
User-Driven Visual Mashups in Interactive Public Spaces

D. Soroker
1
, Y.S. Paik

2
, Y.S. Moon

2
, S. McFaddin

1
, C. Narayanaswami

1
, H.K. Jang

2
,

D. Coffman
1
, M.C. Lee

2
, J.K. Lee

2
, J.W. Park

2

1
IBM T.J. Watson Research Center, Hawthorne, NY

2
IBM Ubiquitous Computing Laboratory, Seoul, Korea

soroker@us.ibm.com

ABSTRACT

Searching and presenting rich data using mobile devices is hard

given their inherent I/O limitations. One approach for alleviating

these limitations is device symbiosis, whereby the interaction with

one’s personal mobile device is augmented by additionally

engaging with more capable infrastructure devices, such as kiosks

and displays. The Celadon framework, previously developed by

our team, builds upon device symbiosis for delivering zone-based

services through mobile and infrastructure devices in public

spaces such as shopping malls, train stations and theme parks.

An approach for rich data visualization that is gaining wide

popularity is mashups. In this paper we describe User-Defined

Mashups – a general methodology that combines device

symbiosis and automated creation of mashups. We have applied

this methodology to build a system that enables Celadon users to

flexibly interact with rich zone information through their mobile

devices, leveraging large public displays. Our system bridges

public and personal devices, data and services.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –

domain-specific architectures, patterns.

General Terms

Design, Human Factors, Experimentation, Management.

Keywords

Mashups, Mobile Computing, Services.

1. INTRODUCTION
Consider the scenario where you are at a mall shopping for some

clothes. Next to you, a video display is showing advertisements

that don’t concern you. You find a nearby directory map and look

for stores of interest and also for restaurants (it is getting close to

lunchtime…). For each establishment of interest you need to

laboriously search for its location on the map.

Now consider the following twist. You use your personal mobile

device to request information, whereupon an interactive mall map

appears on the large display next to you. Through your mobile

device you ask to locate clothing stores, then change your mind

and choose restaurants. Your mobile presents an interface for

specifying restaurant-relevant attributes, such as cuisine type and

price-range. Once specified, the matching restaurants are

highlighted on the map on the large display. Further interaction

yields more details on selected restaurants, and also lets you book

a reservation.

This paper describes a system for enabling the second type of

scenario. Based on simple user interactions, the system locates

data sources, queries them, and visually composes their outputs.

Our system extends Celadon [19] – a framework we created for

delivering zone-based services through personal mobile devices

and public infrastructure devices. The work presented here

supports ad-hoc, loosely structured activities, where the user has a

goal in mind (such as finding a satisfactory restaurant) and needs

to obtain specific information for making an informed decision.

From the user’s point of view, such a system must support

intuitive and swift interactions, easily honing in on the

information of interest. From an administrative point of view,

such a system should permit easy deployment of many different

informational services for seamless consumption by users.

A possible approach for supporting such a scenario with current

technologies is via text-based search such as used by the Google

maps service for local business search [6]. Such an approach is

good for simple searches (“pizza”), but falls short for more

involved searches (“inexpensive Italian restaurant”), since the user

may not know the best search terms to use. Performing a sequence

of refined text searches may be reasonable on the desktop but is

far from perfect in a dynamic mobile scenario (due to the

overhead of user interaction and network delays for each round

trip). Thus we seek an approach where the system helps guide the

user in what to specify.

Addressing locations in indoor spaces raises interesting

challenges. Geographic mapping software relies on the

widespread existence of geocoding and reverse geocoding systems

to convert between street addresses that humans understand to a

precise mathematical representation of a location and vice-versa.

No analogous system has been developed for indoor spaces yet.

Also, indoor spaces may have several floors, necessitating 3D

coordinates, and typically cannot leverage GPS technology. Thus

we had to devise an approach that works for indoor maps.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Mobiquitous 2008, July 21–25, 2008, Dublin, Ireland.

Copyright © 2008 ICST ISBN 978-963-9799-27-1.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

Mashups are a prevalent paradigm for information composition on

the Web. A mashup combines data from more than one source

into a single integrated application that is not provided by any

individual source. Visual mashups show data within a meaningful

visual context (such as on a map), and are thus very effective for

conveying information (e.g., [8]). Typically mashups are

explicitly programmed in advance, often by collecting data via a

script and displaying it mashed up via APIs [7] or markup [11].

Tools such as Yahoo Pipes [32] and QEDWiki [25] enable easy

creation of mashups, also by non-programmers. Such tools create

situational applications [28], which are easily constructed,

lightweight, and serve specific purposes. The purpose of such

tools is to create applications that are subsequently run.

In contrast, in the fast-paced scenario described earlier, the user’s

goal is to obtain information rather than create an application.

Thus, to support these types of scenarios, mashups need to be

formed automatically, based on minimal input from the user. We

call them user-defined mashups. Whereas the data sources are

pre-specified in conventional mashups, user-defined mashups

allow data sources to be specified and composed at runtime, based

on user input. Such a partitioning allows composition of data

sources published by different entities, e.g., cuisine information

can come from a restaurant service and the restaurant location

from a directory service. In such a world, GUIs are built from

schemas that describe data streams and allow the specification and

creation of composite data streams that can then be rendered on a

map. Another central feature is that this new breed of mashups

does not require programming by a human..

The key contribution of this paper is a new methodology for

automated data composition. User-defined mashups enable

delivery of mapped zone information to mobile users in

interactive public spaces, addressing the following challenges:

• Users can easily specify data sources and relevant parameters

for the information they wish to map, even through their

mobile devices

• Providers can systematically create and deploy data services

for supplying information and zone maps for mapping the

information

• The system automatically associates data with its location

and visualizes it on arbitrary zone maps without programmer

intervention.

 Enhancements to our current implementation will support the use

of preference information for inferring data of interest, as well as

distributed and collective mashups, wherein multiple devices and

users are involved in specifying the mashup.

Our work is distinguished from existing Web sites, such as Trulia

 [30], which let the user easily specify the desired features of the

information to be displayed (in the case of Trulia, the data service

provides listings of homes for sales and the GUI lets you select

relevant parameters such as neighborhood, price range, size, etc.).

Such Web sites are explicitly programmed with a specific GUI for

a specific data service mashed up in a specific way, whereas in

our system both the GUI and the logic for composing data from

multiple services are constructed dynamically at runtime for a

wide range of different data services.

In this paper we describe the approach, architecture and design of

the system, as well as pertinent details of the implementation. We

describe our experience to date and then provide a deeper

discussion of some issues, including comparison with other

approaches, and outline future directions. We close the paper

with a discussion of related work and conclude.

2. APPROACH AND ARCHITECTURE
This section describes our approach for User-Defined Mashups

Line of Visibility

Service
Explorer

Mash
Detailer

Mash
Renderer

query
select

populate

Data
Services

Zone
Maps

Celadon
Core Data
Services

(Service, Device,

Interaction)

Mash
Maker

query mash

results

Zone Collaboration Server (ZCS)

Mobile Device (MD) Facility Device (FD)

Figure 1: User-Defined Mashup Architecture. Components above the line of visibility are seen by the user.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

(UDM) and the system architecture. We briefly describe the

pertinent parts of the existing Celadon architecture [19], [16],

followed by a detailed description of the new elements supporting

UDM.

2.1 Celadon Architecture

2.1.1 Distributed Architecture
Celadon’s physical computing nodes consist of mobile devices

(MD), facility devices (FD), and a zone collaboration server

(ZCS). MDs are carried by Celadon users, and get associated to

the zone upon entry. FDs are fixed devices associated with the

zone, such as large displays and kiosks. The ZCS is the “central

brain” of a Celadon zone, responsible for managing the zone data,

services, and its associated members (MDs and FDs).

2.1.2 Data Services and Zone Maps
RESTful data services are a central building block in Celadon’s

software architecture [16]. Data is retrieved from such a service

by passing it an appropriate query via an API call or an HTTP

request. The ZCS keeps track of members, services, locations and

interactions in the zone via several core data services. Thus, for

example, to get a listing of all services currently registered in the

zone, clients send a wildcard query to the service-info service

hosted on the ZCS.

Each data service provides its data as a list of records, all of which

adhere to a consistent record schema. Data services are self-

describing: they provide the schema for their records as well as for

queries against those records. A given data service may support

multiple record types. As a convention in our current

implementation, a record contains zero or more fixed fields and

zero or more attribute assertions. Fixed fields are typically used

for a singleton value, such as name. Attribute assertions are more

free-form, and can be used when a record contains multiple

values, such as phone number (when an establishment has several

phone numbers). Each attribute assertion is an SVO triple –

<subject,verb,object> – where the subject is an attribute name, the

object is a value, and the verb is a comparator. For example,

<cuisine.“=”,“Korean”> denotes a Korean cuisine, and

(floor,“>”,5) refers to a location above the 5th floor.

An important characteristic of our system is that we use the same

notation for both data records and data queries. In other words, a

query is represented as a data record, with fixed fields and

attribute assertions that are matched against the set of records

provided by the data service. Thus, for example, if the attribute

assertion (cuisine,“=”,“Korean”) is part of the data query, then, by

a process of matching, the data records of restaurants whose

cuisine is Korean will be obtained when submitting this data

query. When a query contains multiple assertions, they are

combined via logical operators.

Data services also accommodate listeners, which are notified upon

changes to the data (addition, deletion or modification of records).

This feature is used in several places in the UDM subsystem, such

as when there are changes to data being mashed up.

Zone maps contain a structured graphic and one or more

directories. In the graphic, regions of interest (such as regions

corresponding to stores in a mall map) are associated with unique

physical location IDs. Each directory associates metadata with

the physical locations. Such metadata may be logical location

information or other information associated with that physical

location such as a store’s name or phone numbers. We assume

that zone maps are maintained by the zone administrator, so that

when there are changes in layout or contents of the zone, the

graphical map and associated directories are updated accordingly.

2.2 UDM Process and Architecture
The central operation in UDM is to locate data sources of interest,

from them obtain relevant zone data and show the results

superimposed on a zone map. The basic process for achieving

this is as follows: the MD presents to the user relevant data

services, zone maps and available FDs. Once the user selects the

elements desired for the mashup, an interface is presented on the

MD for specifying mashup details. Upon submission, the mashup

is computed, and the results are displayed on the selected FD.

The user can then refine the mashed data and interact with the

displayed mashup results via the mobile device.

The UDM architecture is shown in Figure 1, in which rounded

rectangles are the new components specific to UDM. On the MD,

the service explorer lists relevant services, and the mash detailer

presents a GUI for specifying the details of the data to be mashed

up. On the FD, the mash renderer presents the data of interest

superimposed on a zone map. The mash maker computes the

mash results for presentation on the renderer (it may run anywhere

and therefore is drawn outside any dotted rectangle).

2.3 Service Explorer
The starting point for the UDM process is to present available

services and resources on the user’s MD. This is done through

the service explorer, which queries core data services on the ZCS

to retrieve listings of devices, zone maps, and data services. A

listing of large facility displays and their status is obtained by

querying the member-info service and interaction-info service,

whereas listings of zone maps and data services are obtained from

the service-info service. These queries may be tailored to the

user’s preferences or context (such as location), for example

retrieving only displays in the user’s proximity, or data services in

line with the user’s interests. Further tailoring is done at the

presentation layer, where the user can sort resources in various

ways (relevance, availability, name, category, popularity, etc.).

To advance to the next step of the UDM process, the user needs to

select a facility display and zone map, and then pick a data service

for mashup. Once a zone map is selected, the system limits the

choice of data services to ones compatible with the selected map.

For example, informational services for the entire shopping mall

may be separate from ones for a department store within the mall.

2.4 Mash Detailer
Specifying parameters for the chosen data service is done on the

mobile device via the mash detailer. Its design relies on the

regular structure of Celadon data services, as it presents an

interface for creating data service queries. The mash detailer

fetches the query schema and dynamically constructs a GUI based

upon it. The GUI exposes both fixed fields and attribute

assertions, providing as much structure as is available in the

schema. For example, a restaurant info query may present drop-

down lists populated with known cuisine types and price levels

(Figure 4). An additional role of the mash detailer is to let the user

control how the mashed data is displayed on the zone map. For

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

example, information may be displayed by highlighting regions of

interest or, alternatively, via markers.

A possible enhancement to having the user enter the mashup

details is to infer them from the user’s preferences. This

approach, as yet unimplemented, is discussed in Section 5.5.

2.5 Mash Maker
The mash maker is responsible for creating and managing the

working set, which is the list of mashed-up records. Each element

of the working set is a data record augmented with its physical

location within in the zone map. The main process of the mash

maker is as follows: it sends the query created by the mash

detailer to the selected data service; it then takes the set of records

returned by the data service and composes them with records from

the zone-map directory, so as to obtain the physical location of

each data record, thereby constructing the working set; finally it

sends the working set to the mash renderer for display on the FD.

The fundamental operation of the mash maker is the composition

of two XML record sets, which we frame as a two-stage pipeline –

a join followed by a transform – as shown in Figure 2.

Figure 2: Mash maker design

In the join step, for each element of set A, a matching element of

set B is found, and the information of the two matching records is

joined. Matching rules can be modeled with XPath expressions

 [35], which would specify what constitutes a match (e.g., the

value of field F1 in a record from set A should be equal to the

value of field F2 in a record from set B). In the transform step,

joined records are transformed to a given target format.

Transforms can be modeled with XSLT templates [36].

Architecturally, the mash maker is an abstract component, which

becomes concrete by plugging in specific modules for the joiner

and transformer. Two such modules are XPath and XSLT

processors as indicated above. Our current implementation uses

more limited modules, for reasons discussed in Section 5.4.

2.6 Mash Renderer
The mash renderer displays the working set superimposed on the

zone map on the FD. It receives the query object from the mash

detailer, which contains specifications of the data service, the

zone map, and details the data of interest and how to display it. It

displays the zone map and relays the data query to the mash maker

(architecturally it is simpler to have the mash maker deal directly

with the mash renderer). The mash renderer takes the working set

returned from the mash maker and visually superimposes it on the

zone map. It then communicates with the MD to receive further

instructions, which could be graphical (zoom / pan), contextual

(fetch menu related to selected working-set object), new or refined

query, or session termination.

Additionally, the mash renderer adds a listener to the selected data

service to be notified of any underlying data changes. If a change

occurs, the mash renderer re-invokes the mash maker to obtain an

updated working set, and refreshes the display.

2.7 The UDM Ecosystem
UDM involves several parties: zone administrators, providers of

information services, providers of physical services, and users.

This section describes their roles in supporting a successful UDM

deployment. We use a shopping mall as an illustrative example of

a zone.

Zone administrators manage a Celadon deployment and are

responsible for zone-wide information. They provide and

maintain zone maps (e.g., maps of entire floors of the mall),

including their graphical representation and associated directories.

When a change in the zone occurs (e.g., changing ownership or

contact information of a store in the mall), the zone administrator

needs to update the relevant zone maps accordingly. Zone

administrators also host the core data services of the zone,

including one listing available services: all data services and zone

maps need to be registered with this service-info data service.

Providers of information services create and maintain data

services, whose information content need not be limited to the

zone. For example, a restaurant information service may provide

information about many restaurants, both in the mall and outside

it. They are responsible for keeping the information accurate and

up-to-date, and for registering their data services with the zone.

Providers of physical services (e.g., store owners in the mall)

need to ensure that they are represented fully and correctly in zone

maps and data services. They may have a relationship with

providers of information services so as to ensure that their data is

kept up to date. They may also contribute their own data services

and zone maps to the zone. For example, a department store

within the mall may provide zone maps of its own floor plans.

Users need to have the Celadon client code installed on their

mobile device, and will likely need to have a Celadon account

(which may be free of charge). In order to fully enjoy Celadon’s

benefits, they need to become familiar with its various offerings

such as UDM.

3. IMPLEMENTATION
In this section we discuss some aspects of our current

implementation of the UDM architecture.

Celadon clients (MDs and FDs) are built on the Lotus Expeditor

platform [15], which extends the Eclipse Rich Client Platform

(RCP). The Expeditor runtime uses OSGi [23], which is a

Mash Maker

Set A

Transform

Join

Set B

Set C

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

container for Java components called bundles. On the FD we

leverage the embedded browser feature of RCP.

Service Explorer: Figure 3 shows a service explorer screen shot,

listing a facility display, a service, and a user’s mobile device. It

provides a view of available resources in the zone, leveraging

Celadon’s dynamic service discovery feature. Here the mashup

viewer is shown as a service available through the facility device.

After the user selects a service in the service explorer panel, the

MD fetches the appropriate application bundle from the server if

not available on the device (using OSGi dynamic loading). Upon

selection of the mashup service, a local controller is launched on

the MD, which runs the UDM process as described in Section 2.2.

Figure 3: Service explorer screen shot

Mash detailer: Figure 4 shows a mash detailer GUI that was

automatically constructed for a sample restaurant info service.

Figure 4: Mash detailer screen shot

The fixed fields are: Location ID, Operating Hours, and Name.

The data service record may have additional fields that the service

designer may choose not to expose in its query schema (such as

low-level key fields). The attribute assertions are located in drop-

down combo lists below the fixed fields. Upon selection of a

subject (e.g., “Cost” in this example), the verb and object fields

are populated. Clicking the small arrow button on the right adds

an assertion. The attribute assertions are collected and displayed

in a text area, where they can be edited manually by the user if

desired. Assertions for different attributes are put in separate text

lines, whereas assertions for the same attribute are concatenated

on the same line, to denote a logical OR. The example query

shown in Figure 4, selects moderately priced restaurants whose

cuisine is either Korean or Chinese.

Mash maker: we have implemented an extensible mash maker

(according to the design of Figure 2), into which different joiners

and transformers can be plugged in. Rather than employing a full-

fledged XPath processor, our current joiner implementation uses

match-lists, where a mach-list is a list of field names, and two

records match if their values agree for all the named fields. For

example, for the match-list {“name”}, the two records must agree

on the value of their “name” field, and for the match-list {“zone”,

“cell”} the records must agree on both their zone and cell values.

Match lists are associated with zone map directories.

Our current transformer implementation is, as well, more limited

and lightweight than an XSLT processor. It uses heuristic rules to

rearrange data from the joined records into a format that is

expected by the mash renderer.

Mash renderer and zone maps: The mash renderer is browser-

based, implemented as a collection of JavaScript components for

the core display functionality, wrapped in a Java RCP container

for communication with the mobile device and zone collaboration

server. Its code structure is shown in Figure 5.

We use Scalable Vector Graphics (SVG) for the zone maps, where

regions of interest in the SVG are annotated with unique

identifiers that serve as physical location IDs. Each element of

the working set contains a physical location ID, and it is used by

the mash renderer to determine where that element should be

superimposed on the zone map.

The zone map rendering code, as well as mashup rendering is also

used for zone administration, where zone managers can monitor

zone status and activity. We also built enhancements for helping

in visual construction of zone maps and associated directories.

Sample computed mashup results, as displayed by the mash

renderer, are shown in Figure 7. In these displays the mashed

information is shown as informational markers on the zone map.

Performance considerations: to help achieve good performance,

especially on the MD, we have used lightweight components. For

efficient messaging we use MQTT [17], which is optimized for

resource-constrained devices. We employ a simple HTTP client

for accessing Celadon data services rather than a full web services

stack. For schema processing, which is needed by the mash

detailer, we have written a limited pull-parser based schema

processor, which is an order of magnitude faster than the EMF-

based general-purpose schema processor. The mash maker is also

lightweight, and can be run on the MD to support other scenarios.

4. EVALUATION
We built the UDM system as described in the previous sections,

and evaluated its behavior with devices available in the market,

RCP Container

JavaScript Components

Zone Map Rendering

Mashup Rendering

Figure 5: Mash renderer code structure

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

data services and zone maps. This section describes two

evaluations of UDM: their setup, results and lessons learned. The

first evaluation was in a lab demonstration setting, and the second

was in a public demonstration setting; broader evaluation of UDM

with users and service developers is an important part of our

future work.

4.1 Evaluation Setups

4.1.1 Shopping Mall Demonstration
In a lab setup we constructed a zone map for a huge upscale

shopping mall attached to the COEX (Convention and Exhibition

Center) in Seoul, South Korea. The mall covers 7865sq meters

and includes electronics, books, media, retail, department,

clothing, and toy stores, an aquarium, a movieplex, and a host of

restaurants. This mall is very busy during evenings and weekends

and most visitors have at least one mobile device with them.

Visitors may have trouble navigating the mall because of its size

and complexity. In addition, many signs are in Korean and

requests for navigational help from foreign visitors to the mall

often end with no useful result due to language issues. An

informal survey of local visitors revealed that they thought they

could benefit from user-defined mashups to present relevant

information on large displays. Towards this goal, we started with

two data services, which provide information on restaurants and

stores in the mall. We then learned that handicapped individuals

had trouble finding public restrooms in the mall that they could

use. So we added a restroom locating service as well. The

restaurant service allows users to specify parameters such as

cuisine and price range. The store service lets specify the type of

store (such as books, sports goods, etc), and some additional

details about the type of goods they are interested in.

restaurant
query

COEX location
directory

match

rs

format

ws

visual
alerts

DS

apply

restaurant info

rs

DS

DS: data service
rs: record set
ws: working set

Figure 6: Data flow for mall mashup

Figure 6 explains the data flow involved in mashing up restaurant

data on a COEX map: a query is applied to the restaurant-info

data service, which results in a record-set that is matched against

records of the COEX location directory data service; the resultant

record set is formatted (transformed) to produce a working set in

the form of visual alerts that are displayed as shown in Figure 7.

4.1.2 “Ubiquitous City” Demonstration
Our COEX lab demonstration helped win an engagement with the

Incheon Free Economic Zone (IFEZ), which refers to the areas

designed as centers for international business within Incheon,

Korea. Facility displays for several zone maps we constructed are

currently installed in the central government office building – in

the lobby as well as on several floors – with an eye towards

subsequent rollout on a metropolitan scale.

We deployed two different MD types in IFEZ: Windows Mobile

PDAs (HP iPAQ) running Lous Expeditor, and smart phones

(Samsung SPH.M4500) for which we used native C++ code for

component implementation. Both the PDAs and smart phones use

MQTT and XML for communication over an 802.11 wireless

channel. They both use the same protocols to interact with facility

devices and external UDM components. Each facility device

comprises a mini PC (AOPEN DE-945FX) attached to a 60-inch

LCD display. All FD applications are Java-based bundles running

on the desktop edition of Lotus Expeditor.

We implemented three IFEZ zone maps, for showing attractions, a

building guide and organization chart. A search for attractions

shows corporate entities superposed on a map of the different

IFEZ districts (such as Songdo, Cheongna and Yeongjong). For

the building guide service, floor plans serve as zone maps and a

building directory data service provides information such as

which stations are populated and the kind of tasks performed at

the various stations. An example of a floor plan mashup is shown

in Figure 7. The organization service uses an organization chart

as the zone map, and displays superposed data on the personnel

such as contact information and job description.

In this trial deployment, MDs are loaned from the help desk at the

IFEZ government building (rather than owned by users). After

connecting to the Celadon environment, the visitor may select a

service on the MD. Upon selection of the mashup service, a

choice of the three aforementioned zone maps is provided.

Selection of a zone map displays it on the associated FD, and

mashed up data is computed and displayed by following the UDM

process described in Section 2.2. Further interaction with the

displayed data can be done through the MD or directly on the FD.

4.2 Evaluation Results and Lessons
We assessed UDM for usability, performance, ease of developing

artifacts, and ease of administration.

4.2.1 Usability
A couple of potentially confusing aspects became apparent in the

public demonstration. The first was the role of the mobile device:

it is natural for a small form-factor device to serve as a remote

control for a large display. However, in UDM the MD also

provides its own function through a rich albeit small display, thus

competing for user attention. The second unclear aspect was the

way a facility device is chosen – via selection on the mobile

device – as opposed to direct interaction such as pointing to the

large display with the MD or near-field interaction such as

touching or swiping. Due to these reasons, some users did not

easily accomplish their intended tasks, though training did not

take much time or effort.

We also got some feedback from IFEZ users, that the interaction

with the displayed mashup is not visually stunning or dynamic.

Specifically, it was suggested that when selecting a certain point

in the working set, magnification of that portion of the map or

other dynamic visual response could enhance the experience. We

are considering evolving our system to use Adobe Flex 3

BuilderTM or Microsoft SilverlightTM on the FD for a richer

multimedia experience.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

4.2.2 Performance
In preparation for deployment, we first focused on identifying

performance bottlenecks in the individual components of the

UDM pipeline. Response times of the mash maker and mash

renderer were instantaneous in our trials, and the only bottleneck

identified was on the MD, when launching the mash detailer. In

some cases, initialization time exceeded 10 seconds on an iPAQ

hp2790b running Windows Mobile 5.0. We identified the cause

of the problem to be the schema processing module, based on the

Eclipse Modeling Framework (EMF). We implemented a less

general but significantly lighter weight module for schema

processing based on the KXML pull parser, and subsequently got

the mash detailer initialization time to be sub-second.

4.2.3 Developing Artifacts
For developing the artifacts we used a combination of existing

tools and tools that we developed as part of the Celadon project.

In our implementation, mashups are visualized via SVG data sets,

and are geared towards structured representations of indoor spaces

such as stores and shopping malls. However, our approach of

applying data transformations also applies to other mashup usages

such as geographically encoded data sets and organizational data.

The SVG approach for zone maps fits well with the concept of

store planograms [24], which capture the key elements of a store

layout as individually identified graphical elements. Planograms

are widely used in the retail space to manage and plan the

placements of product sets at key locations.

Producing this style of mashup involves (1) importing zone map

data from preexisting sources, (2) identifying key zone map

elements as output targets for mashups, and (3) constructing

directories that map from a domain oriented data space to the

identifier space of the zone map. A full zone map can be very

detailed and involve thousands of graphical elements. In practice,

however, only a few dozen are needed for an adequate mashup

experience. Thus, step (2) is a key step in reducing the overall

complexity of creating the artifacts and of computing mashups for

them. The tedium of this step can be reduced by preparatory

editors (which we have under development) that allow the

designer to browse the imported diagram using the mouse,

selecting only key elements to be used as mashup targets.

Alternatively, an image may serve as the underlying

representation, with invisible bounding polygons as the mashup

targets. Step (3) involves construction of data elements that map

domain identifiers (e.g. phone numbers, business names, or

logical location identifiers such as "store7/aisle3/shelf4/bin7") to

renderable identifiers (e.g. "shape72"). These mapping elements

are aggregated into location directories, which act as data sources

in the mashup process.

The three informational data services in the COEX demo were

developed in part using the Celadon data tools, which take as

input a service record schema and generate various code artifacts,

including a JDBC-based service implementation and specialized

JavaScript for the mash renderer.

Since there is an overhead for each data service implemented

(e.g., using the data tools, maintaining RDB tables), we sought a

simplifying approach. Our solution was to construct the three

data services as a single “shopping info” data service, with three

different query types in its schema (for restaurants, stores and

toilets, respectively). We further simplified by having a single

record type, in which the fixed fields are common to all three

services, and the attribute assertions are service-specific.

Repackaging several services into one helped reduce

administrative overhead, but did not diminish the validity of

demonstrating and testing UDM for multiple services, since each

of the three services is listed as a separate service (with all listings

pointing to the same URI). Our ability to do so without having to

affect the architecture highlights the flexibility of the RESTful

design of our data services. This repackaging technique has been

added to our arsenal of best practices for future deployments.

4.2.4 Administration
To help in administering data services, the Celadon data tools also

generate JavaScript clients that provide a browser-based interface

for querying, adding, removing and modifying service records.

The specification panel of such a JavaScript panel has a similar

design to that of the mash detailer, with additional controls for

specifying the desired function (the mash detailer’s single

function is “query”). In the current implementation the generated

JavaScript clients are service-specific. An alternative approach

we are considering is to have a single generic JavaScript client

that, similarly to the mash detailer, inspects the service schema at

runtime to produce an interface that is tailored to that data service.

Figure 7: Computed mashups –restaurant info in COEX mall (left), floor-plan info in IFEZ public demonstration (right)

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

5. DISCUSSION AND FUTURE WORK

5.1 Addressing Within Zones
When working with geographical maps there is a universal

coordinate system – latitude and longitude – which is used to tie

data to location, possibly through intermediate services (such as

conversion of street addresses to lat-long). One of the challenges

in UDM is the lack of similar schemes for arbitrary zones. We

solved this by introducing an intermediary layer in the form of

directories that associate logical to physical locations. Since the

physical locations (SVG region IDs) are too low-level to be

known by external data services, they need to be correlated with

higher-level information, and that is the role of directories. A

broad benefit of this design is that any information can be

associated with the physical locations. Since a directory refers to

physical locations, it needs to have intimate knowledge of the

zone map, and thus needs to be created and maintained by the

owner of the zone map, typically the zone administrator.

A zone map contains the x-y coordinates of each region in its own

coordinate space (as an inherent part of the SVG data). This

information can be employed for proximity computations, such as

sorting working sets according to their distance from the user.

5.2 Public vs. Private Information
The UDM process involves both the user’s personal mobile

device and large shared displays. Thus the process is part private

and part public, and it is important to keep sensitive information

private. The publicly displayed information is a mashup of

publicly-available information from data services and zone maps.

Even though the data is public, the intent of the user may be

surmised by others viewing the mashed result; the extent to which

users’ intent is sensitive for such mashups is a factor for adoption,

and should be studied in actual deployments. In more elaborate

scenarios, where the user query is constructed based on user

preferences or other personal information (e.g. a shopping list),

more care needs to be taken to keep private information private,

and techniques such as those proposed in [3] could be employed.

A current feature of our design is that user input is done though

the personal mobile device, which is advantageous from a privacy

perspective, but may be overly restrictive. In the IFEZ deployment

we support direct interaction with a touch-sensitive display for

zoom, pan, and selection. When a mash point is selected, more

detailed information may be presented on the large display, and

pertinent data may be sent back to the user’s mobile device.

5.3 Shared Resources
The UDM process may create contention when multiple users

want to use a large display simultaneously. How this would affect

adoption is hard to predict: it may lead to frustration, but may also

increase desirability and status. Some lessons can be learned from

similar contention for ATMs and information kiosks, although

other options apply to our scenarios. In any case, it is important

to provide mechanisms to deal with such contention. One

mechanism, which we have implemented, is the ability to “camp”

on a shared FD, and receive notification on your MD when your

turn has come. How this would work in practice, in a dynamic

zone with people moving about, needs to be studied. Another

option is to support sharing, where the large screen can be

physically partitioned, or mashed-up information on the same

zone map can be time-multiplexed. Another point to consider is

that displaying mashup results on a shared medium can provide

fertile ground for planned and serendipitous social interactions.

We predict that as the perceived value provided by UDM

increases, so will users’ tolerance for contention. Anecdotal

evidence supporting this prediction is the adoption of self-

checkout registers in supermarkets and other stores in the US,

where we have observed that people are now lining up for self-

checkout registers as they are for registers with a human cashier.

5.4 Flexibility vs. Precision
In UDM we want to empower users to easily specify what to mash

up and how to display it, while enabling providers of data services

and zone maps to create a wealth of artifacts that interoperate

seamlessly. There is a tension between these two goals, since

diversity in the types of services and maps would intuitively

increase the burden on the user for specifying their intent. Our

design advocates a middle-of-the-road approach, whereby data

services can provide rich information, but need to adhere to a

particular structure that is leveraged by the UDM components.

Our design encourages service developers to make their schemas

as precise as possible (for example, using enumerations where

possible rather than free-form strings), since those schemas are

exposed to users in the mash detailer interface. As part of our

related Celadon work, we have built tools for helping developers

create such structured data services.

We also need to reconcile flexibility and precision is in the mash

maker, in both the joiner and transformer. As indicated in Section

 2.5, XPath expressions can be used for precise specification of

matching criteria in the joiner. However, such expressions may

need to be service-specific, and may create dependencies between

services. Therefore we need to support generic rules for matching,

which may be less precise, but are advantageous from a systems

management perspective. Our current implementation does a

fuzzy comparison of field names and values, and associates

matching conditions with the zone map’s directories. We are

exploring the use of knowledge-based technologies for smarter

matching of field names and values (e.g., matching a “phone”

field with a “telephone number” field). This is part of an

investigation on the use of ontologies for semantic representation

of zone information (see [31] for related work in this area).

Similarly, dependency between services arises when using XSLT

templates in the transformer, since the templates may rely on both

input formats as well as the output format. Our implementation

imposes a particular output format (for the working set), known to

the mash renderer, and uses service-independent rules for

assembling an output record from the result of the joiner.

5.5 Leveraging User Preferences
An alternative approach to specifying mashup details via a GUI is

to infer such details from the user’s preferences, which may be

stored on the MD or available through a data service. According

to this approach, the mash detailer would contain an inference

agent that relates user preferences to the selected data service.

This is a matching problem, similar to that faced by the joiner

component of the mash maker: preferences are stored as property-

value pairs, and the inference agent would locate preference

properties that match fields of the data service record. For

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

instance, in our restaurant locating example, the inference agent

may find that the user has a “cuisine” preference, and would apply

its value to the query. Thus, for example, a vegetarian user may,

by default, get to see only restaurants that serve vegetarian food,

without having to state that explicitly in the mash detailer GUI.

A hybrid approach may be most advantageous, where the

inference agent extracts preference values to pre-populate fields in

the mash detailer GUI. The user may then simply hit “submit” to

use his personalized default search criteria, or may chose to

interact with the GUI to further refine or modify the query

parameters. The mash detailer GUI can be further enhanced to

save the entered field values as user preferences for future reuse.

Finally on this topic, as became apparent in our COEX mashup

experience, treatment of language preferences is very important in

this application area.

5.6 Scalability
Assessing the scalability of our architecture is an important part of

our future research. Scalability has multiple facets in our system:

in interaction scalability we need to model and study how

competition for shared resources (facility displays) affects usage

and adoption; in performance scalability we need to measure

system responsiveness as numbers of users, devices, and services

increase; in diversity scalability we need to study how well UDM

design and current implementation can accommodate a large

variety of users, data services, zone maps and usage scenarios.

5.7 Mobile Mashups
An alternative variant of UDM is to present the mashup results on

the mobile device itself, thereby keeping the interaction contained

to the user’s personal space. Compared to our method, this

approach alleviates competition for shared resources, improves

mobility and simplifies privacy issues, but is disadvantageous

with respect to display affordances and social interaction. From a

technical viewpoint the main challenge is to provide a mobile

platform for visualizing zone maps with superimposed data.

Some existing systems that do so for geographical maps include

Google Mobile Maps and a variety of specialized GPS devices.

6. RELATED WORK
An broader overview of Celadon and of its RESTful service

design and usage are given in [19] and [16] respectively.

In the introduction we explain how our work relates to situational

applications [28], [9], [25], and to Web sites that let the user

specify the features of the data to be mashed up (such as [29]).

Another kind of system that provides user interface features for

selecting the mashup data is Google Earth [5], which is primarily

a viewer for layered XML information (in a format called KML

 [11]). KML documents contain descriptions of both the data

(map features) to display and the user interface elements for

letting the user control what is displayed. Although the artifacts

are declarative (all XML), here too the data to display and the

interface controlling it are explicitly authored, as compared with

UDM where they are generated at runtime.

The main competing approach to UDM is document-based search,

where an engine searches over an indexed corpus of many

documents, and presents a ranked list of the best ones in response

to user-provided search criteria. There is a growing body of work

on mobile Web search (such as [10], [27], [26], [34] to name a

few). An unstructured variant of document-based search is text-

based search, in which documents are retrieved based on a textual

search term. A structured variant employs classification for the

corpus, where documents are retrieved based on nested classifiers

specified incrementally by the user. This variant can narrow the

search more precisely, but requires multiple round trips with the

server. An example of an intermediary approach is Yahoo’s

Search Assist [33], which dynamically computes and displays

suggested terms for refining the current search term (that can be

viewed as classifiers). Documents can also be retrieved with a

context, such as location. For example, Google Local Search uses

the location information from a map shown in the browser to find

nearby businesses for which a document was created with

structured location information [6].

In comparison, in UDM the “documents” are data-service records.

A top-level classification of documents is done via their

separation into different data services, and the user interface for

that level of selection is the service explorer. However, further

classification is done in a single round trip via the mash detailer

(as opposed to iterative refinement) by inspecting the data

schema. Mashing up the retrieved documents to produce a

working set is required for bridging low-level location

information with high-level data, as explained in Section 5.1.

An alternative that is interesting to contrast with UDM is the use

of SMS for search [27], where the goal is to leverage a very

simple mechanism that is commonly available to provide useful

functionality, as opposed to rich visual information.

Newman et. al. [22] also address the issue of having mobile

device users interact with other devices and services in their

environment. Their focus is on enabling users to create, through

their mobile devices, flexible associations with devices and

services so as to achieve tasks that were not preprogrammed.

According to their user studies, presenting spurious components

caused confusion, whereas stricter guidance helped users achieve

their tasks more efficiently. This finding is in line with our UDM

design philosophy, where the process is streamlined (locate map,

service, display, and submit data query), and the flexibility results

from having multiple rich data sources. Kruppa and Krüger [14]

explore various forms of combined simultaneous interaction with

PDAs and large displays. They classify systems according to the

display arrangement – separated (PDA and large display serve

different tasks), integrated (PDA shows part or all of large

display), or extended (the two devices show different parts or

aspects of the same picture) – and focus of interaction (PDA, large

display, or both).

Significant work has been done in using constrained devices for

displaying rich mapping information. Baudisch and Rosenholtz

address the necessity of dealing with off-screen locations on a

map [2]. Kray et. al. [12] evaluate different means of presenting

route information on mobile devices, from spoken instructions to

rich visualizations. Interestingly, follow-on work [13] investigates

the use of large adaptive displays embedded in the space for the

same task (navigating the space). Cheverst et. al. [4] provide

contextual information (a tourist guide) through mobile

interaction. Their approach utilizes a nonstandard device that is

larger than typical phones and PDAs, and can thus offer a richer

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

experience. Cyberguide [1] is another example in this space. Our

approach, in contrast, builds upon standard devices and platforms,

leveraging facility displays for a rich experience. Symbiotic

advertising on large displays by utilizing user preferences from

users’ mobile devices is explored in [20]. The use of multiple

devices for display and control is advocated in [18]. Here we

extend these ideas into public spaces.

Zone maps for interior spaces and data mashups on them are still

at an early stage, but gaining popularity on the Web. Nearby Now

 [21], for example, provides text-based search for products in

various shopping malls throughout the US. The response to a

search query is a list of matching documents as well as a mall map

with markers for each of the matching stores. A class of mashups

for use in the enterprise, such as OrgMaps [29], for insights into

organizational structure, is beginning to appear on the horizon.

7. CONCLUSION
User-defined mashups leverage device symbiosis between mobile

devices and facility displays to support effective gathering of

information in public spaces. We have presented details of this

novel technique, and explained how it compares favorably with

alternatives in this space and advances the state of the art in

automated mashups. Experience with our initial prototype for a

mall scenario has led to an engagement in the Ubiquitous City in

Korea. We plan to use this opportunity to further refine this work.

8. ACKNOWLEDGMENTS
We thank Sean Lee and François Huaulmé for their early

contributions to the design and implementation of UDM, and

appreciate Jonathan Munson’s feedback on the manuscript. This

work was partially supported by the Institute of Information

Technology Assessment (IITA) and the Ministry of Information

and Communications (MIC) of Republic of Korea.

9. REFERENCES
[1] G. Abowd et. al., “Cyberguide: A mobile context�aware

tour guide”, Wireless Networks 3(5), Oct. 1997, pp. 421-433.

[2] P. Baudisch and R. Rosenholtz, “Halo: a technique for

visualizing off-screen objects”, proc. ACM CHI 2003, pp.

481-488.

[3] S. Berger et. al., “Using Symbiotic Displays to View

Sensitive Information in Public”, proc. IEEE PerCom 2005,

pp. 139-148.

[4] K. Cheverst et. al., “Developing a Context-aware Electronic

Tourist Guide: Some issues and Experiences”, proc. ACM

CHI 2000, pp. 17-24.

[5] Google Earth: http://earth.google.com/

[6] Google Local Business Center:

https://www.google.com/local/add/login

[7] Google Maps API: http://www.google.com/apis/maps/

[8] Housing Maps: http://www.housingmaps.com/

[9] Intel MashMaker: http://mashmaker.intel.com/

[10] M. Kamvar and S. Baluja, “A large scale study of wireless

search behavior: Google mobile search”, proc ACM CHI

2006, pp. 701-709.

[11] KML: http://code.google.com/apis/kml/documentation/

[12] C. Kray et. al., “Presenting route instructions on mobile

devices”, proc. ACM IUI, 2003, pp. 117-124.

[13] C. Kray et. al., “Adaptive Navigation Support with Public

Displays”. proc. ACM IUI 2005, pp. 326-328

[14] M. Kruppa and A. Krüger, “Concepts for a combined use of

Personal Digital Assistants and large remote displays”, proc.

SimVis 2003, pp. 349-361.

[15] Lotus Expeditor: http://www-

306.ibm.com/software/lotus/products/expeditor/

[16] S. McFaddin et. al., “Modeling and Managing Mobile

Commerce Spaces using RESTful Data Services”, proc 9th

Intl. Conf. Mobile Data Management, May 2008, pp. 81-89.

[17] MQTT: http://www.mqtt.org/

[18] B. Myers, “Using Multiple Devices Simultaneously for

Display and Control”, IEEE Personal Comm., Oct. 2000, pp.

62-65.

[19] C. Narayanaswami et. al., “Device Collaboration for

Ubiquitous Computing”, IPSG SIG Technical Reports, ISSN

0919-6072, Japan, Vol. 2005, No. 60, pp 7-12.

[20] C. Narayanaswami et. al., “Pervasive Symbiotic

Advertising”, proc HotMobile, 2008.

[21] Nearby Now: http://nearbynow.com/

[22] M. Newman et. al., “Designing for Serendipity: Supporting

End-User Configurations of Ubiquitous Computing

Environments”, proc ACM DIS 2002, pp. 147-156.

[23] OSGi: http://www.osgi.org/

[24] Planograms: http://en.wikipedia.org/wiki/Planogram

[25] QEDWiki: http://services.alphaworks.ibm.com/qedwiki/

[26] K. Rodden et. al., “Effective Web Searching on Mobile

Devices”, proc. 17th Annual Conf. on Human-Computer

Interaction, 2003, pp. 281-296.

[27] R. Schusteritsch, S. Rao and K. Rodden, “Mobile search

with text messages: designing the user experience for Google

SMS”, proc. ACM CHI 2005, pp. 1777-1780.

[28] Situational Applications:

http://en.wikipedia.org/wiki/Situational_application

[29] D. Soroker et. al., ”Organizational maps and mashups”, IBM

Research Report RC 24551 (May, 2008). Submitted for

publication.

[30] Trulia: e.g., http://www.trulia.com/FL/Miami/

[31] X. Wang et. al., “Semantic Space: An Infrastructure for

Smart Spaces”, IEEE Pervasive Comp.,Jul-Sept 2004, pp.

32-39.

[32] Yahoo Pipes: http://pipes.yahoo.com/

[33] Yahoo Search Assist:

http://tools.search.yahoo.com/newsearch/searchassist

[34] X. Xie et. al., “Efficient Browsing of Web Search Results on

Mobile Devices Based on Block Importance Model”, proc.

IEEE PerCom 2005, pp. 17-26.

[35] XPath: http://www.w3.org/TR/xpath20/

[36] XSLT: http://www.w3.org/TR/xslt20/

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3461
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3461

