is
not notified of new files from Emily or Tom - instead, she is

required to poll the file system for new content. Users operate
on shared contents using their own applications; Alice will
likely use MS Word to operate on her report .doc.

1) Special file system interaction: flockfs treats POSIX
mkdir() and rmdir() operations differently. We performs three
different operations for a mkdir request. A mkdir() operation
on the /flockfs root directory creates a new workgroup. This
directory becomes a shared workgroup when another user
also creates the same workgroup and adds this user as a
group member. Within a workgroup, a mkdir() in the top
level directory signified the users intent to collaborate with the
particular user. When the requested user becomes available,
either directly or via other users, the contents for the user’s
project are downloaded and presented at a future time. When
the user creates a new project, flockfs automatically creates a
directory for the local user (with a soft link to a special direc-
tory name of me). A mkdir inside the user’s directory performs
the traditional directory creation operation. These operations
are entirely local. A project name collision is harmless; if two
projects chose the same name, then users can access group
members from either projects as their collaborators. Mixing
members from two different groups makes the moderation
operation harder. Similarly, non existent user names do not
generate any errors because the system does not differentiate
between a non-existent user and user who is exhibiting a long
idle time. The corresponding rmdir operation undoes the mkdir
operations. A rmdir of an user means that the local flockfs will
no longer keep track of the contents from this user. An user
leaves a workgroup using a rmdir of the project directory.

2) Session Maintenance: flockfs uses three system pro-
grams to support sessions:

1) publish [<project>] [<comment>]: marks
the end of a session; by default, operating on the
project belonging to the local directory. Users can name
sessions using comments

2) retract [<project>]: retracts the local modifi-
cations to the project since the last publish. This
operation is entirely local; other group members can
only request the authoritative copy of the contents.

3) status [<project>] [<user>]: prints the com-
ments associated with the last authoritative session; can
be applied to the owner and collaborators’ replicas.

B. Moderation operation

We depend on the user’s ability to manually incorporate
updates from other group members into their own version
of the shared document. Moderation operation is already
popular; many users use email to send their versions to
other group members who perform an ad hoc moderation
operation. Consider an user u; moderating the v;, version
of the shared document using updates (vj;p, Ukc) from other
users (where v; is the version b of document from user j).
Note that a flockfs user is unaware of versions other than
by using the comment field of the publish operation. Given
the asynchronous nature of our epidemic propagation, user
1 need not have the latest versions from user j. User 7 is

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

expected to identify the changes between the documents v,
v;p and vg. and incorporate the appropriate changes into his
own v;,. Using empirical evidence from a wider deployment
of flockfs, we intend to investigate automated tools to assist
in the moderation operation. Once version v;, is published,
the other users will incorporate v;, into their own documents.
Eventually, the various versions converge.

1) Provenance logging to assist in convergence: To identify
whether a document had converged, we automatically log all
file open() system calls of files from the current project before
a publish operation. We assume that if a file is opened by an
user, then they incorporated the changes suggested by that file.
In the above example, the publish operation for v;, logs the
fact that user ¢ opened files v;; and vi. before publishing
his version. Eventually, user j can check the provenance
comments on their local replica of v;, to infer that v;, had
incorporated their latest changes (v;). Successively applying
this mechanism allows any user to verify whether their own
updates had been incorporated by every other users.

C. Implementation details

We implemented our update propagation using the Git
version control system. Git is distributed, fast and efficient.
Git is designed for well connected scenarios; Git users are
expected to know the IP address of the group partners. Git
users typically contact the lead project developer to obtain
authoritative versions (e.g., request the latest version of Linux
from Linus Torvalds). However, our system differs from the
functionality provided by Git in a number of ways:

1) flockfs operates among weakly connected wireless users.
It is not practical to request shared documents from other
group members only when required in a lazy fashion
(i.e., the other user might not be available). Hence, we
maintain local copies of all group contents.

2) Git does not use any automated mechanism to propagate
changes across sites; the users are expected to request
newer updates directly from the content creator. How-
ever, our system automatically propagates the updates
among the group members using an epidemic algorithm
(including pulling contents from other group members).

3) flockfs defines the notion of group members and present
their contents under an unified name space. Git users
download contents into any directory of their choosing.

4) Git requires a priori knowledge of group membership
and node location (IP addresses). flockfs uses wide area
DNS to update its location. flockfs uses this location up-
date to contact group members for update propagation.

We use the tools provided by Git as the basis for our
system; we internally maintain, propagate changes and manage
the contents from group members. Each replica and the
authoritative copy is maintained as a separate Git repository.
Git explicitly exposes the document versions; even though we
maintain the versions of update sessions internally, we do not
(yet) expose them using the file system interface.

[Version | Data

| Size (MB) | Time (sec.) |

VI. STATUS AND DISCUSSION

We analyzed the behavior of our campus wireless users and
showed the cost to maintain a single copy of the shared con-
tents. We relaxed on this requirement and designed a system
that used a moderation operation to allow users to maintain
consistent versions of documents. Our implementation benefits
from using two mature tools: fuse and git. flockfs works in Mac
OSX and Linux. flockfs is deployed within our group. We are
in the process of distributing flockfs to student workgroups
within our department. flockfs will be freely distributed to a
wide audience. Empirical usage data from a wider audience
will be used to investigate automated moderation mechanisms.

1 Random 10 13.35
2 Random (delta) 10 4.12
1 C File 10 4.97
2 C File (delta) 10 3.05
TABLE 1
TIME TO PROPAGATE DOCUMENT VERSIONS
o Laptop (MB/s) Desktop (MB/s)

P- native | fuse | flock | native | fuse | flock
write 22.74 | 16.65 | 16.28 | 57.63 | 41.35 | 40.27
rewrite | 22.59 | 16.55 | 16.29 | 49.82 | 58.37 | 55.05
fwrite 22.18 | 16.57 | 16.37 | 56.50 | 52.27 | 58.21
frewrite | 21.95 | 16.70 | 16.20 | 56.83 | 58.16 | 54.64
random | »; 3 | 1621 | 15.85 | 55.72 | 62.65 | 56.44
write
read 22.46 | 16.12 | 15.67 | 55.06 | 52.31 | 56.30
reread 2238 | 16.10 | 15.65 | 56.81 | 44.18 | 53.49
fread 2238 [15.84 | 1558 | 56.50 | 54.52 | 53.93
freread | 22.29 [15.99 | 15.01 | 56.30 | 54.27 | 47.80
random | 50 o | 1318 | 13.15 | 58.14 | 43.23 | 43.33
write

TABLE 11

IOZONE BENCHMARK (RECORD SIZE=16K)

D. System performance

Our system uses Git to distribute the contents and a fuse file
system to access the various copies of the shared document.
Our system performance closely matches the performance
of Fuse and Git. First, we conducted experiments and mea-
sured the time taken to propagate session contents between
a wireless laptop and desktop (both using IEEE 802.11g).
We tabulated the results in Table I. We investigated the
performance for a 10MB random file as well as a 10MB C
program file. We then slightly changed these two documents
(first few bytes). The system took 13.35 seconds to propagate
the random file while taking only 4.97 seconds for the C file
(Git compresses updates). For the updates, the system took
4.12 and 3.05 seconds, respectively. flockfs performs these
propagation operations in the background.

We also benchmarked the flockfs using the I0Zone bench-
mark!! and tabulate the performance comparison between the
native file system, flockfs and a vanilla fuse file system. We
performed these experiments on a Macbook and an iMac
desktop running Mac OSX 10.5.4. The laptop used a G4
processor, 1.5 GB memory with 60 GB (5400RPM) hard disk
while the desktop used a X86 Core2Duo processor, 1 GB
memory and 250GB (7200RPM) hard drive. We tabulate the
results for various file system operations in Table II. In general,
the performance of flockfs file system is slower than the native
file system with performance similar to a fuse file system.

Uhttp://www.iozone.org

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.6814
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.6814

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation (CNS-0447671).

(1
(2]

3]

(4]

[5]

(6]

7

(8]

9]
[10]
[11]

[12]

[13]

(14]

[15]

[16]

REFERENCES

T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature
campus-wide wireless network,” in Mobicom ’04, 2004, pp. 187-201.
J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S.
Rosenthal, and F. D. Smith, “Andrew: a distributed personal computing
environment,” Commun. ACM, vol. 29, no. 3, pp. 184-201, 1986.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck, “Network file system (nfs) version 4 protocol,” RFC
3530, Apr. 2003.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere, “Coda: A highly available file system for a distributed
workstation environment,” IEEE Transactions on Computers, vol. 39,
no. 4, Apr. 1990.

T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher, A. Goel,
G. H. Kuenning, and G. J. Popek, “Perspectives on optimistically repli-
cated peer-to-peer filing,” Software—Practice and Experience, vol. 28,
no. 2, pp. 155-180, February 1998.

A. Demers, K. Petersen, M. J. Spreitzer, D. Terry, M. Theimer, and
B. Welch, “The bayou architecture: support for data sharing among
mobile users,” in Workshop on Mobile Computing Systems and Appli-
cations, Santa Cruz, CA, Dec. 1994, pp. 2-7.

P. Kumar and M. Satyanarayanan, “Flexible and safe resolution of
file conflicts,” in USENIX 1995 Technical Conference. New Orleans,
Louisiana: USENIX Association, 1995, pp. 8-8.

P. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J. Popek,
“Resolving file conflicts in the Ficus file system,” in USENIX Conference
Proceedings, Boston, MA, Jun. 1994, pp. 183-195.

B. Nowicki, “NFS: Network file system protocol specification,” RFC
1094, Mar. 1989.

J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” vol. 10, no. 1, pp. 3-25, Feb. 1992.

L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
weak connectivity for mobile file access,” SIGOPS Oper. Syst. Rev.,
vol. 29, no. 5, pp. 143-155, 1995.

J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer,
and J. G. Thompson, “A trace-driven analysis of the unix 4.2 bsd file
system,” in SOSP ’85. Orcas Island, WA: ACM, 1985, pp. 15-24.

J. Leonard Kawell, S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif,
“Replicated document management in a group communication system,”
in 1988 ACM conference on Computer-supported cooperative work
(CSCW ’88), 1988, p. 395.

J. H. Howard, “Using reconciliation to share files between occasionally
connected computers,” in Fourth Workshop on Workstation Operating
Systems, Oct. 1993, pp. 56-60.

X. Yu and S. Chandra, “Campus-wide asynchronous lecture distribution
using wireless laptops (short paper),” in ACM/SPIE: Multimedia Com-
puting and Networking (MMCN’08), vol. 6818, San Jose, CA, Jan. 2008,
pp. 68 180M-1 — 68 180M-8.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in PODC ’87, Aug. 1987, pp. 1-12.

