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ABSTRACT

Moving objects databases (MODs) store objects’ trajecto-
ries by spatiotemporal polylines that approximate the ac-
tual movements given by sequences of sensed positions. De-
termining such a polyline with as few vertices as possible
under the constraint that it does not deviate by more than
a certain accuracy bound ε from the sensed positions is an
algorithmic problem known as trajectory reduction.

A specific challenge is online trajectory reduction, i.e. con-
tinuous reduction with position sensing in realtime. This
particularly is required for moving objects with embedded
position sensors whose movements are tracked and stored by
a remote MOD.

In this paper, we present Connection-preserving Dead Re-
ckoning (CDR), a new approach for online trajectory reduc-
tion. It outperforms the existing approaches by 30 to 50%.
CDR requires the moving objects to temporally store some
of the previously sensed positions. Although the storage
consumption of CDR generally is small, it is not bounded.
We therefore further present CDRM whose storage alloca-
tion and execution time per position fix can be adjusted
and limited. Even with very limited storage allocations of
less than 1 kB CDRM outperforms the existing approach by
20 to 40%.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms

Online trajectory reduction, dead reckoning, MOD

1. INTRODUCTION
A moving objects database (MOD) manages the trajectories
of moving objects like vehicles, aircrafts, containers, and an-
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imals. It stores and indexes past, current, and possibly even
future positions of a set of objects and processes spatiotem-
poral queries like retrieving all objects that were located in-
side a certain region during a certain time interval. MODs
can be used for a multitude of applications and location-
based services like toll collection, fleet management, and as-
set tracking.

A crucial issue in MODs is the efficient representation and
storage of the objects’ trajectories. A positioning sensor like
a GPS receiver acquires an object’s movement as a sequence
of timestamped positions s1, s2, s3, . . .. Each timestamped
position si has two attributes �p and t, where si.�p denotes
the object’s geographic position at time si.t. Thus, �p is a
point (position vector) in the Euclidean plane or space.

Storing every timestamped position reported by an ob-
ject’s positioning sensor in a MOD would consume much
storage. For example, consider 100 000 objects whose posi-
tions are sensed once per second. Assuming that each posi-
tion is represented by 3×8 byte this results in a data volume
of about 6 TB per month.

In general, a MOD therefore only stores an approxima-
tion of an object’s movement. The most common approach
is representing the movement by a spatiotemporal polyline
[1, 3, 4, 6]. That is, the movement is approximated by a se-
quence of spatiotemporal line sections u1 u2, u2 u3, u3 u4, . . .
which define a piecewise linear, continuous function �u : t �→
R

d with d = 2 or 3 respectively. With this approximation
the MOD only stores the timestamped position u1, u2, u3, . . .
and assumes linear movement between consecutive times
uj .t and uj+1.t.

Determining an efficient approximation such that each
sensed position si does not deviate by more than an ac-
curacy bound ε from the position given by �u(t) is an algo-
rithmic challenge known as trajectory reduction [1,7]. More
precisely the polyline �u(t) shall consist of as few vertices uj

as possible under the constraint that

∀i : |si.�p − �u(si.t)| ≤ ε .

In [1] Cao et al. present an approach for trajectory reduc-
tion using the Douglas-Peucker algorithm for line simplifi-
cation. However, this approach allows for offline reduction
only. That is, it only can reduce a complete (sub-)trajectory
given by a closed sequence of sensed positions {s1, . . . , sl}.

Such a scheme is not suited for a moving object with
an embedded positioning sensor whose movement is being
tracked and stored by a remote MOD: If the moving object
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performs the offline reduction, then the MOD cannot track
the object’s current position in realtime since the trajectory
data has to be transmitted in a batch-like fashion. Other-
wise, if the MOD performs the reduction, then the moving
object has to transmit every sensed position to the MOD,
which causes a large communication overhead.

Therefore, MODs require online algorithms for trajectory
reduction. That is, the moving object itself continuously re-
duces the sensed trajectory data in realtime and transmits
it to the MOD so that the MOD always knows the object’s
past and current movement with guaranteed predefined ac-
curacy bound ε.

Online reduction is closely related to position update pro-
tocols like linear dead reckoning (LDR) [5,8,9]. These proto-
cols aim at minimizing the number of position updates from
a moving object to a remote location management system
that tracks the object’s current position with a certain ac-
curacy bound ε. However these protocols do not perform
trajectory reduction since they generally approximate the
object’s movement by a discontinuous function in time. This
particularly applies to LDR, cf. Section 2.

To the best of our knowledge the only existing approach
for online trajectory reduction is given in [7]. It employs
LDR with accuracy bound 1

2
ε (LDR 1

2
) to obtain a continu-

ous reduced trajectory which approximates the actual move-
ment within the accuracy bound ε.

In this paper, we present Connection-preserving Dead Re-
ckoning (CDR), a new algorithm for online trajectory reduc-
tion. Though the algorithm’s core also is based on LDR it is
specifically tailored to trajectory reduction. Our evaluations
show that CDR reduces position updates and trajectory size
– i.e. the number of vertices uj – by 30 to 50% compared to
LDR 1

2
.

CDR requires the moving object to temporally store a set
of past positions for deciding on the next update message.
Although this set only contains positions that have been
sensed after the last position update, its size generally is not
bounded. Therefore, we also propose a space-bounded algo-
rithm called CDRM, which allows to trade off between the
storage consumption at the moving object and the number
of vertices of the reduced trajectory. Even with very lim-
ited storage allocations of less than 1 kB our algorithm still
leads to trajectories that are 20 to 40% smaller compared
to LDR 1

2
. In addition, we show that CDRM also provides a

bound for the execution time per position fix.
The remainder of the paper is structured as follows: In

Section 2 we discuss related work. In Section 3 we present
our system model and important spatiotemporal functions
for the following algorithms and analyses. In Section 4 we
first propose a basic version of CDR and then discuss is
mathematical optimization. In Section 5 we present CDRM

with the underlying mathematics. We show the effective-
ness of CDR and CDRM in extensive experiments with real
trajectory data from different means of transportation in
Section 6. The paper is concluded in Section 7 with a sum-
mary.

2. RELATED WORK
As already mentioned above, online trajectory reduction is
closely related to offline trajectory reduction and position
update protocols.

In [1], Cao et al. present an approach for offline trajec-
tory reduction based on line simplification according to the

Douglas-Peucker algorithm [2]. The algorithm starts with
the spatiotemporal polyline given by the sequence of sensed
positions {s1, s2, . . . , sl} and then recursively removes posi-
tions from the sequence while the resulting reduced polyline
�u(t) and the original one deviate by less than a given accu-
racy bound ε. Thus, the vertices of the reduced trajectory
are a subset of the sensed positions.

Position updates protocols aim at minimizing the wire-
less communication between a moving object and a location
management system that tracks the object’s current posi-
tion. The most efficient protocol is dead reckoning [5, 8,
9]. Using the dead reckoning algorithm the object initially
transmits its last sensed position and a prediction on its
future movement to the location management system. As
long as the object’s movement satisfies the prediction with
respect to a certain accuracy bound ε no update is required.
Once the object’s current position deviates from the pre-
dicted one by more than ε the object sends a new update
message with a new prediction.

The most simple but nevertheless efficient and general ap-
plicable variant is linear dead reckoning (LDR) [5,9]. It uses
a linear prediction given by the object’s last sensed position
and a velocity vector. The velocity vector usually is derived
out of the last sensed positions.

LDR does not perform trajectory reduction since it de-
scribes the object’s movement by a discontinuous function
in time. More precisely, it represents the movement by a
sequence of disconnected spatiotemporal line sections – the
linear predictions – which do not compose a polyline as re-
quired for storage in a MOD. Figure 1 gives an accordant
example: The small crosses denote the sensed positions. The
solid arrows denote the linear predictions.

≤ ε

≤ ε

ε

Figure 1: Linear predictions of LDR and reduced
trajectory.

Nevertheless, the distance between the end point of such
a line section and the start point of the subsequent one is
bounded by ε.

In [7], Trajcevski et al. employ this property for online tra-
jectory reduction. They analyze the spatiotemporal polyline
given by the origins (start points) of the linear predictions of
LDR and prove that it approximates the sensed movement
by 2ε. Figure 1 denotes this polyline by a dashed line. Tra-
jcevski et al. conclude that LDR allows for online trajectory
reduction with accuracy bound ε as follows:

1. The moving object reports its position according to
LDR with accuracy bound 1

2
ε.

2. The MOD not only stores the current prediction but
also the origins of all previous predictions as vertices
of the reduced trajectory.
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Figure 2: Violations of ε of a LDR-originated polyline during a 4 h car ride.

We refer to this approach as LDR 1

2
in the following.

Our online algorithms CDR and CDRM presented in this
paper are specifically tailored to trajectory reduction. They
outperform the just mentioned approach by up to 50%.

3. SYSTEM MODEL AND DEFINITIONS
In this paper, we consider a moving object whose trajec-
tory is being managed by a remote MOD, where the overall
number of trajectories stored by the MOD is of no relevance
here.

We assume that the moving object periodically senses its
position by means of an embedded positioning sensor like a
GPS receiver. The data record si represents the ith sensed
position. It has two attributes �p and t, where si.�p denotes
the object’s geographic position at time si.t. The position
vector si.�p is a point in the Euclidean plane or space.

We further assume that the moving object is capable of
storing and processing the sensed positions and that it has
a wireless communication interface for transmitting position
data and auxiliary information to the MOD.

For the sake of simplicity, we do neither consider spatial
inaccuracies of the positioning sensor nor the latency for
transmitting an update message to the MOD since they can
be set off against ε. Clearly, the former increases the accu-
racy bound ε by the maximum inaccuracy of the positioning
sensor, while the other adds the product of the maximum
transmission latency and the object’s maximum velocity.

The MOD stores a reduced trajectory of the object’s move-
ment as a spatiotemporal polyline with vertices u1, u2, . . .,
where a vertex uj is a timestamped position with attributes
�p and t.

In the following, we consider three kinds of spatiotemporal

functions �f : t �→ R
d with d = 2 or 3 respectively:

1. A spatiotemporal line section uj uj+1 is a linear func-
tion on the domain [uj .t, uj+1.t] given by linear inter-
polation:

uj uj+1 : t �→
(uj+1.t − t) uj .�p + (t − uj .t) uj+1.�p

uj+1.t − uj .t

2. The spatiotemporal polyline �u(t) is a piecewise linear,
continuous function �u : t �→ R

d defined by the spa-
tiotemporal line sections u1 u2, u2 u3, u3 u4, . . ..

3. A linear prediction uP⊕�vP is given by a timestamped
position uP – the prediction origin – and a velocity
vector �vP ∈ R

d and defined for t ≥ uP.t as

uP⊕�vP : t �→ uP.�p + (t − uP.t)�vP .

In the following, we abbreviate the Euclidean distance be-
tween a geographic position si.�p and the one for the corre-
sponding point in time si.t given by one of the above spa-
tiotemporal functions as

‖si, �f(t)‖ := |si.�p − �f(si.t)| .

For example, for a linear prediction it is

‖si, uP⊕�vP‖ := |si.�p − uP.�p − (si.t − uP.t)�vP| .

4. CONNECTION-PRESERVING

DEAD RECKONING
In this section we present Connection-preserving Dead Reck-
oning (CDR), a new algorithm for online trajectory reduc-
tion.

First, we analyze violations of the accuracy bound ε when
using LDR for online trajectory reduction. Then, based on
our observations, we introduce the basic idea of CDR and
the resulting basic version of the algorithm. Subsequently,
we discuss an optimization of CDR to reduce the storage
consumption at the moving object.

4.1 Analysis of LDR-based Reduction
We first analyze LDR with accuracy bound ε for online tra-
jectory reduction. LDR describes the object’s movement
by a sequence of disconnected spatiotemporal line sections,
one for each position update. The polyline �u(t) given by
the start points of these sections is a reduced trajectory ap-
proximating the sensed positions by 2ε [7]. Thus, the dis-
tance ‖si, �u(t)‖ between a sensed position si and the reduced
trajectory may exceed ε as illustrated in Figure 3.

We argue that such violations of ε are rare and will sel-
domly reach 2ε:

1. A sensed position si can only deviate by more than ε
from the corresponding line section uj uj+1 if si and

uj = si−3

si

uj+1

= si+2

≤ ε

≤ ε> ε

Figure 3: Violation of ε at si when using LDR for
online trajectory reduction.
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the sensed position uj+1 are located in opposite di-
rections from the predicted movement. This does not
hold for typical movement patterns like turning off or
stopping.

2. ‖si, uj uj+1‖ only can be close to 2ε if si has been
sensed immediately before uj+1 and |si.�p−uj+1.�p| also
is about 2ε. Thus, the object has to move in a very
fast and irregular fashion.

To support this argumentation, we analyzed such violations
of ε for real trajectory data of a car ride of 14960 s ≈ 4 h.
For that purpose, the car’s movement was recorded once
per second using a GPS receiver. See Section 6 for technical
details on this experiment.

Executing LDR with ε = 100 m on the recorded positions
as if they were sensed one after another generates 488 po-
sition updates, where the last one indicates the end of the
ride. Thus, the resulting reduced trajectory �u(t) consists of
487 line sections given by 488 vertices. When measuring the
distance between the sensed positions s1 to s14960 and �u(t)
we observe 254 violations of ε. Figure 2 illustrates these vi-
olations with the distances ‖si, �u(t)‖ against t. Each cross
denotes a sensed position si with ‖si, �u(t)‖ > ε.

The violations are not uniformly distributed over time but
only appear at few line sections of �u(t) – namely at 16 of
the 487 line sections. Furthermore, the distances ‖si, �u(t)‖
never reach 2ε but only about 136m ≈ 1.4ε.

We conclude that the reduced trajectory obtained by LDR
with accuracy bound ε approximates the sensed movement
by ε at most points in time – i.e. violations as illustrated
in Figure 3 occur rarely. Hence, using LDR 1

2
to prevent

violations of ε generally is too strict. It generates unneces-
sary position updates and thus a reduced trajectory with an
unnecessary large number of vertices.

Next, we show how to guarantee the same accuracy bound
with higher reduction rates than LDR 1

2
.

4.2 Basic Version of CDR
Our approach CDR is based on the observation that the
moving object has all information for detecting the viola-
tions of the accuracy bound ε in realtime:

1. It knows the current prediction given by the last up-
dated position (the prediction origin) and a velocity
vector. In the following we denote the last updated
position by uP and the predicted velocity vector by �vP.

2. It knows the current sensed position, denoted by sC in
the following.

3. Thus, it also knows the resulting line section uP sC of
the reduced trajectory in the case of using sC as origin
of the next prediction.

4. It can store the sensing history since the last update
message – i.e. the positions that have been sensed after
uP.t – and check whether one of these positions devi-
ates from uP sC by more than ε. In the following we
refer to the sensing history as S := {si : si.t > uP.t}.

The basic idea of CDR is that the moving object not only
sends a new position update like with LDR – i.e. if the cur-
rent sensed position deviates from the predicted one by more
than ε – but also if one of the sensed positions since the last
update message deviates from uP sC by more than ε.

Algorithm 1 CDR – basic version

1: sC ← sense position � Current sensed position.

2: uP ← sC � Last updated position, i.e. prediction origin.

3: �vP ← 0 � Predicted velocity.

4: send update message (uP, �vP) to MOD
5: S ← {} � Sensing history since last update.

6: sL ← sC � Last sensed position.

7: while report movement do
8: sC ← sense position
9: cL ← ( ‖sC, uP⊕�vP‖ ≤ ε ) � LDR condition.

10: cS ← true � Section condition.

11: for all si ∈ S do
12: cS ← cS ∧ ( ‖si, uP sC‖ ≤ ε )
13: end for
14: if ¬(cL ∧ cS) then
15: uP ← sL

16: �vP ← (sC.�p − sL.�p)/(sC.t − sL.t)
17: send update message (uP, �vP) to MOD
18: remove all positions from S

19: end if
20: insert sC into S

21: sL ← sC

22: end while
23: send final update message (sC) to MOD

Algorithm 1 shows the pseudo code of the algorithm exe-
cuted by moving object. A crucial difference to LDR is that
CDR maintains a dynamic array which stores the sensing
history (line 5).

Initially the moving object transmits its current position
and the zero vector as velocity prediction to the MOD. Then
it executes the while loop (lines 7 to 22) as long as it wants
to report its movement to the MOD.

Within each loop iteration it first senses its current posi-
tion (line 8) and then checks for two conditions cL and cS

whose violation cause an update message:

• LDR condition cL: The current sensed position sC

must not deviate by more than ε from the predicted
position for time sC.t (line 9).

• Section condition cS: None of the sensed positions si

since the last update is allowed to deviate by more
than ε from the line section uP sC (lines 10 to 13).

If one of the conditions is violated, then the moving object
sends a new position update and empties S (lines 14 to 19).

Note that with CDR the origin of a new linear predic-
tion (uP, �vP) is not sC but the last sensed position sL. This
guarantees that the resulting line section of the reduced tra-
jectory always fulfills the section condition.

In Algorithm 1 we use one exemplary formula for predict-
ing the moving object’s future velocity �vP, namely by means
of the current and the last sensed position (line 16). It can
be replaced by any other prediction function.

If the moving object wants to stop reporting its movement,
then it sends a final update message with the current sensed
position and terminates the algorithm (line 23).

The algorithm executed by the MOD is very simple: On
receiving a new prediction (uP, �vP) =: (un, �vn) the MOD
replaces the current prediction (un−1, �vn−1) with it and ex-
tends �u(t) by the line section un−1 un. Given a query for
the moving object’s position at time t′ the MOD answers as
follows:
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• t′ ≤ uP.t : The MOD calculates �u(t′) as described in
Section 3 and returns the result to the query issuer.

• t′ > uP.t : It calculates the predicted position at time
t′ using uP.�p + (t′ − uP.t)�vP and returns the result to
the query issuer.

If the MOD receives the final update message (sC) =: (un) it
removes the current prediction (un−1, �vn−1) and completes
�u(t) by adding the line section un−1 un.

4.3 Optimized Algorithm
CDR differs from LDR regarding the storage requirements
at the moving object. While LDR only stores the current
prediction, the last sensed position and the current sensed
position, the basic version of CDR stores the whole sensing
history S since the last update. Theoretically, the size of S is
unbounded. For the above-mentioned car ride and ε = 100 m
S would contain up to 298 positions.

However, this problem can be alleviated. For every sensed
position si ∈ S there exists a certain point in time from that
on it cannot violate the section condition without sC vio-
lating the LDR condition. If this time is reached before the
violation of cL or cS, then si can be removed from S, even
before the next update message. This significantly reduces
the storage consumption of CDR as well as the execution
time per position fix. For example, for the above-mentioned
car ride and ε = 100 m the maximum size of S reduces from
298 to 84 positions, cf. Section 6.3. The maximum execu-
tion time per position fix (here measured in processor ticks,
cf. Section 6.4) reduces from 68470 to 22650 ticks.

To determine this point in time for a given si ∈ S we
analyze the state of Algorithm 1 right after having sensed a
new position sC (line 8) with ‖sC, uP⊕�vP‖ ≤ ε. Thus, we
assume that the current sensed position does not violate the
LDR condition.

We consider the line section uP sC which is going to be
the next line section un−1 un of �u(t) if cL or cS are violated
in the subsequent iteration of the while loop.

Since uP⊕�vP and uP sC are linear functions in t with iden-
tical origin uP we conclude that for t = si.t they deviate by

si.t − uP.t

sC.t − uP.t
‖sC, uP⊕�vP‖ .

With this result and the triangle inequality illustrated in
Figure 4 it follows:

‖si, uP sC‖ ≤ ‖si, uP⊕�vP‖ +
si.t − uP.t

sC.t − uP.t
‖sC, uP⊕�vP‖ (1)

With our assumption ‖sC, uP⊕�vP‖ ≤ ε we finally estimate
‖si, uP sC‖ by

‖si, uP sC‖ ≤ ‖si, uP⊕�vP‖ +
si.t − uP.t

sC.t − uP.t
ε .

Clearly, this estimate decreases over time, i.e. with increas-
ing values of sC.t. We now derive the point in time from
that on it falls below ε:

ε ≥ ‖si, uP⊕�vP‖ +
si.t − uP.t

sC.t − uP.t
ε

⇔
ε − ‖si, uP⊕�vP‖

si.t − uP.t
≥

ε

sC.t − uP.t
(2)

⇔ sC.t ≥
si.t − uP.t

ε − ‖si, uP⊕�vP‖
ε + uP.t

︸ ︷︷ ︸

=: δ(si)

(3)

Algorithm 2 CDR

[. . . ]
while report movement do

sC ← sense position
while |S| > 0 ∧ sC.t ≥ δ(peek(S)) do

pop(S) � Remove root of heap.

end while
cL ← ( ‖sC, uP⊕�vP‖ ≤ ε ) � LDR condition.

[. . . ]
end while
send final update message (sC) to MOD

Thus, si cannot violate the section condition once sC.t ful-
fills (3).

So far we assumed that sC fulfills the LDR condition. In
the general case it holds that si cannot violate the section
condition without sC violating the LDR condition once sC.t
fulfills (3).

Thus, CDR can remove si from S at that point in time
without affecting its future decisions on a new position up-
date.

For this purpose, CDR organizes S as a min-heap accord-
ing to the right-hand side of (3), i.e. δ(si). After position
sensing it first removes the root of S as long as this position
fulfills (3). Algorithm 2 shows the corresponding additional
pseudo code with respect to the basic version of CDR.

5. SPACE- AND TIME-BOUNDED CDR
With the optimization presented above, CDR tries to reduce
the sensing history S after each position fix. Nevertheless,
the storage consumption of CDR is not bounded.

In particular, for resource-constraint mobile devices like
sensor nodes this property might be critical.

In the following we present the CDRM algorithm whose
storage consumption is bounded by a predefined parame-
ter m. CDRM guarantees that |S| ≤ m at every point in
time. This also limits the execution time per position fix.

CDRM is based on the following idea: Besides a heap of
fixed size m for storing S, it maintains a floating-point vari-
able dS that provides aggregated information on all sensed
positions that could not be stored in S due to the stor-
age constraint. More precisely, dS defines a time-dependent
bound regarding ‖sC, uP⊕�vP‖. Each time |S| is going to
exceed m, the CDRM algorithm removes a sensed position
from S and updates dS accordingly.

If ‖sC, uP⊕�vP‖ is below the bound defined by dS, then
none of the sensed positions that could not be stored in S

si−3 = uP

uP⊕�vP

si

sC = si+2

si.t−uP.t

sC.t−uP.t
‖sC, uP⊕�vP‖

‖si, uP⊕�vP‖
‖si, uP sC‖

Figure 4: Triangle inequality regarding si.
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violates the section condition for the current sensed position.
Condition cS is split into two sub-conditions cSa and cSb

accordingly. While cSa is evaluated on the sensed positions
currently stored in S just as with CDR, cSb is evaluated
on dS.

We now give the mathematical basis for dS and derive the
inequation for cSb.

First, we reconsider the triangle inequality (1) given in
Section 4.3:

‖si, uP sC‖ ≤ ‖si, uP⊕�vP‖ +
si.t − uP.t

sC.t − uP.t
‖sC, uP⊕�vP‖

From it we conclude that

‖si, uP⊕�vP‖ +
si.t − uP.t

sC.t − uP.t
‖sC, uP⊕�vP‖ ≤ ε ,

which can be rewritten as

‖sC, uP⊕�vP‖ ≤
ε − ‖si, uP⊕�vP‖

si.t − uP.t
︸ ︷︷ ︸

=: ϕ(si)

(sC.t − uP.t) ,

implies ‖si, uP sC‖ ≤ ε.
In other words,

‖sC, uP⊕�vP‖ ≤ ϕ(si) · (sC.t − uP.t)

implies that si does not violate the section condition.
CDRM applies this result as follows:

1. In the variable dS it stores the minimum ϕ(sr) of all
sensed positions sr it has removed from S due to the
storage constraint.

2. It uses ‖sC, uP⊕�vP‖ ≤ dS · (sC.t − uP.t) as condition
cSb.

Therefore, as long as cSb is fulfilled, each removed position
sr fulfills the section condition. Thus, as long as cSa ∧ cSb is
fulfilled, every sensed position since the last position update
fulfills the section condition.

After an update CDRM empties S, just as CDR, and resets
dS to ∞.

A crucial question is, which sensed position to remove
from S once |S| is going to exceed m. Clearly, for small values
of dS, the current sensed position sC violates cSb more likely.
Therefore, CDRM always removes the si ∈ S with maximum
ϕ(si). For this purpose it stores S as a max-heap according
to ϕ(si).

Since dS aggregates all previously sensed position with
ϕ(sr) ≥ dS the current sensed position sC need not be added
to S if ϕ(sC) ≥ dS. Hence, the following invariant always
holds for S:

∀si ∈ S : ϕ(si) ≤ dS .

For this reason, CDRM can directly assign ϕ(sr) to dS when
removing the root sr from S. It does not need to explicitly
determine the minimum of ϕ(sr) and dS.

Note that the max-heap order by ϕ(si) of CDRM is iden-
tical to the min-heap order by δ(si) of CDR since

δ(si) = uP.t + ε/ϕ(si) .

This can be seen by comparing the inequations (2) and (3) in
Section 4.3. Moreover, CDR’s condition sC.t ≥ δ(peek(S))
for removing a si from S can be rewritten as

ϕ(peek(S)) · (sC.t − uP.t) ≥ ε .

Algorithm 3 CDRM with parameter m

1: sC ← sense position
2: uP ← sC

3: �vP ← 0
4: send update message (uP, �vP) to MOD
5: S ← {} � Heap with size m.

6: dS ← ∞ � Indicates empty aggregation.

7: sL ← sC

8: while report movement do
9: sC ← sense position

10: while |S| > 0 ∧ ϕ(peek(S)) · (sC.t − uP.t) ≥ ε do
11: pop(S) � Remove root of heap.

12: end while
13: cL ← ( ‖sC, uP⊕�vP‖ ≤ ε )
14: cSa ← true
15: for all si ∈ S do
16: cSa ← cSa ∧ ( ‖si, uP sC‖ ≤ ε )
17: end for
18: cSb ← ( ‖sC, uP⊕�vP‖ ≤ dS · (sC.t − uP.t) )
19: if ¬(cL ∧ cSa ∧ cSb) then
20: uP ← sL

21: �vP ← (sC.�p − sL.�p)/(sC.t − sL.t)
22: send update message (uP, �vP) to MOD
23: remove all positions from S

24: dS ← ∞ � Reset the bound.

25: end if
26: if ϕ(sC) < dS ∧ |S| = m then
27: dS ← ϕ(pop(S)) � Remove and aggregate the root.

28: end if
29: if ϕ(sC) < dS then
30: insert sC into S

31: end if
32: sL ← sC

33: end while
34: send final update message (sC) to MOD

Thus, from an algorithmic perspective CDRM is an exten-
sion of CDR. Algorithm 3 gives the pseudo code of CDRM.
The additional statements compared to CDR are the follow-
ing ones:

• Lines 6 and 24: Initialize or rather reset dS.

• Lines 26 to 28: If |S| = m and the current sensed
position has to be added to S then remove the sensed
position with maximum ϕ(si) from S and aggregate it
in dS.

• Lines 29 to 31: Insert the current sensed position sC

into the heap S, if and only if ϕ(sC) < dS.

5.1 Execution Time per Position Fix
The execution time per position fix of CDRM – i.e. lines
10 to 32 in Algorithm 3 – is dominated by two inner loops:
(1.) Removing sensed positions from S that cannot any more
violate the section condition without sC violating the LDR
condition and (2.) checking the validity of condition cSa. All
other statements either have a constant execution time or
their execution time logarithmically depends on m like the
pop operation on the heap S.

The execution time for checking the validity of cSa is a
linear function in m, thus belongs to O(m).
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Figure 5: Small clipping of the recorded car ride and the reduced trajectories.

Yet, the removal of positions from S according to the op-
timization of CDR is more complex: Under normal circum-
stances only very few positions can be removed from S. Of-
ten the root of the heap S cannot be removed at all and the
next position fix has to be awaited.

However, in rare cases there may exist several sensed po-
sitions with equal or similar values ϕ(si) that are removed
from S all together at a certain point in time.

By analyzing

δ(si) :=
ε − ‖si, uP⊕�vP‖

si.t − uP.t

one can see that this particularly may occur if the object first
deviates far off the predicted movement and then linearly
returns to it. The reason is, that during the linear movement
back to predicted one the numerator of δ(si) as well as the
denominator linearly increase.

Since the time for removing the root of a heap is a function
in O(log(m)) the worst case execution time for the removal
of positions from S according to the optimization of CDR is
in

O(log(m) + log(m − 1) + . . . + 1) = O(log(m!))

= O(m log(m)) .

Thus, the execution time per position fix of CDRM is bound-
ed by a function in O(m log(m)).

6. EVALUATION
We evaluated CDR and CDRM with real GPS trajectories
from a car ride, a bicycle tour and a walk in a small town.

In the following, we first describe the evaluation setup
followed by the results on data reduction, storage consump-
tion and execution time per position fix for the trajectory
of the car ride. Then, we discuss the results for the other
trajectories.

6.1 Evaluation Setup
In order to evaluate CDR and CDRM with realistic data, we
first recorded three trips by different means of transporta-
tion in Southern Germany:

1. Car ride: The ride lasted 14960 s ≈ 4 h and covered a
distance of 404 km.

2. Bicycle tour: The tour lasted 2934 s ≈ 50 min and
covered a distance of about 17 km.

3. Walk in town: The walk lasted 4429 s ≈ 70 min and
covered a distance of 4.5 km.

For recording the trips we used a PDA with an embedded
Sirf III GPS receiver in continuous mode and stored the
geographic coordinates given by the GPS receiver once per
second on a SD memory card.

In a second step we projected the geographic coordinates
on the Euclidean plane. Hence, the recorded trajectory of
the car ride consists of 14960 timestamped positions s1 to
s14960, where si.�p is located inside a rectangle with side
lengths 207.6 km×249.6 km. The recorded trajectory of the
bicycle tour consists of 2934 positions located inside a rect-
angle with side lengths 7.2 km × 11.7 km and the recorded
trajectory of the walk consists of 4429 positions located in-
side a rectangle with side lengths 0.7 km × 1.1 km.

We implemented the online algorithms LDR 1

2
– i.e. LDR

with accuracy bound 1
2
ε according to [7] –, CDR, and CDRM

as well as the offline line simplification algorithm (LS) ac-
cording to [1] in the C programming language as a Win32
application.

For each recorded trajectory and different values of ε, we
then simulated the online execution of LDR 1

2
, CDR and

CDRM by sequentially feeding the algorithms with the re-
corded positions. In doing so we measured the number of
vertices of the resulting reduced trajectories, the storage
consumption and the execution time per sensed position for
each approach. Note that we executed CDRM with two dif-
ferent parametrizations, namely m = 5 and m = 20.

Furthermore, we applied LS to the three recorded trajec-
tories and measured the number of vertices of the resulting
reduced trajectories depending on ε. Note again, that our
goal is an online algorithm rather than an offline algorithm.
In our evaluation LS is used as a reference only.

All these more than 300 experiments were performed on a
Lenovo Thinkpad T61 with Intel Core2 Duo CPU at 2.0 GHz
and 2 GB of RAM running Microsoft Windows Vista.

In the following, we first give the results on reduction
efficiency, storage consumption, and execution time per po-
sition fix for the recorded car ride. Then, we discuss the
results for the bicycle tour and the walk in town.

6.2 Reduction Efficiency
The reduction efficiency of a trajectory reduction algorithm
is measured by the reduction ratio r, which is the number

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3460 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3460 



0.0

0.05

0.10

0.15

0.20

 10  50  100  500  1000

R
ed

u
ct

io
n

 r
at

io

Accuracy ε [m]

LDR½
CDR

CDR
M

(5)
CDR

M
(20)
LS

Figure 6: Reduction ratios (car ride).
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of vertices n of the reduced trajectory �u(t) divided by the
number of sensed positions. Thus, for the trajectory of the
car ride it is

r :=
|{u1, . . . , un}|

|{s1, . . . , s14960}|
=

n

14960
.

The smaller r the more efficient is the reduction by the re-
spective approach.

Figure 6 gives the reduction ratios for the online algo-
rithms LDR 1

2
, CDR, and CDRM depending on ε as well as

for the offline approach LS.
For ε = 10m LDR 1

2
generates a reduced trajectory with

n = 2601 vertices, i.e. r = 0.17. The trajectories generated
by CDR and CDRM have 1794 to 1830 vertices, i.e. r ≈ 0.12.
Thus, CDR and CDRM outperform LDR 1

2
by more than

30%.
With n = 1206 vertices, LS yields in r = 0.08 and thus

less than CDR and CDRM. This was to be expected since
LS is an offline reduction approach and thus is not forced to
process the sensed positions one after another but processes
them altogether at the same time.

Of course, r decreases for each of the four approaches
with increasing ε. Yet, the relative ratios between the ap-
proaches also vary. In particular, the relative savings of CDR
compared to LDR 1

2
increase from 30 to 40% for ε towards

1000m.
Figure 7 shows the reduction ratios of the online reduction

approaches relative to LS. For increasing ε all relative ratios
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Figure 8: Storage consumption (car ride).

increase since for large values of ε more sensed positions can
be dropped and LS thus can better exploit its global view
on the whole sequence of sensed positions.

The relative ratios of CDRM with m = 5 and 20 both con-
verge from the ones of CDR to the ones of LDR 1

2
. The rea-

son is the following: With increasing ε CDR generally stores
more and more sensed positions in S. CDRM accordingly
aggregates more positions dS. Yet, the bound dS generally
is lower the more positions it aggregates. Hence, condition
cSb of CDRM and thus cSa ∧ cSb is violated more likely than
condition cS of CDR.

The actual behavior of CDRM highly depends on maxi-
mum size of S given by the parameter m. This can be well
seen from ratios for m = 5 and m = 20 given Figure 7. For
m = 20 and ε ≤ 50m the CDRM algorithm achieves almost
the same reduction ratios than CDR. For larger values of ε
CDRM performs slightly worse but sill outperforms LDR 1

2

by at least 20%. This is notable because assuming that one
position record takes 3 × 8 byte, CDRM with m = 20 allo-
cates less than 1 kB storage at the moving object.

Figure 5 gives a small clipping of the reduced trajectories
obtained by LDR 1

2
, CDR, and LS for ε = 10m to point

out the differences between these algorithms. The clipping
shows a stop at a rest area on a motorway.

Obviously, the reduced trajectory obtained by LDR 1

2
ap-

proximates the sensed positions much closer than with ε.
This reinforces the analysis given in Section 4.1.

At first glance the reduced trajectories of CDR and LS
seem very similar to each other. Yet, in particular with
curves LS shows better results due its global view on the
whole trajectory: While CDR has to start a new line sec-
tion using the last sensed position as soon as cL or cS is
violated, the offline approach LS can select an appropriate
position to approximate the curve with as few vertices as
possible. Therefore, CDR mostly requires three line sec-
tions to approximate a curve in the given clipping, while LS
mostly requires two line sections only.

6.3 Storage Consumption
Next, we analyze the storage consumption of the three online
reduction algorithms. Therefore, we describe an algorithm’s
storage consumption by the maximum number of positions
it stores during our experiments.

LDR always stores three positions, namely the last up-
dated position uP, the last sensed position sL and the cur-
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Figure 9: Maximum processor ticks (car ride).

rent sensed position sC.
The storage allocation of CDRM is m + 3, thus 8 or 23 in

our experiments. Actually, CDRM also fully consumed the
allocated storage in all our experiments as shown in Figure 8.

The storage consumption of CDR generally is not bound-
ed. This corresponds with our measurements. Figure 8
clearly shows that the storage consumption of CDR gen-
erally increases with larger values of ε in spite of the large
deviations between measurements for similar values of ε.

Note that for ε ≤ 50m the storage consumption of CDR
is up to five times larger than the storage consumption of
CDRM with m = 20 although there is no noticeable differ-
ence in the reduction ratios of both approaches, as explained
above.

To prove the effectiveness of removing positions from S

according to the optimization of CDR, we also measured
the maximum number of positions being stored by the basic
version of CDR. In our experiments the storage consumption
of the basic version always exceeds the storage consumption
of CDR by 60 to 530%.

6.4 Execution Time per Position Fix
We now analyze the maximum execution time per position
fix for each of the online reduction approaches depending on
the accuracy bound ε.

To be independent of the processor speed we measure the
execution time in processor ticks. For that purpose, we read
out the processor time stamp counter before and after pro-
cessing a sensed position for each of the online reduction
algorithms.

A critical issue in measuring processor ticks are interrupts
of the process under test by the scheduler since an interrupt
generates an invalid measurement. Therefore, to minimize
the number of interrupts, we executed our implementation
of LDR 1

2
, CDR, and CDRM with realtime priority on one

core of the computer’s dual core processor. Furthermore,
we repeated each experiment ten times and filtered out the
remaining invalid measurements by using the median of the
ten measurements for each recorded position.

In case of LDR 1

2
the maximum tick count per position

fix always is between 370 and 420 ticks. This corresponds
with the fact that LDR constantly maintains three positions
independent of ε.

With CDR the maximum tick count varies between 13230
and 73610 as shown in Figure 9. The measurements well
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Figure 10: Reduction ratios (bicycle tour).
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Figure 11: Reduction ratios (walk in town).

go with the storage consumption of CDR shown in Figure 8.
This provides evidence that CDR’s maximum execution time
per position fix directly depends on the maximum size of S.

In case of CDRM and m = 5 the maximum tick counts
slightly vary between 3530 and 4650 as shown in Figure 9.
Yet, for m = 20 they vary much more – between 9250 and
29770 ticks. This is surprising at first glance since |S| always
reached 20 in our experiments.

The reason is the following: As explained in Section 5.1,
the execution time for a given sC highly depends on the
number of sensed positions si ∈ S that cannot violate the
section condition any more without sC violating the LDR
condition and thus are removed from S.

For m = 5 this number can come close to m easily. Yet,
for m = 20 this is very unlikely since it would require that
a large number of si ∈ S have equal or similar values ϕ(si).
Therefore, the larger m the higher the variance of the ex-
ecution times per position fix and thus also the maximum
execution time for a given sequence of sensed positions. This
effect even is increased by the fact that insert and pop op-
erations on S take longer the larger m.

Nevertheless, Figure 9 shows for CDRM that the maxi-
mum tick counts do not increase for increasing ε.

6.5 Results for Other Trajectories
We now discuss the results for the two other recorded tra-
jectories, i.e. the bicycle tour and the walk in town.

First of all, in conclusion, it can be said that the results
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for those two trajectories are very similar to the previous
ones.

• Storage consumption: With maximum values of 155
(bicycle tour) and 453 positions (walk in town) the
storage consumption of CDR is in the same order of
magnitude than for the recorded car ride.

• Execution time per position fix: With maximum values
of 46180 processor ticks per position fix (bicycle tour)
and 108230 ticks (walk in town) the execution times
of CDR also can be compared to the ones for the car
ride.
For CDRM with m = 20 the maximum values of 27680
(bicycle tour) and 19620 ticks (walk in town) even are
below the maximum value of 29770 ticks for the car
ride. The same applies to CDRM with m = 5.

• Reduction efficiency: The reduction ratios differ from
the ones given above due to the different velocity mag-
nitudes of the three means of transportation. Yet, the
relative differences between the ratios are very similar
to the ones given above, as explained in the following.

Figure 10 gives the reduction ratios for LDR 1

2
, CDR, CDRM,

and LS depending on ε for the recorded bicycle tour. Note
that ε ranges from 10 to 100 m only, since for larger values
of ε the number of vertices of the reduced trajectory is too
small for being meaningful.

For ε = 10m LDR 1

2
generates a reduced trajectory with

n = 347 vertices, i.e. r = 0.12. The trajectories generated
by CDR and CDRM have 224 to 239 vertices, i.e. r ≈ 0.08.
Thus, CDR and CDRM outperform LDR 1

2
by more than

30%, like for the car ride trajectory.
For other values of ε the relative savings of CDR compared

to LDR 1

2
range from 30 to 42% similar to the savings for the

car ride.
The relative savings of CDRM with m = 20 compared to

LDR 1

2
range from 30 to 37%. Thus, they are even greater

than for the car ride.
With the recorded walk in town the reduction ratios given

in Figure 11 are more scattered than the previous given ones.
The reason is, that the recorded walk comprises numerous
short rest periods and thus is not a continuous, smooth
movement like the recorded car ride or the bicycle tour.

The savings of CDR and CDRM compared to LDR 1

2
are

even greater than the previous mentioned ones: In case of
CDR they range from 35 to 50% with one outlier of 26%
and three outliers of about 55%. For CDRM with m = 20
they range from 20 to 40% except for three outliers of about
15% and another three outliers of about 45%.

We conclude, that CDR generally outperforms online trajec-
tory reduction using LDR 1

2
by 30 to 50% and that CDRM

with a storage allocation of less then 1 kB generally outper-
forms LDR 1

2
by 20 to 40%.

7. CONCLUSIONS
In this paper we studied online trajectory reduction for effi-
cient storage of moving objects’ trajectories in MODs. This
kind of trajectory reduction particularly is required for ob-
jects with embedded position sensors whose movements are
tracked and stored by a remote MOD.

Therefore, we contributed CDR and CDRM, two new ap-
proaches for online trajectory reduction. We presented both
algorithms in detail and discussed the underlying mathemat-
ics. We also explained that CDR achieves a higher reduction
while CDRM features a limited, adjustable storage allocation
and execution time per position fix.

That followed we gave evaluation results from more than
300 experiments with prototype implementations of CDR
and CDRM using real trajectory data obtained by GPS.
Our evaluation shows that CDR outperforms the existing
approaches by 30 to 50%. CDRM shows similar results: It
outperforms the existing approaches by 20 to 40%, even with
very limited storage allocations of less than 1 kB.
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