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ABSTRACT

Mobile ad hoc networks can be leveraged to provide ubiqui-
tous services capable of acquiring, processing, and sharing
real-time information from the physical world. Unlike Inter-
net services, these services have to survive frequent and un-
predictable faults such as disconnections, crashes, or users
turning off their devices. This paper describes a context-
aware fault tolerance mechanism for our migratory services
model. In this model, a per-client service instance transpar-
ently migrates to different nodes in the network to provide
a continuous and semantically-correct interaction with its
client. The proposed fault tolerance mechanism extends the
primary-backup approach with a context-aware checkpoint-
ing process. The backup node is dynamically selected based
on its distance from the client and service, the similarity of
its mobility pattern with those of the client and service, the
frequency of the checkpointing process, and the size of the
checkpointing state.

We demonstrate the feasibility of our approach through a
prototype implementation tested in a small scale ad hoc net-
work of smart phones. Additionally, we simulate our mech-
anism in a realistic urban environment with 300 pedestri-
ans, cyclists, and cars. Compared to approaches where the
backup node is a neighbor of the service node or the client
node itself, our mechanism performs as much as 80% better
than the former for recovery ratio, and three times better
than the latter for network overhead, while achieving better
or similar recovery latency.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems; C.4 [Per-
formance of Systems]: Fault tolerance; D.4.5 [Operating Sys-
tems]: Reliability

General Terms: Design, Experimentation, Performance,
Reliability

Keywords: Context-aware Fault Tolerance, Migratory Ser-
vices, Mobile Ad Hoc Networks
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1. INTRODUCTION

Mobile ad hoc networks can enable a new class of ubiqui-
tous services that go beyond simple file transfer applications.
These services exploit the temporary and unstable network
support of ad hoc networks to provide real-time information
acquired from nodes located in the immediate proximity of
geographical regions, entities, or activities of interest. Cars
on the road can create ad hoc networks to share traffic in-
formation, smart phones can collaborate to provide recom-
mendations on city happenings, and intelligent mobile video
cameras can cooperate to transmit images from the prox-
imity of a disaster area. However, deploying services in ad
hoc networks is extremely challenging due to the dynamism,
in particular mobility, and heterogeneity of the interacting
entities.

Under these conditions, we believe that service reliability
represents the “make it or break it” factor in turning ad hoc
networks into distributed service providers. In traditional
distributed computing systems, services work correctly for
long periods of time, and recovery mechanisms are triggered
only in exceptional situations. In ad hoc networks, com-
munication, software, and hardware faults occur frequently
and can ultimately render service provisioning unfeasible, es-
pecially in the case of long-running stateful operations. De-
spite node mobility and limited resources, client applications
demand stable interactions with services. While numerous
approaches [1,4,6] have been proposed to accomplish service
reliability in distributed and mobile Internet-based systems,
to the best of our knowledge, similar mechanisms have not
yet appeared in mobile ad hoc networks. The only fault
tolerance issues studied so far in such networks are at the
network layer [5, 14].

This paper tackles the service reliability issue in ad hoc
networks by proposing a context-aware fault tolerance mech-
anism for our migratory services [22] model. This model
supports continuous and stateful client-service interactions
in highly volatile ad hoc networks. Unlike a regular ser-
vice that executes always on the same node, a per-client
migratory service instance migrates to different nodes in the
network to effectively process its client request. The service
migration is triggered by changes of the execution context
of the nodes in the network and occurs transparently to the
client application. In this way, migratory services naturally
provide fault tolerance to mobility and“predictable failures”
of nodes. Each time a node becomes unsuitable for hosting
a service (e.g., the node has moved away from a region of
interest or is running out of battery), the service can au-
tonomously migrate to another node where it can compute
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semantically-correct results. However, migratory services do
not provide fault tolerance to unpredictable failures occur-
ring when the hosting node crashes, is abruptly turned off,
or loses connectivity with the network.

To overcome these problems, we propose a context-aware
fault tolerance mechanism for migratory services. Our mech-
anism extends the primary-backup approach [3], in which
one primary service interacts with the clients and one replica
is stored on a secondary node. We make the checkpointing
process context aware. The secondary node is selected based
on its distance from the client and service. Additionally, we
take into account its mobility pattern (i.e., current and pre-
vious locations and speeds) as well as the checkpointing fre-
quency and state size. Overall, this context-aware, adaptive
approach allows the system to make dynamic decisions for
constantly trading off between the reliability performance
and the induced overhead.

We demonstrate the viability of our approach by imple-
menting a prototype in Java and testing it in a small scale
WiFi-based ad hoc network of smart phones. In addition,
to investigate the scalability of our mechanism in large scale
networks, we simulate it in a realistic urban scenario, where
pedestrians, bikers, and cars move across the city roads
with different speeds. The evaluation compares the pro-
posed adaptive strategy to two other checkpointing strate-
gies, where the backup node is a random neighbor of the
primary or is the client node itself. The results show that
our approach reduces the network overhead by two-three
times compared to the other approaches. Additionally, they
demonstrate that 90-100% of the service interactions, under
our approach, successfully recover upon failure even with an
increasing number of clients.

The rest of the paper is organized as follows. Section 2
introduces the migratory services model. Section 3 describes
the context-aware fault tolerance mechanism for migratory
services. Section 4 gives insights on the prototype imple-
mentation and its evaluation. The simulation results and
analysis are presented in Section 5. Section 6 discusses re-
lated work, and Section 7 concludes the paper.

2. MIGRATORY SERVICES

Migratory services [22] enable a new model of client-service
interaction capable of adapting to the dynamic execution
context of mobile ad hoc networks. In response to context
changes, a migratory service migrates to different nodes in
the network in order to effectively accomplish its task. The
service executes on a certain node as long as it is able to
provide semantically-correct results; when this is not possi-
ble anymore, it migrates through the network until it finds
a new node where the execution can be resumed. For in-
stance, to track a suspicious entity, a migratory service can
move from one wireless intelligent camera to another as the
entity moves across the region, thus constantly providing
the end user with images of the subject of interest. While
migrating, the service maintains its execution state and a
continuous interaction with the client.

The migratory services model incorporates three main
mechanisms. The first monitors the dynamism of interacting
entities (client or service) by assessing context parameters
characterizing their state of execution and resource avail-
ability. The second specifies, through context rules, how
the service execution is influenced and should be modified

Figure 1. Migratory services model

based on variations of those context parameters. The third
makes the service capable of migrating from node to node
and of resuming its execution once migrated. We call it
context-aware service migration since it is triggered by con-
text changes occurring on the service as well as on the client
side.

As Figure 1 shows, the service migration occurs transpar-
ently to the client, and except for a certain delay, no service
interruption is perceived by the client. For instance, the ser-
vice in the figure may be used by drivers on the highway to
predict upcoming traffic jams. This service is required to
execute in a region located at a constant distance ahead of
the client’s car. Due to the mismatch between the speed and
direction of the client’s car and those of the car executing
the service, the region of interest moves and changes dy-
namically. Consequently, the service may find itself running
outside such a region. In response to this context change,
it must migrate to another node located inside the region,
while carrying its state in the form of short term history of
the number and average speed of its neighboring cars.

The figure also shows how a migratory service constantly
presents a single virtual end point to the client despite be-
ing physically located on different nodes over time. Hence,
a continuous client-service interaction is provided. This ser-
vice model aims to support long-running queries, typical for
real-time monitoring scenarios, and can be characterized as
“one request, multiple responses”.

To facilitate service code distribution in the network, nodes
provide metaservices for each type of service they own. Clients
discover and contact metaservices that process their requests
and instantiate a migratory service for each client request. A
metaservice just spawns migratable instances of itself, but
it does not migrate or send responses to clients. There is
a one-to-one mapping between a migratory service and a
client application. Upon the creation of a migratory ser-
vice, the client application ceases communication with the
metaservice and continues to interact solely with its associ-
ated migratory service.

3. CONTEXT-AWARE FAULT TOLER-

ANCE

While the context-aware nature of migratory services im-
proves significantly the client-perceived service quality, ser-
vice failures are still possible and can thus compromise the
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service reliability. A service failure can occur due to tran-
sient or permanent failures of its components and commu-
nication links. Nodes hosting services can crash due to mal-
functioning, resource exhaustion, hardware and software er-
rors, or can be deliberately switched off (e.g., to save battery
or to reboot). Additionally, communication failures can oc-
cur due to mobility.

From a client’s perspective, several types of service failures
can occur [6]. An omission failure occurs when the service
omits to respond to a request. A timing or performance
failure occurs when the service responds outside the specified
time interval. A response failure occurs when the response
is semantically-incorrect. In reaction to omission and timing
failures, the client sends its request again. If after a certain
number of attempts the service omits to produce responses,
the service is said to suffer a crash failure.

The basic migratory services model naturally handles re-
sponse failures. A migratory service constantly verifies the
correctness of a computed result before delivering it to the
client application. If the client node receives a wrong result
(e.g., a response computed outside the region of interest for
the traffic jam predictor service), this is deleted and a mes-
sage is sent to the migratory service to update the request
parameters. Hereafter, we will focus on providing fault tol-
erance to permanent crash failures. In the following, we
present the two basic components of our context-aware fault
tolerance mechanism for migratory services: the backup and
the recovery.

3.1 Service Backup

To attain protection against the failures mentioned above
and to cope with the volatility of mobile ad hoc networks,
we extend the primary-backup approach [3]. A running mi-
gratory service, called primary service, relies on the exis-
tence of one backup service, called secondary service. The
primary service creates such a backup service, places it on
a secondary node, and periodically checkpoints the state of
the service on the secondary. The secondary service is inac-
tive as long as the client interacts with the primary. If the
primary fails, a failover process occurs, and the secondary
service takes over the service execution. This fault toler-
ant extension of the service is completely transparent to the
client application, which is still provided with the illusion of
a single service node.

Fault tolerance comes, however, with the cost of periodic
checkpointing. This cost is mostly a communication cost
and is proportional to the physical distance between the
primary and secondary node. Therefore, in selecting the
secondary, we need to consider a trade-off between the de-
sire to minimize the cost of checkpointing and the reliability
level that can be provided. On the one hand, the secondary
node should be close to the primary in order to minimize
the checkpointing overhead. On the other hand, it should
be close to the client in order to improve the chances of a
failover and minimize the failover latency. In the extreme
case, the secondary service may reside on the client node
itself.

In practice, a secondary node close to the client is pre-
ferred for highly critical applications that demand high re-
liability and fast recovery. However, when the service state
is relatively large or the checkpointing frequency is high, a
secondary node close to the primary is preferred (e.g., in a

tracking application, a service state consisting of large image
files should be saved on the closest nodes). Based on these
considerations, the ideal distance d between the primary and
the secondary is computed as follows

df =

8

>

<

>

:

dPC if f ≤ fmin

0 if f ≥ fmax

dPC · f−fmax

fmin−fmax
otherwise

ds =

8

>

<

>

:

dPC if s ≤ smin

0 if s ≥ smax

dPC · s−smax

smin−smax
otherwise

d = α · df + (1 − α) · ds α = 1/2

The distance d is computed by a weighted combination of df

and ds. df is the ideal distance between the primary and the
secondary based on the checkpointing frequency f . ds is the
ideal distance based on the service state size s. The mini-
mum and maximum threshold values for frequency and state
size are set statically by the primary node taking into ac-
count the frequency requirements and state characteristics
of typical migratory services. For instance, the minimum
state size could be associated with an average car speed ser-
vice, and the maximum could be associated with an entity
tracking service that uses multiple images and performs im-
age recognition.

As f varies from fmin to fmax, df varies linearly from dPC

to 0, where dPC is the distance between the primary and
the client. Below the lower threshold fmin, df equals dPC ,
meaning that the checkpointing frequency is so low that the
client can act as secondary. Above the upper threshold fmax,
df is 0, meaning that the checkpointing frequency is so high
that the secondary should be located on a neighbor of the
primary node. Similar considerations hold in computing ds.
The parameter α, set to 1/2 by default, can be tuned to
change the impact of the state size and checkpointing fre-
quency on the computation of the secondary’s location.

However, selecting a secondary at the ideal distance from
the primary does not necessarily mean to have found an ad-
equate secondary node. We improve the selection process
by considering the available resources and mobility traces
of all potential secondary nodes. We call this type of infor-
mation context of the node. In principle, the primary could
monitor all context parameters of all nodes located in the
routing path to the client within the ideal distance d and
then select the most appropriate secondary among them.
However, a monitoring process of this type would turn out
to be too expensive and not scalable. Instead, we adopt an
on-demand solution in which the evaluation is distributed
over the network.

First, as previously explained, the primary node computes
the ideal position of the secondary node on the routing path
between itself and the client. Then, it sends a sec-discovery
message in the network. This message contains the current
location and mobility traces of the primary node, the loca-
tion of the client, and a list of N requirements that the sec-
ondary node should satisfy. These requirements are specified
in a vector of conditions <c1, ..., cN>, where each condition
expresses lower bounds on needed resources, such as CPU,
memory, and communication capabilities. The sec-discovery
message is broadcast in a geographical region of range r cen-
tered on the ideal position of the secondary. r is defined in
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such a way to generate the maximum discovery region that
does not expand beyond the client’s and primary’s positions.
To avoid regions that are too small and potentially do not
contain any node, r cannot be lower than rmin (set to twice
the wireless transmission range tr).

r = max{rmin, min{d, (dPC − d)}} rmin = 2 ∗ tr

Upon receiving a sec-discovery message, each node i checks
whether its characteristics match the requirements specified
in the message and computes a matching score si

si = β · match(mobi, mobP ) +
1 − β

N

N
X

j=1

cj(pi,j)

Since we consider mobile nodes, the reliability and qual-
ity of the communication can highly improve if the primary
and secondary nodes constantly move in the same direc-
tion and at similar speed. The match function matches the
mobility traces of the candidate secondary node i and the
primary node, namely mobi and mobP . Each trace contains
the location coordinates < latitude, longitude > of the node
over the last N minutes, sampled every x seconds. GPS re-
ceivers, for instance, can provide these traces and navigator
systems can even record the most frequently taken routes
(e.g., home-to-office, office-to-home). match computes the
average distance between the positions of the two nodes over
the last M minutes (e.g., 15 minutes); if the result is below
a certain threshold, it returns 1, otherwise 0.

The second part of the score computation considers the
device profile (e.g., CPU, memory, and communication ca-
pabilities). Secondary nodes with larger capabilities are de-
sirable because they are likely to be operative for longer
and be effective in promptly resuming the service execution
when a fault occurs. Each condition cj is evaluated against
the corresponding profile parameter pi,j of the node i; if
positively verified, 1 is returned, otherwise 0. The match-
ing score is a weighted combination of the two matching
outputs. The parameter β, set to 1/2 by default, can be
set depending on the execution environment such as device
types and mobility. For example, in scenarios where nodes
are computers embedded in cars, matching mobility traces is
more relevant as nodes move fast and they are not resource-
constrained. Thus β can be close to 1. As opposite, in
scenarios where nodes are smart phones carried by walking
people, the resource-based matching is more relevant and β
can be close to 0. Nodes with matching scores higher than a
certain fixed threshold reply to the primary with their score
values and profile information. The primary can then select
its secondary node.

Once a secondary node is selected, state-update messages
are exchanged between the primary and secondary nodes
such that if the primary fails, the service state is available on
the secondary. The service state consists of service data and
execution control state. A checkpoint of the service state
occurs every R computed responses. This choice ensures
that every checkpointed state contains information“relevant
enough”to be saved. If R is high, the checkpointing overhead
is reduced, but with the risk of having an inconsistent state
on the secondary. If R is low, the overhead increases, but
the reliability improves. Every state-update message must
be acknowledged by the secondary node.

State-update acknowledgments can be used to carry con-
trol information about the secondary’s current context, such

as distance in number of hops between primary and sec-
ondary, remaining battery power, status of network connec-
tivity, etc. This control information may be used to trigger
a new secondary selection process or a migration of the sec-
ondary to a more suitable node when necessary. Likewise,
the checkpointing frequency may be adapted accordingly,
thus better tolerating transient network disconnections and
optimizing resource utilization.

3.2 Service Recovery

Since it is hard to maintain a supervising entity in highly
volatile ad hoc networks, node failures are detected by mu-
tual monitoring, and the recovery is achieved collaboratively.
The recovery process can be pull-based or push-based, de-
pending on which node detects the failure and initiates the
recovery. In pull recovery, the client node assumes that the
primary has crashed when it stops receiving answers. Af-
ter a certain number of failed attempts to reconnect to the
primary, the client contacts the secondary which will un-
dertake the recovery. Pull recovery is generally employed
by monitoring services that follow a “one request, multiple
responses” model where responses are periodically sent to
the client. Push recovery, on the other hand, is specific to
situations where the client cannot tell whether a fault has
occurred, such as in the case of event-based services (i.e.,
the client cannot tell whether it should or should not have
received a response). In this case, the secondary detects the
failure, activates the recovery, and resumes the interaction
with the client. The secondary assumes a primary fault has
occurred when it stops receiving state-update messages.

Failures of the primary service and disconnections between
the primary and secondary are detected using timeouts. To
adapt to changing network conditions, timeouts are con-
stantly updated, but always in a range between a minimum
and a maximum value set at the beginning of the interac-
tion. Ideally, only persistent disconnections or node crashes
should trigger the replacement of the primary service with
the backup service. Timeouts should be set and dynamically
adjusted with the aim to quickly detect permanent failures
and tolerate transient ones. In our model, we define four
timeouts:

• Tc is the client timeout for pull recovery. The client
concludes that the primary has crashed if it did not
receive any response during this period.

• Tsp is the secondary timeout for push recovery. The
secondary concludes that the primary has crashed if it
did not receive any state-update message during this
period.

• Tp is the primary timeout for both types of recovery.
The primary concludes that the secondary has crashed
if it did not receive any state-update acknowledgment
during this period.

• Ts is the secondary state removal timeout. The sec-
ondary considers that the primary has selected a new
secondary if it does not receive any state-update mes-
sage from the primary or a request from the client to
take over during this period.

Figure 2 illustrates three main types of failure scenarios
and how the timeouts are used to cope with them. The
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Figure 2. Failure scenarios

first case, Figure 2(a), shows a pull recovery. In this sce-
nario, the primary service periodically delivers responses to
its client. At some point, the primary crashes and discon-
nects from both the client and secondary. When Tc expires,
the client concludes that the primary has crashed and resub-
mits its request to the secondary. The secondary assumes
the role of primary, resumes the interaction, and selects a
new secondary node. Tc is proportional to the estimated
RTT (round trip time) between the client and primary, and
RTT is constantly updated based on the jitter of the ob-
served interresponse times. Furthermore, to guarantee that
the client times out before the secondary removes the service
state, Tc must be less than Ts.

Another possibility, not shown in the figure, is that the
primary service reappears after some time by sending a new
response to the client and a new update to the secondary.
In this case, both the client and the secondary reply to the
primary with a cancel message, and the client increases its
Tc by 1 RTT to better cope with current communication
delays.

The second scenario, shown in Figure 2(b), shows a push
recovery. This example considers an event-based service in-
teraction. As the primary does not send periodic responses
to the client, the client cannot directly detect its failure.
However, the secondary can easily realize when the primary
has failed (i.e., it does not receive state-update messages).
When Tsp expires, the secondary contacts the client; if the
client also believes the primary has crashed, it replies by
asking the secondary to take over the execution. To guaran-
tee that recovery occurs before the secondary removes the
service state, Tsp must be less than Ts. If the primary ap-
pears again after some time, both the client and secondary
will reply with a cancel message and increase their timeouts
by 1 RTT . If the client believes the primary is still active
(i.e., the primary has probably disconnected only from the
secondary), no reply is sent to the secondary. Consequently,
Ts will expire and the secondary will remove the service
state. In this case, the primary node guarantees that a new
secondary has been selected by the time the old secondary
deletes its state as demonstrated in the next example.

Figure 2(c) shows a scenario in which the secondary fails.
When Tp expires, the primary selects a new secondary node.

Figure 3. Migratory services framework

Like in the previous case, the timeout Tp is computed and
updated based on the observed primary-secondary RTT . In
the case of a temporary disconnection of the secondary, it
may happen that the second lost update shown in the fig-
ure reaches the secondary node and triggers an acknowledg-
ment. If this acknowledgment arrives after Tp has expired
and a new secondary has already been selected, the primary
ignores it, thus forcing the old secondary to timeout. In ad-
dition, the primary increases its Tp by 1 RTT as it is likely
that other transient disconnections will happen soon. Tp

will be decreased again if no other disconnections will occur
for a while.

4. PROTOTYPE SYSTEM

To support the migratory service model, we implemented a
framework that runs on each node willing to cooperate in
the ad hoc network. As illustrated in Figure 3, at the lower
layer, the Smart Messages (SM) [11] computing platform
provides support for execution migration, naming, routing,
and security. On top of the SM layer, we built a layer provid-
ing support for context provisioning and monitoring, context
rules creation and validation, client-service communication,
and service reliability. This layer exports a simple message
passing API to clients and services. This framework was
implemented using the mobile and embedded Java platform
(Java ME) Connected Device Configuration (CDC) 1.0. A
portable SM [21] version that runs on top of unmodified Java
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virtual machines was used in the implementation. All soft-
ware development was done using Nokia Series 80 phones.

To understand the implementation details of our proto-
type, we start this section with an overview of the SM plat-
form. We then describe how the fault tolerance mechanism
has been implemented in the migratory services framework
and evaluate its performance.

4.1 Smart Messages

An SM is an application similar to a mobile agent whose
execution is distributed over a series of nodes using execu-
tion migration. The nodes on which SMs execute are named
by properties and discovered dynamically using application-
controlled routing. To move between two nodes of interest,
an SM calls explicitly for execution migration. Each node
participating in the SM execution provides a virtual machine
for execution over heterogeneous platforms and a shared
memory addressable by names, namely the tag space, for
SM communication, synchronization, and interaction with
the host.

During execution, an SM can interact with the host or
other SMs through the tag space, which is local to each node.
The tag space consists of (name, data) pairs, called tags,
which are created by SMs and used for data exchange. The
tag space also provides a simple update-based synchroniza-
tion mechanism: an SM can “block” on a tag until another
SM “writes” on that tag. Special I/O tags are predefined
at nodes and used as an interface to the OS and I/O sys-
tem (e.g., battery lifetime, available memory, sensors). Tags
are also used to uniquely name both end points of a com-
munication, as well as to define the destination node of a
service migration. SM integrates geographical routing and
region-bound content-based routing, similar to GPSR [12]
and AODV [20], respectively.

The multi-hop SM migration is implemented using a low-
level primitive for one-hop migration, namely sys migrate.
This primitive captures the execution context of the SM
(data and control state), packs it with the SM code, transfers
all to the next hop, and resumes the execution with the
following instruction in the code. SMs are Java programs,
which can incorporate multiple Java classes, namely code
bricks, and multiple Java objects, namely data bricks. The
data bricks are explicitly specified by the programmer when
an SM is instantiated and contain the data that must be
transferred during migrations. At runtime, SMs can create
“child” SMs carrying a subset of their code bricks and data
bricks.

4.2 Reliability Modules

Our context-aware fault tolerance mechanism has been in-
tegrated in the migratory services framework through the
Reliability Manager. Figure 4 shows the core software mod-
ules composing the Reliability Manager and the interactions
that take place between the primary and secondary node
during the backup and recovery process. The primary ser-
vice generates a SecondaryDiscoverySM to discover a qual-
ified secondary node. This SM is broadcast to all candidate
secondary nodes located in the target geographical region
computed by the primary’s framework. Instances of this
SM verify whether any node in the region meets the speci-
fied requirements and migrate back to the primary when an

Primary Service Secondary Service

BackupSM

Secondary

DiscoverySM

Backup

UpdateSM

Migratory

Service

send

send

send

return

ACK

ACK

execute

BackupSM

instantiate

client request client request

Migratory

Service

instantiate

Client

service state

Figure 4. Interaction between the reliability software modules

appropriate secondary is found. Once a secondary node is
selected, the primary service generates a BackupSM that mi-
grates to it. The BackupSM carries the code bricks and data
bricks necessary to instantiate and execute the migratory
service on such a node.

The BackupSM waits for updates or client requests by block-
ing on update and request tags. Update tags are used to
receive state updates from the primary. These updates are
encapsulated in BackupUpdateSMs. These SMs migrate to
the secondary node and unblock the BackupSM by writing an
update tag containing the new service state. The BackupSM

reads the tag, updates the state, and acknowledges the re-
ception of the message. Request tags are used by the client
framework to trigger pull recoveries upon failure of the pri-
mary. In such a case, a BackupRequestSM (not shown in the
figure) migrates to the secondary and writes a request tag
containing the request parameters and the sequence number
of the last response received by the primary. The BackupSM

unblocks and instantiates a new MigratoryService that will
take over the execution. In push recovery an analogous SM
migrates from the secondary to the client.

4.3 Experimental Evaluation

To demonstrate the feasibility of our approach, we tested our
prototype in an ad hoc network of three Nokia 9500 smart
phones. The phones communicate using IEEE 802.11b in
ad hoc mode. They run Symbian OS 7.0s, have an ARM
processor at 150 MHz, offer 76 MB of built-in memory, and
support JavaME CDC (JSR-36). As our primary goal was
to understand if such a fault tolerance mechanism can run
with reasonable performance on smart phones, we did not
attempt to optimize the code. A detailed performance anal-
ysis in large scale networks is given in Section 5.

In the experiments, we employed TJam, a prototype mi-
gratory service for traffic jam prediction. This application
dynamically predicts if traffic jams are likely to occur in a
given region of a highway by using only car-to-car short-
range wireless communication. In the test topology, the
phone running the TJam client and the one running the
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Figure 5. Checkpointing latency for one hop and two hops distance

TJam primary service are at a distance of two hops. The
initial service state of TJam accounts for 2669 bytes. This
is increased during the tests to assess the performance of
migratory services with different state sizes. We ran ex-
periments measuring the memory overhead, checkpointing
latency, and recovery latency.

Memory overhead. In these experiments, we measure
the heap size differences before and after the objects have
been allocated. However, we need to consider that the JVM
can decide to increase its current heap size at any time and
in particular when running garbage collection. We therefore
force garbage collection to happen before the measurements
start and ensure that it does not interfere with them1. The
heap size allocated to run the Java VM and the migratory
services framework with TJam running is 172 kB. For a ser-
vice of 2669 bytes like TJam, the size of the TJam migra-
tory service’s client is 68.8 kB, while that of the primary
(i.e., the secondary has the same size) is 111.7 kB. Techni-
cal specifications say that Nokia 9500 phones offer approx-
imately 20 MB of free RAM to run programs. However,
benchmark tests2 show that the size of the heap is approxi-
mately 13 MB. Based on these benchmarks, our experimen-
tal migratory service consumes about 0.89% of the available
RAM. Therefore, we conclude that even with a relatively
small amount of memory, many migratory services can be
supported by the system.

Checkpointing latency. This latency includes the time
to extract the service state, save it in the BackupUpdateSM,
migrate the BackupUpdateSM to the secondary node, store
the new service state in the BackupSM running on the frame-
work at the secondary node, and send an acknowledgment
to the primary service. We measure the elapsed time from
the beginning of the checkpointing process until the recep-
tion of the secondary’s acknowledgment. We consider two
cases: the secondary is at a distance of one or two hops from
the primary. In the 1-hop case the secondary runs on the
intermediate node between client and primary, while in the
2-hop case it runs on the client node.

1We used a modified version of the Sizeof class available from
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html
2http://www.club-java.com/TastePhone/J2ME/MIDP
Benchmark.jsp

Table 1. Latency of the recovery process

MS State Failover 1-hopSecDisc BackupSM-MigrExAck

(bytes) (ms) (ms) (ms)

2669 256 1850 7187

8002 256 1850 7234

23922 256 1850 7468

71998 256 1850 8296

216000 256 1850 10704

Figure 5 reports checkpointing latencies for different sizes
of the service state. The actual size of the data transfer ac-
counts for data bricks and code bricks of the BackupUpdateSM.
Together with the service state, data bricks contain also
other control information, such as routing, that account for
691 bytes. As these tests were executed without caching
the code, code bricks of the BackupUpdateSM accounts for
7018 byte.

The backup latency increases linearly with the size of the
service state. Compared to the case of backup at a distance
of one hop, the latency of the backup process at a distance
of two hops shows a faster raise as the service state size in-
creases. The break up analysis shows that extracting the
service state and generating the BackupUpdateSM accounts
for approximately 280 ms, while storing the received service
state and generating the acknowledgment message accounts
for approximately 415 ms. The rest is SM communication
overhead, which includes connection establishment, transfer
of data and code, and serialization. The SM communica-
tion time can be improved if we enable the existing code
caching mechanism in SM and use a more advanced serial-
ization mechanism than the default Java serialization based
on slow reflection. In all experiments, we observed that Java
serialization consumed over a quarter of total time when
transferring 1 kB messages over WiFi. Hand-optimized bi-
nary formats can improve performance, but they often lack
extensibility and are hard to debug. However, recent work
on XML encoding [28] shows that it is possible to retain the
benefits of a generic format such as XML without sacrificing
efficiency.

Recovery latency. To measure this latency, we gener-
ate phone failures by turning off the WiFi interface for a
period long enough to trigger the timeout on the client node
(pull case) or on the secondary node (push case). Table 1
presents the results as function of the migratory service’s
state size (MS state). The latency of the recovery process
on the secondary node consists of (i) resuming the service ex-
ecution (failover); (ii) discovering a new, suitable secondary
node based on the requirements of the primary service (1-
hopSecDisc); and (iii) creating and migrating the BackupSM

that will start executing on the new node by first send-
ing an acknowledgment back to the primary (BackupSM-
MigrExAck). The size of the BackupSM’s data bricks is given
by the service state and the additional overhead for rout-
ing, discovery, and migration functions that account for a
total of 2364 bytes. The BackupSM’s code bricks amount to
28757 bytes (these experiments are also run without code
caching).

The failover time and the one-hop discovery time are con-
stant as they are independent of the state size. The cost
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Figure 6. Checkpointing overhead

Table 2. Average users’ speed in the simulation study

Users Percentage Average speed

Standing 10% 0m/s

Walking 20% 1m/s

Running 10% 3.5m/s

Cycling 10% 5m/s

Driving 50% 18m/s

of the recovery process is due mainly to the time necessary
to migrate data and code of the backup service to the new
secondary node. Even though this latency can be high for
services consisting of large data bricks and code bricks, it
does not directly impact the performance observed by the
end user. The delay of service responses sent to the client
depends on the failover latency, which we found to be small,
and on the timeouts detecting the primary failure.

5. SIMULATION RESULTS

The objective of the simulation study is to analyze the per-
formance of our fault tolerance model in large scale net-
works. Specifically, it provides quantitative answers to the
following questions: What is the network overhead associ-
ated with the fault tolerance mechanism? How does our
mechanism scale with an increasing number of clients? How
long does the recovery process take and how many services
do recover?

We use the NS-2 simulator enhanced with the CMU wire-
less extensions. The transmission range of each node is
250 m and the propagation model is the TwoRayGround.
We consider a 6000 m x 1000 m urban area covering a grid
type road layout with 55 bidirectional road segments. A
road segment is defined by two consecutive intersections on
the same road. We utilize 300 nodes initially distributed uni-
formly over the roads. The nodes move at different speeds
with the aim of representing a realistic urban population
consisting of pedestrians, runners, cyclists, and drivers. The
speed of each node is modeled as a uniform variable. The

percentage of nodes in each category and their average speed
values are reported in Table 2.

Among the 300 nodes, 36 nodes are randomly selected to
act as metaservices (there are three types of metaservices
to choose from). As explained in Section 2, metaservices
are responsible for receiving client requests and instantiat-
ing migratory services. Each request is associated to one
migratory service instance. In our simulations, clients ask
migratory services to monitor a certain region at a constant
distance from its current position (e.g., entity tracking for
a static user, traffic jam predictor for a driver). The mi-
gratory service must therefore ensure that observations are
constantly collected in the region of interest despite node
mobility. Each service computes and returns a new response
every 3 seconds.

Metaservices and secondary nodes are discovered using
geographical forwarding to reach the region of interest and
a broadcast inside the region. The rest of communication
uses only geographical forwarding. To reduce the overhead
associated with traditional geographical forwarding (i.e., fre-
quent “hello”messages to maintain an accurate list of neigh-
bors), we employ our distributed receiver-based next hop
election [17]. This solution uses the default IEEE 802.11
RTS/CTS mechanism and a multi-criteria prioritization func-
tion, which accounts for non-uniform radio propagation, to
allow the self-election of the best neighbor.

Each simulation test runs for 300 seconds and results are
averaged over five runs. Each simulation run is produced
using a different initial node distribution. We consider the
following metrics:

• Checkpointing overhead measures the network traffic
overhead induced by the fault tolerance mechanism.

• Recovery ratio measures the percentage of client-service
interactions that are able to recover upon a primary
failure.

• Recovery latency measures the time elapsed between
the moment at which the failure is detected (by the
client node in the pull model or by the secondary node
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Figure 7. Checkpointing overhead with an increasing number of
clients (No failures, frequency= 1

5
, state size=10kB)

in the push model) and the moment at which the nor-
mal operational state is reestablished (i.e., the primary
service is reestablished and a new secondary node is
successfully selected). This metric considers only re-
covered service interactions.

• Response ratio is the number of responses received by
the clients in the presence of failures over the number
of responses received in the ideal case where no node
failure, routing delay, and network partition occur.

The evaluation is carried out by comparing our context-
aware fault tolerance mechanism (labeled Adaptive), against
three other mechanisms, namely checkpointing at the client
(Client), checkpointing at a random neighbor of the primary
service (Neighbor), and no checkpointing (Baseline). Unless
otherwise specified, the parameters for our context-aware
fault tolerance mechanism are set as follows: fmax = 1,
fmin = 1

100
, smax = 100100, smin = 100, α = β = 1

2
,

Tp = ( 1

f
+ 3)τ , Tsp = ( 1

f
+ 2)τ , Tc = 3τ , where τ represents

the interresponse generation time and is set to 3s. Matching
of mobility traces is enabled, but we do not study the impact
of matching resource capabilities in the secondary selection.

5.1 Checkpointing Overhead

We assess the checkpointing overhead for different check-
pointing frequencies and state sizes. The number of clients
is fixed to 24. No service failures are induced in these tests
as our goal is to quantify the added overhead when fault
tolerance is not needed. However, service failures may still
occur because of network disconnections or failed service mi-
grations. Figure 6 summarizes the results.

First, we keep the checkpointing frequency constant at
1

5
(i.e., the checkpoint occurs once every five generated re-

sponses) and vary the state size. As the results in Figure 6(a)
show, our Adaptive strategy performs best (as much as three
times better than the Client strategy and about twice than
the Neighbor strategy) and scales better than the others as
the state size increases. This occurs because our mechanism
always attempts to select backup nodes located at an ideal
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Figure 8. Recovery ratio with an increasing number of clients

distance from the primary and client, and it takes into ac-
count the checkpointing frequency and state size. Further-
more, the backup node is selected by taking into account
similarities between its mobility trace and that of the pri-
mary.

The overhead of the Client strategy increases significantly
with the state size because of the longer path between the
primary and secondary, which leads to higher rates of packet
contentions and retransmissions. Unexpectedly, our strat-
egy outperforms checkpointing at the neighbor as well. This
is because the Neighbor strategy selects the secondary with-
out considering the similarities between mobility traces. For
instance, the primary service running on a fast car can se-
lect a secondary running on a pedestrian node. As nodes
are moving, the secondary can easily move far from the pri-
mary in a short period of time, thus increasing the chances
of disconnection between the secondary and the primary.

Similar considerations explain the results shown in Fig-
ure 6(b), in which we keep the state size constant and vary
the checkpointing frequency. Our Adaptive strategy is al-
ways better than the other two. This is especially visible for
high checkpointing frequency (e.g., f = 1

2
, checkpointing is

performed once for every two new responses computed).
We also measure the checkpointing overhead as function

of the number of clients. Figure 7 demonstrates that our
strategy scales better with the number of clients than the
other two.

5.2 Recovery Performance

To investigate the recovery performance, we measure the re-
covery ratio, the recovery latency, and the average response
ratio as function of the number of clients. Failures are in-
duced at time t=150 seconds by switching off all primary
services. Our mechanism works for both hardware failures
(node crashes) and software failures (service crashes). We
choose the latter for these simulations to avoid inducing
failure effects on routing. Although other failure models
in which failures are distributed over time could have been
considered, we choose to perform our tests in the worst case
scenario, where all failures occur at the same time. Through-
out the simulations, the backup services do not fail.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3564 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3564 



�� �� ��

���

���

���

���

���

���

���

���

� ��

� ��

���

	
��
������� ������������ 	
��
�������

��������������� �����
�

���������� ����
�

!
�
 
�
�
�
�"
��
�

�
�
 
"
�#
�
$

(a) Recovery latency

�� �� ��

�

��

��

��

��

��

��

��

	�


�

���

��
��������� ����������
����� ������� ��
����

���������������� ������� ������� !�����
��
�������

��"�� ��#�$�����


%
�


�
�
�


�
� 
�
��
�
�&
'

(

(b) Response ratio

Figure 9. Recovery latency and response ratio with an increasing number of clients

Furthermore, to make the analysis more realistic, these
simulations add background traffic to account for other po-
tential applications in the network (10 random nodes ex-
change Constant Bit Rate traffic at a rate of 1 pckt/s). The
background traffic was not enabled in the overhead tests as
we wanted to quantify the overhead induced by the check-
pointing process rather than the routing.

We compare the performance of the three mechanisms
where Neighbor and Adaptive are present in both the push
(AdaptivePush and NeighborPush) and pull (AdaptivePull
and NeighborPull) versions. In the Client strategy, as the
secondary resides on the client node, there is no difference
between the push and pull models.

Recovery ratio. As Figure 8 shows, more than 90% of
the client-service interactions recover after failure in all tests
for the Adaptive and Client strategies. In the Neighbor tests,
the recovery rate is between 50% and 75%. This is due to
the random selection of the secondary without matching the
mobility traces, which leads to longer communication paths
in many situations. Consequently, longer paths lead to a
higher risk of communication breaks. If the primary does not
detect the break in the communication with the secondary
in time to select a new secondary, the service interaction will
not recover upon the primary failure.

The Client strategy can recover easily because the client
and secondary reside on the same node. However, we observe
that the Adaptive strategies perform better than the Client
in several cases and that the Client’s recovery is not 100%
as expected. This is due to the fact that a complete recov-
ery requires the backup service to migrate to the monitored
region, which can be far away, thus increasing the chances
of migration failures. Instead, in the Adaptive strategy the
backup node is generally closer to the region of interest, thus
reducing the probability of migration failure.

We also observe that the recovery ratio is higher in push
scenarios compared to pull scenarios. In the push case, af-
ter a primary failure, the secondary times out and directly
resumes the interaction with the client. In the pull case,

the client detects the failure and contacts the secondary,
which will then resume the interaction. This “extra step”
of contacting the secondary service in the pull mechanism
generally leads to higher recovery latencies. Typically, the
distance between the secondary and the region of interest
increases over time (due to the speed mismatch in the Neigh-
bor case and due to deviations from the historical mobility
trace in the Adaptive case). Therefore, higher recovery la-
tencies lead to longer distances, and consequently, to higher
rates of migration failures when the secondary attempts to
migrate to the region of interest.

Recovery latency. Figure 9(a) shows that the Adaptive
strategy achieves the best recovery latencies. The perfor-
mance of the Client strategy is affected by its greater dis-
tance from the region of interest (i.e., it takes longer to mi-
grate the secondary there). We also observe that as the num-
ber of clients increases, its relative performance decreases
faster when compared with Adaptive and Neighbor. This is
due to wireless contentions and retransmissions, which lead
to longer delays in the migration process. The Neighbor
strategy achieves performance closer to the Adaptive strat-
egy, but its main problem is the low recovery ratio (i.e.,
in computing the latency, we considered only the recovered
client-service interactions). Finally, the push model achieves
lower latency than the pull model due to the “extra step” in
the recovery process mentioned above.

Response ratio. Figure 9(b) reports the average re-
sponse ratio for all mechanisms and for two Baseline cases.
This metric quantifies the response losses incurred on the
client because of the failures. We choose to measure this
metric instead of computing it analytically (from recovery la-
tencies and service interresponse time) to account for packet
losses and migration failures. Baseline-1 represents migra-
tory services without reliability support and with induced
failures. Baseline-2 represents migratory services without
reliability support and without induced failures. All num-
bers are normalized to the number of received responses in
the ideal case (i.e., no failures, no network partitions, no
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packet losses). Specifically, in the ideal case, the number of
expected responses is T

τ
, where T is the total simulation time

and τ is the service interresponse time. With our settings
(T=300 s, τ=3 s), this number is 100.

Our Adaptive strategy achieves the best ratios when the
number of clients increases, comparable with the Baseline-2
(the case without induced failures). Furthermore, it achieves
as much as 65% improvement compared to Baseline-1. The
Client strategy works best for a small number of clients be-
cause the reaction time to a failure is reduced due the fact
that the secondary resides on the client node. The other
methods react slower depending on the timeouts at the pri-
mary (Tp) and secondary node (Tsp). Note that the re-
covery latency does not account for how quickly the failure
is detected, but for how quickly the recovery occurs once
the failure is detected. This explains why in the case of 12
clients AdaptivePush presents a lower response ratio than
Client even though its average recovery latency is much
lower (Figure 9(a)) and its recovery ratio just slightly higher
(Figure 8). On the other hand, the response ratio of the
Client strategy quickly decreases with an increasing number
of clients due to the increase in contention. The Neighbor
strategy performs worst due to its low recovery ratio.

Even though the push model guarantees higher recovery
ratio and lower recovery latency, its overall number of re-
ceived responses is slightly lower than that of the pull model.
This result demonstrates the impact on the overall perfor-
mance of the time to detect a failure. The push model takes
longer due to the fact that the secondary’s timeout (Tsp) em-
ployed in push recovery is higher than the client’s timeout
(Tc) employed in pull recovery.

5.3 Results Summary

These results prove the effectiveness of our approach. We
expected the Client strategy to provide the best recovery at
the cost of a higher checkpointing overhead. The results val-
idate the overhead assumption (the Adaptive strategy has
as much as three times lower overhead), but they also show
that the Adaptive strategy achieves slightly better recov-
ery ratios. Additionally, the Adaptive strategy scales better
with an increasing number of clients. The Neighbor mecha-
nism was expected to provide a low overhead at the cost of
a decrease in the recovery latency. The results demonstrate
that the Adaptive strategy achieves not only lower recov-
ery latency, but also lower overhead and higher recovery
ratios. Finally, the performance of our mechanism could be
improved even further by allowing the secondary to migrate
and follow the movement of the primary and the client.

6. RELATED WORK

Reliability in distributed systems can be achieved by avoid-
ing single points of failure, allowing monitoring, reducing the
scope of failure to a recoverable action, and especially en-
abling redundancy. Two well-known types of redundancy
are active replication and primary-backup [6]. In active
replication, a collection of servers (replicas) maintain the ser-
vice state, and upon a server failure, the remaining servers
can continue. Primary-backup [3] approaches select one
replica as the primary server, and this replica handles all
client requests and periodically synchronizes with one or
more backup servers. In case of a failure of the primary,
one of the backup servers takes over the service execution.

In general, primary-backup mechanisms are simpler, but
yield longer recovery times as a backup must perform an
explicit recovery algorithm to resume the server execution.
On the other hand, active replication mechanisms have to
deal with the overhead of handling several replicas and en-
suring ordered delivery of messages to all replicas. Since the
network capacity is very limited in mobile ad hoc networks,
we prefer to leverage the primary-backup mechanism, which
results in less traffic overhead.

Reliability in ad hoc networks has been mostly inves-
tigated at the networking layer to design reliable routing
protocols [13, 26, 29]. Additionally, deterministic [7, 9, 19]
and probabilistic [5, 15, 18] approaches for reliable broad-
cast and multicast have been investigated. Finally, reliable
group communication [14] has also been studied. Unlike
these projects, our work targets service reliability in ad hoc
networks, a topic that was practically unexplored so far.

Numerous approaches have been studied in the past to
achieve fault tolerance at the TCP level. Examples include
FT-TCP [2], HYDRANET-FT [23], M-TCP [25], and ST-
TCP [16]. It is hard, if not impossible, to apply these solu-
tions to mobile ad hoc networks. The traditional end-to-end
model of communication assumed by TCP does not work
well in dynamic, multi-hop ad hoc networks [27]. Further-
more, it is difficult to introduce changes in TCP as network
providers deny them. Trickles [24] is a TCP-like transport
protocol that provides service continuation at the packet
level and maintains the state only at the client side. How-
ever, this approach cannot be used in our case as we also
need to capture and maintain the service state, not only the
TCP connection state.

A solution to service continuity in ad hoc networks, called
“follow-me” services, has been proposed in [10]. As the user
moves through the network, services can migrate from node
to node to maintain a seamless interaction with the client
application. As such, these services can be considered a par-
ticular example of migratory services where the migration is
triggered by the lack of connectivity between client appli-
cations and services. However, differently from migratory
services, “follow-me” services assume to be capable of con-
stantly predicting when a node is about to lose connectivity
from another node and do not guarantee reliability against
unpredictable node failures.

One.world [8] is similar to our work in the sense that both
consider migration as a key mechanism to adapt to dynamic
computing environments. Each application in one.world has
at least one environment that contains tuples, application’s
components, and other nested environments. When needed,
a migration can move a copy of an environment to another
node. One.world also provides checkpointing support to
capture the execution state of an environment tree and save
it as a tuple. However, in one.world, checkpointing is mainly
intended to resume an application after it has been dormant
or after a failure, but not to provide reliability in a dis-
tributed client-service interaction.

7. CONCLUSIONS

This paper presented the design and implementation of a
context-aware fault-tolerance mechanism that allows migra-
tory services to survive crash failures and transient com-
munication failures. We demonstrated the feasibility of our
approach through a prototype implementation running on
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smart phones and investigated its performance in large scale
networks through simulations. Compared to other primary-
backup approaches where the client node or a random neigh-
bor of the primary are selected as backup nodes, our adap-
tive approach has succeeded in providing better reliability
performance and lower network overhead.
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