

ScreenSpot: Multidimensional Resource Discovery for
Distributed Applications in Smart Spaces

Marko Jurmu
MediaTeam Oulu

Department of Electrical and
Information Engineering
Univ. of Oulu, Finland

marko.jurmu@ee.oulu.fi

Sebastian Boring
Media Informatics Group

Department of
Computer Science

University of Munich, Germany

sebastian.boring@ifi.lmu.de

Jukka Riekki
Intelligent Systems Group

Department of Electrical and
Information Engineering
Univ. of Oulu, Finland

jukka.riekki@ee.oulu.fi

ABSTRACT

Big challenge related to the contemporary research on ubiquitous

and pervasive computing is that of seamless integration. For the

next generation of ubiquitous and distributed applications to

emerge, disruptive functionality towards opportunistic and

heterogeneous device ensembles is required on all levels of

operation. In this paper, we present middleware-level resource

management service for situated displays in public smart spaces,

acting as a scheduler and an arbiter for mobile clients. From this

service, we focus on multidimensional resource discovery, which

facilitates mobile users in locating and deploying situated displays

in public and semi-public smart spaces. Dimensions for discovery

include dynamic availability of the displays in both spatial and

temporal scales, user and role-based access control, as well as the

support for intended service. We have implemented the discovery

service and subjected it for alpha testing in an indoor setting. We

report a proof-of-concept implementation of the ScreenSpot

system and we demonstrate an approach of visualizing the

discovery results to the user.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network

Architecture and Design.

C.2.4 [Computer-Communication Networks]: Distributed

Systems.

I.3.6 [Computer Graphics]: Methodology and Techniques.

General Terms

Management, Design, Human Factors.

Keywords

Ubiquitous computing, leasing, dynamic QoS, publish/subscribe.

1. INTRODUCTION
Current research in the field of ubiquitous and pervasive

computing [1, 2] is faced with a problem related to integration.

The parts constituting the hardware side, i.e. small ultra-portable

personal terminals and wearable sensors, as well as various sorts

of ambient resources are already in their place due to the

constantly decreasing costs of manufacturing and deployment.

Same holds for networking, where Bluetooth is already a de-facto

standard, WLAN emerges fast and 6LoWPAN sensor connectivity

is paving its way to urban domains. The question then becomes

how to opportunistically integrate these heterogeneous resources

in order to realize the application models [3] the vision of

ubicomp entails.

Within this problem domain, contemporary research has

acknowledged the need for disruptive, cross-layer viewpoints on

all levels of operation. The research on cognitive radios and

dynamic spectrum access [4, 5] are examples on the PHY and

MAC layers, while research on publish / subscribe systems [6, 7]

propose disruptive mechanisms for data-centric routing. On the

middleware layer, approaches towards interoperability are

multitude, and the scope of deployment divides different

approaches to different research areas such as large-scale grids

[8], or smart spaces such as office environments [6, 9], homes

[10, 11] or more generic public spaces [12, 13].

On the application level, research on integration and

interoperability is enabled through various service discovery

protocols [14]. Jointly with web service technologies, these

protocols enable the construction of loosely coupled service-

oriented architectures, or SOAs. The application level also

features the research conducted in HCI towards the interaction

mechanisms employed in communication between humans and

ubiquitous device ensembles. Ballagas et al. [15] provide a

thorough survey on this field.

A typical usage scenario in this research field involves a mobile

user with a smart phone, PDA or other similar networked

terminal, utilizing services from the ambient surroundings. The

traditional view of service discovery and deployment through a

federated service repository usually involves three distinctive

steps: first, the user issues a discovery request including certain

discrete keywords to the service repository, which in turn

performs static matchmaking to return a set of matching service

descriptions from the directory. According to some evaluation

heuristics, a suitable service is selected from the candidate set, and

a proxy for this service (either the service grounding or a physical

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MobiQuitous 2008, July 21–25, 2008, Dublin, Ireland.

Copyright © 2008 ICST ISBN 978-963-9799-27-1.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

software proxy) is downloaded into the mobile terminal. In the

final step, the mobile client utilizes this proxy to control and

exchange data with the remote service.

In the case of distributed and non-directory-based discovery

protocol, two operational modes are possible. In the pull-based

model, the client issues service requests as multicast messages to

the network in order to discover suitable service candidates. In the

push-based model, on the other hand, the service implementations

publish advertisements of their presence to the network, and

clients can tap to this traffic to perform discovery.

The approaches depicted in the above sections present

straightforward solutions to service discovery and deployment,

but they contain certain shortcomings when applied to pervasive

computing scenarios. First is the reliance on network topologies

as the discovery range instead of physical location models of

smart spaces, such as one presented in [16]. Second, the quality-

of-service aspects related to the service are restricted to static

capability declarations. In other words, the dynamic usage of the

service and underlying resources are not evaluated. A direct

implication of this is that load balancing between users is

minimal, leading to hoarding and starvation situations. Finally,

smart spaces should enforce access controls that allow different

views to smart space service spectrum based on credentials and

roles of the users [14].

One solution to the problems presented above is to extend the

SOAs with context-aware features to better fit ubicomp scenarios

[17]. This is however not feasible due to several reasons. First, ad-

hoc extensions tend to create isolated domains of functionality

where off-the-shelf discovery clients may not be aware of or able

to interpret the enhancements. Second, the co-operation of these

domains requires the installation of custom translation proxies on

network edges, further increasing the deployment costs. In this

paper, we suggest an alternative solution; a general resource

management and scheduling service on the middleware level that

allows the SOAs to focus on their intrinsic key functionality of

exchanging controls and data between distributed service

components.

We adopt a decentralized, infrastructure-centric view to

discovering resources and services in the ambient environments,

or smart spaces. Instead of a federated service repository, we view

the infrastructure of the smart space in a more bottom-up fashion,

as follows: first, smart spaces contain ambient resources that are

managed through associated resource management (later: RM)

components. These components are aware of the service binaries

deployable on the associated resources. Through a pub/sub

routing mechanism [7], these components form a loosely coupled

peer-to-peer overlay network, through which the components

communicate with each other. In resource discovery, one of the

components acts as a seed for the discovery request and uses the

mesh overlay network to aggregate multidimensional availability

information [18] regarding the other resources in the smart space.

The seed component is responsible for aggregating the availability

information and passing it to the mobile terminal for visualization

to the user.

When the user has evaluated the results, the optimal resource is

chosen and the negotiation between the mobile client and target

resource regarding the service deployment starts. The negotiation

ends with an agreement between the participants regarding the

validity of the ownership transfer. We view this process as

context-aware leasing [19], where the lease represents the

transient transferring of the ownership, and the validity of the

lease is based on spatiotemporal context elements.

The contributions of this paper are as follows: First, we report the

design and implementation of ScreenSpot, a decentralized

resource discovery framework for smart spaces. We focus

especially on situated displays [15] as means for constructing

multimodal user interfaces for mobile users. This framework is

built on content-based publish/subscribe messaging semantics

which allow loosely coupled resource networks to be constructed.

Second, we demonstrate a multidimensional availability and thus

quality-of-service structure for the resources, based on the

dynamics of the usage in addition to the static properties. Third,

we illustrate an approach for visualizing the discovery information

for the mobile users. This approach of facilitating the high level

user-based choice through context-awareness is influenced by the

SpeakEasy project in Xerox PARC [20].

This paper is organized as follows: the system overview section

defines the key terms and presents our design for the resource

discovery service. It also features a short usage scenario as an

example of utilizing the discovery service. The validation section

presents a proof-of-concept implementation of the ScreenSpot

system along with a visualization concept for showing temporal

and spatial availability of displays. Finally, in the conclusions

section we draw up the main findings of the publication and

contemplate on various comparison points between the traditional

discovery systems and our design. Also multiple points of

consideration for future research on this topic are presented and

discussed.

2. SYSTEM OVERVIEW
In this chapter, we present the design of the resource discovery

system in detail. First, we illustrate the functionality of the

resource discovery by an example usage scenario. Next, we

proceed to define the central terms and concepts to be used

throughout the design. Subsequently, the high-level architecture

of the system is presented in detail. Finally, we illustrate the

functionality of the system through a selection of sequence

diagrams.

2.1 Usage Scenario
Alice is visiting a shopping mall with her friend. The mall

premises acts as a smart space by containing a number of

ambient hotspots, i.e. collections of ambient resources with

associated management software and physical connectivity. These

hotspots in conjunction with the personal mobile devices allow

the deployment of distributed application structures that realize

multimodal user interfaces towards the users.

Alice would like to deploy a personal media organization and

sharing application jointly with her friend to view, organize and

share pictures and media clips from a concert she visited couple

of days ago. As she is in an environment not known to her a

priori, she doesn’t know what resources are open for deployment,

or where they reside.

To discover deployable situated displays for the media

application, she starts the ScreenSpot service on her mobile

terminal, and initiates a discovery with certain parameters

regarding the properties of the resources. Within seconds, she is

presented with an integrated view of deployable situated displays,

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

arranged into a radar structure based on the multidimensional

availability information gathered from the environment.

The integrated view allows Alice to easily compare the different

displays based on both static and dynamic properties. After

selecting one display, she requests extra information of it. This

extra information contains an image of the surroundings of the

display, and Alice notices that the location of the screen is next to

the Starbucks of the first floor. She sets a lease for this display,

closes the application and starts to head towards the Starbucks.

The scenario above illustrates how an integrated discovery view to

a smart space can facilitate users in selecting deployable resources

from the surrounding environment. In the case of situated

displays, Alice does not have to explicitly know which resources

she is able to utilize, since the discovery service automatically

incorporates the information regarding the support for the

intended application, as well as the notion of displays accessible

by users acting in the role of guest within the smart space.

In the remainder of this article, we present the technical details of

our proof-of-concept implementation, ScreenSpot, which is aimed

for situations described above. We cover the networking topology

and the situated hotspots with associated data structures, and

explain the functional sequences that realize the discovery

processes. We also present screenshots of the integrated discovery

views seen by the end users, and explain the different aspects of

this view.

2.2 Definitions
In this section, we define the terms that will be utilized throughout

this paper, and form the core concepts of our research work. The

concepts will be described bottom-up, starting from the routing

level and ending on the level of individual service components.

2.2.1 Pub/Sub Client
Since the RM middleware is running on top of publish/subscribe

routing system, the term pub/sub client in this context refers

generically to any computational endpoint that interfaces the

pub/sub network in order to exchange data with other pub/sub

endpoints. All RM instances realize the pub/sub client interface,

as do the client components of the middleware running on the

mobile terminals.

2.2.2 Resource
Resources in this system are objects that are used in executing

services, and they feature management interfaces decoupled from

the associated services [18]. The usage of each resource is defined

and constrained in its usage policy, which can be set on a resource

independently of other resources. The execution of services on the

resource is semi-static in nature, meaning that although the

resource is hosting multiple service binaries, only one of them is

deployed at a certain point of time. In a special case of non-

exclusive resource, multiple service binaries can be running.

Rules and constraints for this deployment are defined in the

resource’s usage policy.

2.2.3 Service
Services are software objects to which computational access is

granted through well-defined interfaces and groundings. A service

can also be involved in the construction of the user interface of

the device ensemble towards the user. Each resource can host

multiple services, depending on the purpose and capabilities of

the resource. The capabilities of the services are described

through static quality-of-service declarations. The RM instance on

every resource is aware of the hosted service binaries and deploys

them based on the scheduling and usage of the underlying

resources. Each node in the smart space contains a set of different

services where some of these services may be offered by multiple

nodes. We define the set of all offered services as service

spectrum of the smart space.

2.2.4 Lease
In our research, we view leasing as a process of transiently

transferring the control of the leased entity to the client, along

with some validity criteria and renewal options [19]. To utilize an

ambient resource, the user must have an active lease to the

resource. If the active lease cannot be set due to contention

situation in the resource usage, the user can set a pending lease to

the lease queue of the resource. When a pending lease reaches the

head of the queue, it is promoted as the active lease and denotes

the transferring of the resource ownership to the new user.

Simultaneous usage of a resource (in collaborative applications) is

enabled by allowing a single lease to encompass multiple owners.

2.2.5 Dynamic QoS
We define the concept of a dynamic quality-of-service as a hybrid

description containing both the declarative capabilities of the

service and the dynamic usage load of the underlying resource. To

attain the dynamic QoS, certain heuristics are applied (that can be

supplied to the system by a third party, for example) for

integrating the degree of match between the service discovery

request and the service capabilities (i.e. the static matchmaking)

with the dynamic usage load of the underlying resource. We

model the usage load on the resource as a FIFO queue containing

the leases set by mobile users wishing to utilize the resource [19].

2.3 Architecture
This section presents the architecture of the RM middleware

system. We first discuss the system on the networking level and

introduce the relationships between the central entities. We then

proceed to examine the structure of an individual RM instance, to

gain an insight to the functionality that the management interface

of each component contains, as well as what the core data

structures are. The section ends with sequence diagrams of

selected functionality which serve to highlight the communication

and control between the components in realizing the higher level

goals of the system.

2.3.1 Overview
Figure 1 illustrates an example setup of the entities comprising the

RM middleware. Central to the figure is the Fuego pub/sub

routing system, which is illustrated with a single router for

simplicity reasons. The mobile terminals connect as pub/sub

clients to the routing subsystem through the IEEE 802.11b

panOULU [21] WLAN access network. Individual RM

components in this figure are illustrated as display icons, since the

work focuses on large public displays at this point. They contain

terminal computation entities that act as containers for the

respective RM instances and interface the pub/sub routers through

IEEE 802.3 Ethernet links.

In addition to the aforementioned connectivity, the mobile

terminals also engage in ad-hoc communications with the ambient

RM instances through Bluetooth. Through this short-range ad-hoc

connectivity, we want to physically enforce the aspect of spatial

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

proximity to the computation. The Bluetooth coverage area forms

an ad-hoc connectivity hot-spot around the situated display, and

we utilize this coverage area as a virtual watchdog for monitoring

the proximity between user and the display. Through this

functionality, the leasing of the display can be monitored in a way

that a user can terminate the leasing session merely by walking

away from the display [19], thus we inhibit an implicit interaction

session termination through the Bluetooth watchdog beacons.

Figure 1. High-level architecture of ScreenSpot.

Figure 2 depicts the structure of a single RM instance in the

middleware. This instance resides within each situated display,

and is responsible for the allocation and scheduling of the

resource instance, as well as the execution of service instances

residing on the resource. During the execution, it may be

necessary to inject state information from the client side to the

respective ambient resource to reflect coherent distributed

interaction.

The ResourceManager component forms the core of the RM

instance and coordinates the other components. It realizes the

discovery interface towards the mobile clients, and controls the

execution of the discovery procedure. PolicyManager acts as a

container and controller for the usage policies set for this

resource. A single usage policy is an aggregation of resource

utilization rules for a single user group. These include an access

control list with usernames of the group, the renewal policies

allowed for the group, as well as the role that the group has in the

smart space, i.e. employee vs. guest.

Fuego pub/sub client realizes the networking interface towards

publish/subscribe messaging system. The subscription semantics

utilized in the discovery service are hybrid in nature. First, the

messaging system realizes a separate subscription channel for the

discovery traffic. Secondly, the RM instance on each ambient

resource subscribes only to the messages targeted to this group of

instances (noted with an identifier). This decoupled routing

scheme allows a flexible maintenance of the smart space, which is

difficult and sometimes impossible to perform through a complete

shutdown and restart. A discovery request sent to the network is

only received by running resource managers that have an active

subscription, and thus are ready for resource utilization and

service deployment.

Figure 2. Component structure on a situated display.

LeaseQueue maintains the queuing of the leases set for the

resource instance by mobile clients. The basic queuing scheme is

FIFO, but e.g. a priority-based queue associated with user roles is

also possible. It should be noted that pre-emptive scheduling of

users in this setting is highly counterproductive, especially when

considering stateful applications. For this reason, we see the

queuing and differing lease renewal policies more useful in

enforcing soft management behavior.

ServiceProxy acts as a singleton interface towards the core, and

allows the execution of the service binaries residing within this

resource. The service binaries are tightly coupled with the

resource instance and the users issue utilization requests to the

resource by setting leases to the associated lease queue. Hence,

each lease must be associatively connected to a deployable service

binary. In-depth illustration and evaluation of the service proxy

component is out of scope for this publication.

Finally, BTServer implements the physical Bluetooth connectivity

around the ambient hotspot. This spatial connectivity has two

distinct roles in our system. First, users residing within the

Bluetooth coverage area of a single hotspot can perform discovery

requests to the rest of the system through the local hotspot. The

benefit of this scheme is that users’ relative locations in the smart

space can be straightforwardly inferred based on the Bluetooth

attachment point. This in turn facilitates presenting results to the

users based on relative locations of the discovered resources.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

Secondly, during the resource deployment, the Bluetooth

coverage area acts as a virtual spatial watchdog. This watchdog

enforces a spatial aura around the ambient resource. As the user

leaves the proximity of the resource, the system can implicitly

infer that the application session has ended, removing the need for

the end user to manually close down the session.

2.4 Functionality
In this section, we highlight the functionality of the ScreenSpot

system through a series of sequence diagrams. As stated in

previous sections, the main functionality of the system is to

perform discovery requests within a physical smart space domain

and return multidimensional resource information back to the

user. The attachment points for end users in the system are

Bluetooth coverage areas around the ambient hotspots that

provide resources and deployable services.

In Figure 3 the roles of the different RM instances are illustrated

within the context of a single discovery request. As the user is

residing within an ambient hotspot when the discovery is initiated,

the RM instance managing this hotspot becomes the seed for the

discovery request. From this seed, other RM instances within the

smart space domain appear on different virtual spatial ranges,

denoting relative physical distances between the hotspots.

Range zero consists of the local hotspot, and the successive ranges

are dependent on the location model configured to the system.

Range 1 can for example denote hotspots within the same floor as

the seed instance, while range 2 denotes instances within the next

floor up. Outer ranges denote other areas within the smart space

physical domain.

Figure 3. Virtual spatial ranges from the seed instance.

In Figure 4, the sequence of operations between the mobile

terminal and the seed instance of the system is illustrated. The

sequence starts by the mobile terminal scanning for the Bluetooth

service of the seed instance. This can be initiated by the start-up

of a certain application in the terminal, or by an explicit discovery

request by the end user.

When the service is discovered, the mobile terminal passes the

discovery parameters to the seed instance. Here, we assume that

Bluetooth pairing between the nodes has already occurred.

Parameters include the Bluetooth MAC address of the mobile

terminal, in order to distinguish between multiple concurrent

discovery requests from the common seed. Other parameters

include username of the end user, the identifier of the intended

application, the spatial range for the discovery and the type of the

ambient resource to be deployed.

In the case where the end user does not have a designated

username to the smart space domain in question, she is assumed

as a guest, and subsequently the usage policy for users with the

role guest is utilized. To obtain the unique identifier of the

application, such as a UUID, we assume the usage of a name

resolution system such as INS [22], where an early binding query

can be used to obtain the identifiers. Integrating a name resolution

system such as INS is recognized as a future work in this research.

Figure 4. High-level resource discovery process.

When the seed instance receives the discovery request, it starts a

discovery timer with the MAC identifier of the terminal.

Subsequently the discovery request is forwarded to the

publish/subscribe routing for other RM instances to receive. Each

instance residing within the range defined in the request answers

the seed instance with a result set containing its multidimensional

availability information. The discovery sequence ends when the

discovery timer for the designated end user triggers a timeout.

After this, the received result sets are aggregated into a vector

which is passed back to the mobile terminal for visualization.

Figure 5 illustrates the process of resolving the availabilities of

remote resources in more detail. The discovery message shown in

detail in Figure 4 is published to the discovery channel, and thus

received by all active RM instances. First calculation on the

remote system is the relative distance to the seed. This relative

distance is represented with a single integer, and we refer to it as a

spatial coefficient. The discovery request is relevant to the remote

subsystem, if

discspatial rangecoeff ≤ (1)

i.e., if the remote instance resides within the relative range defined

in the request.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

If equation (1) applies, the remote ServiceProxy resolves the

support for the intended application in the remote node. If the

application is available (i.e. the corresponding binaries are

existent), the remote node proceeds to authenticate the user. This

is done by the PolicyManager, based on the usage policy set for

the role of the user. Finally the temporal availability is calculated

by the LeaseQueue according to following equation:

∑+= plaltemp ttavail (2)

The temporal availability consists of the currently remaining time

of the active lease, as well as the cumulated negotiated durations

of the pending leases. The latter can be different for individual

leases, as the durations are always associated with the usage

policies the users are authenticated with.

Figure 5. Resolution of availability information.

After all the availability dimensions for the remote subsystem are

calculated, they are grouped together as a result event, and

published through the pub/sub network directly to the seed RM.

In the case of successful authentication of the user, as well as

recognized support for the target application, the overall

availability is denoted with the spatial coefficient and the

temporal availability. If the user cannot be authenticated, or the

target application is not supported, the availability of the resource

is set to infinite and presented as unavailable to the user.

3. VALIDATION
This section presents the proof-of-concept implementation of the

ScreenSpot system. First we will describe the result visualization

concept which allows a fast and simple selection of a target

resource. Second, we will show how the user can interact with the

described user interface concept including screenshots of the

mobile application. Finally, we present a theoretical use case of

integrating UPnP control points and services on top of our

resource discovery framework.

3.1 Representation to Users
In this section we highlight the representation of results to the

user while using the ScreenSpot system. The visualization will be

described from the user’s point of view mostly concerning the

representation of displays with their static and dynamic properties.

3.1.1 Visualization Concept
As mentioned beforehand, the ScreenSpot system tells users about

the spatial as well as temporal availability of a resource (e.g. a

display). Hence, the user interface on the mobile client needs to

visualize both parameters in a compact way as screen space is

limited and thus expensive. Both time and space already have well

defined and widely used graphical representations. Temporal

coherences can be depicted with a clock-based metaphor, whereas

distance is often illustrated by user-centric radar-style interfaces.

In order to allow users a fast decision based on the results, the

system needs to take the advantages of both visualizations and

merge them into one view. Radar views give two parameters (i.e.

distance and direction) where as a clock only gives the time (as

direction). With the ScreenSpot system, the direction cannot be

detected as it does not track the user’s orientation. Hence, we can

integrate the radar’s distance parameter as well as the clock’s time

parameter into a new two-dimensional representation. Thus, the

representation shows a clock-based view with additionally

showing the distance between the user and the screen. Figure 6

sketches our approach.

Figure 6. Visualization of the results. a) shows a standard

radar view with orientation and distance as parameters. b)

depicts a clock-based view with the time as radial parameter.

c) illustrates ScreenSpot’s view comprising the distance

(radar) as well as the time (clock).

The remaining parameter (i.e.: “are the application binaries

available at the display?”) can also be visualized with

ScreenSpot. As seen in Figure 6, some displays can be crossed

out. This indicates a display in the environment with its spatial

and temporal availability that is not able to execute the

application. Even though the user is not able to run the desired

application on the display, s/he can later use the display for other

purposes.

3.1.2 Requesting Additional Information
With the mobile screens’ limited resolution and transmission

bandwidth (Bluetooth), information about a display needs to be

placed step-by-step. Hence, the user only gets spatial and

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

temporal availability information about the displays in the

environment. Before a user finally makes a selection, s/he might

want to gather more information about the display itself. The

information includes further parameters and attributes of the

currently selected screen, such as the room it is in, its resolution

or its physical size.

In addition, a picture of the display can be requested by the

mobile client. This picture can then be taken by a nearby webcam

to give the user a real-time view of the screen. In our prototype,

the pictures are pre-captured and stored for each instance.

3.2 Interaction with the UI
Most today’s mobile phones are equipped with a joystick or arrow

keys. The two independent parameters (time and distance) can

thus be controlled by those input devices. For example, the user

can utilize the left and right keys (and joystick respectively) in

order to select a different level of distance corresponding to the

spatial coefficient (e.g. corridor, floor or building). With the up

and down keys (and joystick respectively) the user is able to

switch between the displays contained in this distance level. In

addition to the three distance level, we introduced a level showing

all displays (e.g. in all distance levels). This virtual level can also

be accessed by either using the left and right keys or the joystick.

A selection of a display is indicated by both a white circle beneath

it as well as a tooltip showing the exact time until the display is

available. Once the user has selected a display, s/he can either

request more information about it or immediately select it. The

selection of a display is also possible in the information screen.

Hence the user does not have to traverse back to the main

selection screen which in the end reduces the number of clicks

needed to finally select a display through ScreenSpot. Figure 7

shows screenshots of the possible interaction path a user can take.

If the user has selected a display for use, the system creates and

sends a lease request to the associated RM instance. This results

either in a success screen informing the user about a successfully

placed lease or an error screen containing information about the

error occurred. These errors might include a lost connection or a

simultaneous discovery procedure on the target display by another

user.

3.3 Case Study: Integration with UPnP
This section presents a theoretical use case for integrating

universal plug and play (UPnP) control points and services on top

of ScreenSpot. UPnP is paving its way as a service-oriented

architecture in smart spaces, but the network-dependent nature of

the simple service discovery protocol (SSDP) utilized in UPnP

constraints its use in the construction of situated user interfaces.

The discussion is divided into two sections: First one deals with

the control points, whereas the second section focuses on the

services.

3.3.1 Control Points
The pull-based service discovery in UPnP is realized with the

control point broadcasting a service discovery request within the

network domain. This broadcast message is answered by services

attached to the same domain. Although straightforward, this

solution lacks fine-grained information about the associated

resource states in the smart space.

Figure 7. Screenshots of the mobile UI. Both paths are shown:

either the user requests more info, or s/he immediately selects

the desired display.

Through ScreenSpot, the pull-based discovery can be enhanced to

include the necessary resource information. To resolve the

potential service candidates, the broadcast message on the local

device can be captured and fed to a name resolution framework

such as one implemented by INS. By utilizing distributed hash

tables, this resolution returns a list of universally unique

identifiers (UUIDs) used in UPnP for identifying services. These

UUIDs in turn can be utilized as the service identifiers in the

ScreenSpot framework to resolve service support on dedicated

hotspots.

3.3.2 Services
In contrast to pull, the push-based service discovery in UPnP

features the services broadcasting their presence in the network

for any control points attached to the same domain. In this

approach, the utilization of INS name resolving and ScreenSpot

resource discovery can also be utilized.

When a service is introduced into a situated hotspot, it tries to

announce its presence to the network. On the local hotspot, this

message can be captured and fed to the ScreenSpot framework.

This presence message can be utilized in two ways: The INS

system in the smart space can use this message to perform soft-

state management of the service, as well as extract the service

description to be utilized in name resolving queries. The resource

discovery side in addition can capture the UUIDs of the local

services in order to provide the multidimensional discovery

results explained in this article.

3.3.3 Outcome
The previous sections described the integration of UPnP control

points and services on top of a ScreenSpot / INS framework on a

theoretical level. What is notable in this discussion is the fact that

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

the actual UPnP components in this setting do not require any

additions or extensions in order to operate. Only aspect requiring

explicit integration is the UPnP service to adhere to the

bootstrapping protocol on the hotspot side. Through this short

discussion, we have demonstrated the power of introducing a

dedicated resource discovery framework for smart spaces and how

it frees the developers of SOA components from the design of ad-

hoc extensions.

4. CONCLUSIONS
In this paper, we presented the design and implementation of

ScreenSpot, a middleware level resource discovery system for

smart spaces. ScreenSpot incorporates a tightly coupled model

between ambient resources and associated services, and executes

on top of an asynchronous publish/subscribe messaging scheme.

This allows flexible maintenance of the smart space in relation to

both resources and the associated services.

After motivating the need for a middleware level, general-purpose

resource allocation and scheduling system, we presented a

distributed design that tackles the challenges posed by service

discovery systems in smart spaces, as indicated also by Zhu et al.

in [14]. These challenges are primarily as follows: utilization of

physical smart space boundaries instead of IP networking

topologies as the discovery range, which in our system is tackled

by the virtual ranges between the ambient resources and the

calculated spatial coefficients. Second challenge is role-based

view of the smart space, which in our system is handled by

managing different usage policies for different roles that the end

users are representing.

The proof-of-concept implementation presented in this article

realizes all the components illustrated in Figure 2. The client side

of the discovery system is also implemented. These realizations

give us a good basis for conducting further research in this area.

Through the implementation, it is clear that the Bluetooth device

scanning amounts for the majority of the latency experienced by

the end users. To alleviate this, we see the utilization of RFID tags

as a viable solution in smart spaces [23]. These RFID tags can be

configured to provide the mobile terminal with the necessary

service parameters, thus greatly reducing the scanning time as

indicated in [24].

We acknowledge the need for security and privacy aspects in this

work. Levels of security we are considering in the future

development include the encryption of the Bluetooth traffic, as

well as the encryption of the pub/sub traffic with a PKI scheme

offered by the Fuego routing system [7].

Finally, we recognize multiple tracks of future work in this

research area. First, we are in progress of preparing first

distributed applications on top of this system, and will be later

publishing results from user tests based on the combination of the

discovery system and the application usage. Secondly, we are

researching the possibility for physically distributed application

sessions involving distributed leases. Such scenarios allow

applications such as video calling by utilizing ambient displays

and webcams, or physically separated visual collaboration.

Finally, we are looking into the stateful bootstrapping of

distributed applications, and the effects that the state injection and

extraction has to the scheduling of the resources.

5. ACKNOWLEDGMENTS
This work has been conducted within the UbiLife project. The

authors would like to thank TEKES and the participating

companies, the GETA graduate school and “Deutsche

Forschungsgemeinschaft” (DFG) for financial support.

6. REFERENCES
[1] Weiser M. (1991) The Computer for the 21st Century.

Scientific American, September 1991.

[2] Satyanarayanan M. (2001) Pervasive computing: visions and

challenges. IEEE Personal Communications 8(4), pp. 10-17.

[3] Banavar G., Beck J., Gluzberg E., Munson J., Sussman J. &

Zukowski D. (2000) Challenges: An Application Model for

Pervasive Computing. Proc. 6th Annual International

Conference on Mobile Computing and Networking

(MOBICOM 2000), Boston, MA, USA, pp. 266 – 274.

[4] Mitola J. III & Maguire G.Q. Jr. (1999) Cognitive Radio:

Making Software Radios More Personal. IEEE Personal

Commnunications 6(4), pp. 13 – 18.

[5] Akyildiz I.F., Lee W.Y., Vuran M.C. & Mohanty S. (2006)

NeXT Generation / Dynamic Spectrum Access / Cognitive

Radio Wireless Networks: A Survey. International Journal

of Computer Networks 50(13), pp. 2127 – 2159.

[6] Johanson B., Fox A. & Winograd T. (2002) The Interactive

Workspaces Project: Experiences with Ubiquitous

Computing Rooms. IEEE Pervasive Computing 1(2), pp. 67

– 74.

[7] Tarkoma S., Kangasharju J., Lindholm T. & Raatikainen K.

(2006) Fuego: Experiences with Mobile Data

Communication and Synchronization. Proc. 17th

International Symposium on Personal, Indoor and Mobile

Radio Communications, Helsinki, Finland, pp. 1 – 5.

[8] Foster I. (2002) The Grid: A New Infrastructure for 21st

Century Science (book chapter). Grid Computing: Making

the Global Infrastructure a Reality, J. Wiley & Sons. ISBN:

9780470853191.

[9] Tripathi A.R., Kulkarni D. & Ahmed T. (2005) A

specification model for context-based collaborative

applications. Elsevier Pervasive and Mobile Computing

Journal 1(1), pp. 21 – 42.

[10] Helal S., Mann W., El-Zabadani H., King J., Kaddoura Y. &

Jansen E. (2005) The Gator Tech Smart House: A

Programmable Pervasive Space. IEEE Computer 38(3), pp.

50 – 60.

[11] Georgantas N. et al. (2005) The Amigo Service Architecture

for the Open Networked Home Environment. Proc. 5th

Working IEEE/IFIP Conference on Software Architecture

(WICSA’05), pp. 295 – 296.

[12] Sousa J.P., Poladian V., Garlan D., Schmerl B. & Shaw M.

(2006) Task-based adaptation for ubiquitous computing.

IEEE Transactions on Systems, Man and Cybernetics, Part

C: Applications and Reviews 36(3), pp. 328-340.

[13] Roman M., Hess C., Cerqueira R., Ranganathan A.,

Campbell R.H. & Nahrstedt K. (2002) A middleware

infrastructure for active spaces. IEEE Pervasive Computing

1(4), pp. 74-83.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

[14] Zhu F., Mutka M.W. & Ni L.M. (2005) Service Discovery in

Pervasive Computing Environments. IEEE Pervasive

Computing 4(4), pp. 81 – 90.

[15] Ballagas R., Borchers J., Rohs M. & Sheridan J.G. (2006)

The Smart Phone: A Ubiquitous Input Device. IEEE

Pervasive Computing (5)1, pp. 70 – 77.

[16] Satoh I. (2007) A location model for smart environments.

Elsevier Pervasive and Mobile Computing Journal 3(2), pp.

158-179.

[17] Lee C. & Helal S. (2003) Context attributes: an approach to

enable context-awareness for service discovery. Proc. 2003

Symposium on Applications and the Internet (SAINT),

Orlando, Florida, USA, pp. 22 – 30.

[18] Perttunen M., Jurmu M. & Riekki J. (2007) A QoS model for

task-based service composition. Proc. 4th International

Workshop on Managing Ubiquitous Communications and

Services (MUCS’07), Munich, Germany, pp. 11 – 30.

[19] Jurmu M., Perttunen M. & Riekki J. (2007) Lease-based

resource management in smart spaces. Proc. Workshops of

the 5th International IEEE Conference on Pervasive

Computing and Communications, White Plains, NY, pp. 622-

625.

[20] Edwards W.K., Newman M.W., Sedivy J., Smith T. & Izadi

S. (2002) Challenge: recombinant computing and the

speakeasy approach. Proc. 8th Annual International

Conference on Mobile Computing and Networking

(MobiCom), Atlanta, Georgia, USA, pp. 279 – 286.

[21] panOulu Public Access Network, URL:

http://www.panoulu.net/ (Accessed: Mar. 14th, 2008).

[22] Adjie-Winoto W., Schwartz E., Balakrishnan H. & Lilley J.

(1999) The design and implementation of an intentional

naming system. Proc. 17th ACM Symposium on Operating

System Principles, Charleston, South Carolina, USA, pp.

186 – 201.

[23] Riekki J., Salminen T. & Alakärppä I. (2006) Requesting

pervasive services by touching RFID tags. IEEE Pervasive

Computing 5(1), pp. 40 – 46.

[24] Salminen T., Hosio S. & Riekki J. (2006) Enhancing

bluetooth connectivity with RFID. Proc. 4th International

Conference on Pervasive Computing and Communications

(PerCom), Pisa, Italy, pp. 36 – 41.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3576
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3576

