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ABSTRACT 
 
We present in this paper a novel distributed coding scheme for 
lossless and progressive compression of multispectral images. The 
main strategy of this new scheme is to explore data redundancies 
at the decoder in order to design a lightweight yet very effi cient 
encoder suitable for onboard applications during acquisition of 
multispectral image. A sequence of increasing resolution layers is 
encoded and transmitted successively until  the original image can 
be losslessly reconstructed from all  layers. We assume that the 
decoder with abundant resources is able to perform adaptive re-
gion-based predictor estimation to capture spatially varying spec-
tral correlation with the knowledge of lower-resolution layers, 
thus generate high quality side information for decoding the high-
er-resolution layer. Progressive transmission enables the spectral 
correlation to be refined successively, resulting in gradually im-
proved decoding performance of higher-resolution layers as more 
data are decoded. Simulations have been carried out to demon-
strate that the proposed scheme, with innovative combination of 
low complexity encoding, lossless compression and progressive 
coding, can achieve competitive performance comparing with 
high complexity state-of-the-art 3-D DPCM technique. 

Categories and Subject Descriptors 
E.4 [Coding and Information Theory]: Data Compaction and 
Compression – image compression, distributed coding 

General Terms 
Algorithms/Design 

Keywords 
Distributed coding, progressive coding, lossless compression, mul-
tispectral images, low complexity encoding 

1. INTRODUCTION 
 

Multispectral images are composed of a number of bands 

representing the same area of the earth surface in different spec-
tral intervals. As the contemporary technologies advance in re-
mote sensing systems, multispectral data are produced at increa-
singly higher spatial, spectral, temporal and radiometric resolu-
tions. However, together with this wealth of information genera-
tion comes the challenges of transmitting such huge amount of 
data over limited-capacity channels from the remote platform to 
the ground station. Thus, effi cient compression algorithms are 
highly demanded in order to match the available bandwidth to the 
ever increasing multispectral image data generation. Since even 
the least distortion may lead to erroneous interpretation of the 
considered scene or incorrect estimation of the ground parameters, 
we focus our research on lossless compression in order to recover 
the original image from the compressed data without any loss of 
information. 

Another desirable feature for multispectral images compression is 
progressive reconstruction. Such feature is very useful when users 
are browsing the image data for specific applications. This re-
quires the encoder to produce a bit stream that is able to provide a 
sequence of resolution layers for effective delivery. The first layer 
corresponds to some highly compressed version and each succes-
sive layer provides more details. These layers are decoded succes-
sively so that the image is quickly displayed at low-resolution and 
then gradually refined. For the area in which users have little 
interest, the corresponding high-resolution layers need not be 
transmitted so that bandwidth can be saved for transmitting more 
useful image data. The recent still-im age compression standard, 
JPEG 2000, provides such features in its extended form [1]. How-
ever, like other two-dimensional (2-D) schemes [2], JPEG 2000 is 
unable to obtain optimal results for the inherently three-
dimensional (3-D) multispectral images since only spatial redun-
dancy is exploited. To improve compression performance, some 
3-D schemes have been specifically  designed in the last few years 
for multispectral images in order to efficiently remove both spatial 
redundancy and spectral redundancy [3], [4], [5], [6].  Although 
these 3-D schemes can provide high compression performance 
and some of them offer progressive transmission [3], [4], the data 
decorrelation implemented at the encoder, i.e., prediction or dis-
crete wavelet transform (DWT), are generally computation sensi-
tive and memory consumptive. This will impose on the encoder a 
heavy computational burden that a remote platform is usually 
unable to afford. Therefore, the remote sensing systems have been 
longing for a completely new coding scheme with competing 
requirements in low computational complexity at encoder and 
high compression effi ciency for image coding. The objective of 
this research is indeed to develop a scheme to meet such chal-
lenges and to provide progressive compression feature aiming at 
the required onboard applications. 
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Figure 1: Framework of the proposed system 

 
To design a low complexity encoder, we need to move the high 
complexity exploitation of data correlation to the decoder on the 
ground, where computation capability and memory capacity are 
abundant. Distributed source coding (DSC) provides a new and 
promising solution to such a problem. Based on Slepian-Wolf 
theory [7], correlated sources can be compressed by separate en-
coders without performance loss as long as they are jointly de-
coded. This allows us to move computation complexity from en-
coder to decoder so as to facilitate the resources allocation of 
remote sensing systems. However, there has been surprisingly 
littl e work on DSC of multispectral images. Until recently, only a 
few approaches have been attempted to assess the potential of 
DSC for multispectral image compression [8], [9]. Over the years, 
the straightforward spectral decorrelation methods have led to 
some unacceptable performance loss, and the spatial decorrelation 
operations via DWT/spatial prediction, have increased encoder’s 
computation burden and resulted in very limited practical schemes.  

In this research, we seek to design a practical DSC-based codec 
with the desired characteristics of progressive transmission, low 
complexity encoding, lossless compression and high compression 
efficiency suitable for onboard applications. The image is first 
partitioned into a number of slices by specially designed sampling. 
These slices are then encoded independently and transmitted pro-
gressively. Decoding starts from the first slice and the lowest-
resolution layer is then reconstructed. As more slices are decoded, 
a higher-resolution layer can be obtained. Ultimately, the original 
image is completely recovered after all slices are decoded. Al-
though the first slice contains significantly reduced data, it is still 
adequate to represent the spectral dependency of the original im-
age since spatially adjacent pixels retain similar spectral depen-
dency. The subsequent slices are successively decoded with the 
side information generated by accessing the previously decoded 
slices as well as the preceding multispectral bands. To capture the 
nonstationary spectral correlation of multispectral images, an 
adaptive region-based prediction algorithm is performed to ac-
quire high quality side information. With more slices available, 
the decoder acquires higher quality side information and thus 
better compression performance. Comparing with the convention-
al entropy coding based 3-D schemes [3], [4], [5], [6], the pro-
posed DSC approach has an additional advantage besides low 

encoding complexity and progressive transmission. That is, it can 
also provide potential error resili ence by preventing error propa-
gation caused by prediction mismatch which often occurs in pre-
dictive coding schemes. Furthermore, as decorrelation transform 
is not employed, the proposed scheme is easy to be extended to 
near-lossless compression application by adding a quantizer be-
fore extracting bit-planes so as to provide higher compression 
ratio. The reason that a transform coding scheme is not suitable 
for near-lossless compression has been discussed in [6]. 

It should be noted that to the best of our knowledge, this is the 
fi rst distributed coding-based scheme that provides lossless as 
well  as progressive reconstruction for multispectral images. The 
compression performance of the proposed scheme is comparable 
to the best-known lossless compression technique reported in the 
literature with much reduced encoder complexity.  

The rest of this paper is organized as follows. In Section 2, we 
outline the proposed DSC-based multispectral image compression 
system. In Section 3, we describe the strategy of side information 
generation by means of region-based adaptive prediction algo-
rithm. In Section 4, we report the experimental results to demon-
strate the performance of the proposed scheme. Section 5 con-
cludes this paper with a summary. 

2. THE PROPOSED SYSTEM 
 

Based on the DSC theory, each band of multispectral images is 
encoded separately and the compressed streams are transmitted to 
the decoder for joint decoding. In this research, the first band is 
encoded by a conventional intra mode codec, such as lossless 
JPEG [2], and other bands are encoded with the proposed DSC-
based codec. Figure 1 illustrates the proposed DSC-based multis-
pectral image compression system for the kth band Bk assuming 
that the previous k-1 bands have already been decoded. 

We propose an efficient way to compress the image progressively 
in resolution, such that the decoder can quickly obtain a low-
resolution layer, from which the local spectral correlation is 
learned and used to generate side information for the higher-
resolution layer. The low-resolution layer is required to be able to 
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represent well the nonstationary spectral correlation of the entire 
multispectral image. Since spatially adjacent pixels representing 
the same object are very much likely to have similar spectral de-
pendency, partial data scattered over the image acquired by sam-
pling are chosen as a low-resolution layer in this paper. 

As illustrated in Figure 1, at the encoder the image Bk is fi rst par-
titioned into a number of slices 1 2 16

k k kB B B�  by sampling and each 
slice is encoded in the same bit-plane-by-bit-plane fashion using a 
bit-plane extractor and a binary LDPC encoder. The generated 
syndrome bits of these slices are transmitted progressively. Since 
spectral correlation estimation at the decoder requires basic in-
formation of Bk, some statistics of the first slice are calculated and 
transmitted to the decoder. At the decoder, all slices are decoded 
successively starting from the first slice 1

kB . With the knowledge 
of 1

1kB � denoting the first slice of the adjacent band Bk-1 decoded 
previously and the statistics of 1

kB  transmitted from the encoder, a 
linear predictor is estimated and used to generate side information 
of 1

kB , denoted by 1
kSI . 1

kB  is then decoded using an LDPC decod-
er by combining 1

kSI  with the received syndrome bits. Different 
from 1

kB , other slices ^ `| 2 16l
kB ld d are decoded in sequence 

with side information acquired in a distinct way because of the 
availability  of 1 2 1l

k k kB B B�
� . First, the local spectral correlation is 

captured and used to generate side information of l
kB  by means of 

an adaptive region-based prediction algorithm to exploit nonsta-
tionary spectral correlation. Afterwards, the statistic of correlated 
noise is estimated by context modeling to exploit residual correla-
tion. The decoding performance of these slices is improved grad-
ually by capturing more accurate spectral correlation from in-
creasing slices. After all slices are decoded, they are regrouped to 
losslessly reconstruct the original image. 

The following gives the verbose descriptions of detailed steps. 

The partition of Bk by sampling is performed in this fashion: Bk is 
divided into 4×4 size blocks, each of which is labeled as illu-
strated in Figure 2. Then all pixels labeled by l, one pixel from 
each block, are grouped together to form the lth slice 

l
kB (l=1,2,…,16). These slices are appropriately ordered such that 

the sub-image reconstructed from 1 2 l
k k kB B B�  is a sub-sampled 

version of the original image and is expected to be able to charac-
terize the spectral correlation of the whole image. 

Bit-planes of each slice are extracted and encoded independently 
using a binary LDPC encoder, generating syndrome bits s=xH, 
where H is a sparse parity check matrix and x is a bit-plane. The 
accumulated syndrome bits are stored in a buffer and transmitted 
increasingly upon request. The transmission starts from the first 
slice and repeats for each slice, from the most significant bit-plane 
(MSBP) to the least significant bit-plane (LSBP). 

The four components of the encoder are all lightweight in compu-
tational complexity. Firstly, sampling and extracting bit-planes 
involves no computation. Secondly, LDPC encoding can be im-
plemented by energy effi cient modulus 2 additions in linear com-
plexity because of the sparseness of H. Thirdly, statistics calcula-
tion leads to only relatively small increase in encoder complexity 
since only the fi rst slices of two consecutive bands are involved. 
Therefore, the proposed scheme indeed provides a very low com-
plexity encoder. 
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Figure 2: Block labeling 
 

1
kB is decoded first. Side information of 1

kB  is generated by em-
ploying a 1st-order linear model: 

1 1 1 1
1k k k kSI BD E�                          (1) 

where 1

kD and 1

kE characterizing the spectral correlation of 1
kB and 

1
1kB � are obtained by Least-Square (LS) technique to minimize the 

mean squared prediction errors (MSPE): 

1 1 1 1
1 1

1 2 1 1
1 1 1
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1
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� �
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�
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� �

 �

                  (2) 

where [ ]E � represents the expectation. Except 1 1 1
1[ ], [ ]k k kE B E B B�  

that are transmitted from the encoder, all other calculations in-
volved in predictor estimation given by (2) are carried out at the 
decoder. 1

kSI  is then combined with the received syndrome bits to 
perform LDPC decoding under the assumption that the prediction 
errors are Laplace distributed. 

Notice that this scheme uses only one predictor defined by (1) and 
only one band to predict the first slice in order to avoid additional 
header information and computation at the encoder. However, a 
single predictor is likely inadequate to cope with the spatially vary-
ing characteristics of multispectral data, and cause degradation of 
the compression performance for the first slice.  

Unlike the first slice, other slices are decoded more efficiently by 
means of sophisticated spectral decorrelation method. Once the 
first slice is decoded, the decoder obtains a low-resolution image. 
By accessing the low-resolution image, the decoder is able to 
estimate the local spectral correlation of the current band and sev-
eral previously decoded bands to generate the side information for 
decoding the next slice. As one more slice is decoded, a higher-
resolution layer is then reconstructed and used to acquire more 
accurate spectral correlation and higher quality side information 
for decoding the subsequent slice. This process is iterated until  the 
whole image is losslessly reconstructed. Details of the side infor-
mation generation algorithm for slices^ `| 2 16l

kB ld d will  be dis-
cussed in Section 3. 

Each slice is decoded in a similar way using an LDPC decoder 
after the corresponding side information is produced. Bit-planes 
of each slice are decoded successively starting from MSBP to 
LSBP, even though they are encoded independently. When de-
coding the less significant bit-planes, the previously decoded 
more significant bit-planes are used as secondary side information. 
For the jth bit-plane of the l th slice, the posterior probability of the 
nth bit can be computed by: 

^ `
,

, ,,( | ) ,    0,1( | )
l
k n

n

b

l l
k n k n

B

l
k np b SI bx p B SI

�*
  �¦       (3) 

where xn is the nth bit of the current bit-plane, ,
l
k nB  is the nth pixel 

of the lth slice, ,
l
k nSI is the side information of ,

l
k nB ,  b* are a set of 
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values whose j-1 more significant bits are previously decoded, the jth 
bit is b and the less significant bits are uncertain, 
and , ,( | )l l

k n k nB SIp relates the correlation between ,
l
k nB and ,

l
k nSI , 

which is usually assumed to be a Laplace distribution. 

For each bit-plane, the decoder attempts to perform decoding 
upon receiving a subset of syndrome bits. If i t fails, additional 
syndrome bits are requested from the encoder buffer through 
feedback. The process of request and decoding is repeated until  
the decoding is successful [10]. The decoder, combined with feed-
back, provides rate flexibility for each bit-plane, which is essential 
in adapting to the nonstationary characteristic of multispectral im-
ages. The estimation of such characteristic is diffi cult and expensive 
to track at the encoder. The research on rate allocation at encoder 
when feedback is unavailable remains as our future work. 

There are two modes for incremental decoding of the image: reso-
lution and precision. The resolution mode yields progressive spa-
tial resolution as more slices are decoded. The precision mode 
successively increases pixel accuracy of the decoding slice as 
more bit-planes are decoded. By resolution mode, the syndrome 
bits are transmitted in such an order that all bit-planes of the low-
est-resolution slice are first decoded, followed by all  bit-planes of 
the next higher-resolution slice, until all slices are decoded to 
recover the original image in a lossless fashion. For each slice, 
pixels are gradually refined to full precision in the order of in-
creasing significance. Such successive reconstruction of image 
adds desirable features to the codec to provide the capability for 
image browsing and progressive transmission, as well as natural 
prioritization for layered protection schemes. In addition, with the 
incremental slices available at the decoder, the acquired spectral 
correlation can be refined gradually and thus the decoding perfor-
mance is enhanced, that is, the compression performance of DSC 
benefi ts from such successive decoding. 

3. SIDE INFORMATION GENERATION 
 

Since multispectral images are captured by observing the same 
area of the earth surface in different spectral intervals, the same 
object appears consistently in all  bands, that is, pixels of the same 
object exhibit similar spectral dependency whereas different ob-
jects probably have distinct spectral dependencies. Thus, the op-
timal prediction can be acquired using a set of predictors, each of 
which characterizes one type of spectral dependency. To distin-
guish pixels with similar or different spectral correlation, the im-
age can be first segmented into a number of statistically homoge-
neous regions. Pixels in the same region are assumed to exhibit 
similar spectral dependency. 

3.1 Image segmentation 
Although the current band is unavailable at the decoder, segmen-
tation can be implemented on the previously decoded bands since 
the structures of multispectral bands are assumed to be highly 
correlated. The objective of segmentation is to single out regions 
with pixels of each region having similar spectral correlation. 
Therefore, similarity measurement of regions should depend not 
only on the spatial statistic but also on the spectral features. In our 
research, the image is initially segmented by a k-means algorithm 
[11] using a vector spanning the spectral dimension, denoted by 

^ `, | 1, ,n k i nv B i m�  � , as the feature of the nth pixel. This cluster-

ing algorithm results in over-segmentation with a large number of 
small  regions and even isolated points since spatial correlation is 
not considered. To acquire textural regions, a MRF model over 
region adjacency graph (RAG) of the preliminary segmented 
regions is defined and over-segmented regions are appropriately 
merged to minimize the defined energy function [12]. Different 
from the conventional region-based entropy coding schemes [13], 
there is no need to transmit the segmentation map since the seg-
mentation is implemented at the decoder. Therefore, the image 
can be elaborately segmented into a number of relatively small 
and moderate regions such that each region exhibits homogeneous 
statistics. 

3.2 Adaptive Region-based Prediction 

For the lth slice l
kB (l=2,3,…,16), the side information is generated 

by a set of linear predictors representing the local spectral correla-
tion of the current band and a number of previously decoded 
bands. Based on the knowledge of l-1 slices of the current band 
and m previous bands ^ `| 1,2, , ,k i i m m kB �  �� that have been 
decoded, the spatially varying spectral correlation is captured. To 
better adapt to the nonstationary characteristics of multispectral 
images, a particular predictor is adaptively estimated for each 
pixel of l

kB  by learning spectral correlation from neighboring 
pixels. Denote ,

l

k nB the nth pixel of l

kB and (vn, hn) the correspond-
ing coordinate. Define a 2-D neighborhood for ,

l

k nB  by 
^ `( , ) | ,w n nL v h v v w h h w � d � . For each pixel ,

l

k nB , a group 
of neighboring pixels that have already been decoded are selected 
as follows and used to estimate the local spectral correlation: 

1) Pixels belonging to the same region with ,

l

k nB  are selected 
with top-priority. Denote the number of the selected pixels 
cc . Neighboring decoded pixels in the same region are 
picked starting from the nearest one until c cc  , where c is a 
predefined value representing the number of pixels that are 
expected to be selected. For some small regions, there are 
very few or even no decoded pixels, i.e., c cc� . That is, 
neighboring decoded pixels in the same region with ,

l

k nB are 
not enough to represent the local statistic of ,

l

k nB . If so, go to 
step 2).  

2) Neighboring pixels with region labels different from ,

l

k nB are 
used as secondary candidate. The difference between the 
neighboring pixel , ,k v hB at position (v, h) and ,

l

k nB is com-
puted by:  

� �
2

, , ,
1

m
l
k i n k i v h

i
d B B� �

 

 �¦             (4) 

where( , ) wv h L� . If d is less than a preset threshold, the pix-
el , ,k v hB is selected. If  there still exists c cc�  after all pixels 
in Lw are visited, go to step 3). 

3) Other decoded pixels in Lw are selected without any con-
straint until c cc  . 

The eligible pixels are visited in an increasing order of the spatial 
distance from ,

l

k nB  in all  the three above steps. Since the selected 

pixels are likely inadequate to estimate an mth-order predictor, m 
1st-order predictors are adopted: 

( )
, , , , ,    1,2, ,l i l

k n k i n k i n k i n i mSI BD E
� � �

  � �       (5) 
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where , ,,k i n k i nD E� �  represent the spectral correlation of the current 
band kB and the previous band k iB � (i=1,2,…m) at the position of 
(vn, hn). The coeff icients of each predictor are calculated using the 
selected pixels by means of LS algorithm to yield minimum 
MSPE, denoted by ,

l
k i nmspe� . ,

l

k nB  is then predicted as the 
weighted sum of the output of m predictors: 

, ,
1

( )
,

m
l l
k n k i n

i

l i
k nSI u SI�

 

 ¦                (6) 

where 

,
,

1 ,

1l
k i n l

m
k i n
l

j k j n

u
mspe

mspe

�

�

 �

 

¦

              (7) 

This region-based prediction algorithm captures the local spectral 
features by actually  exploiting both spectral and spatial statistics. 
Thus, it is quite effi cient for multispectral data decorrelation. 

3.3 Correlated Noise Statistic Estimation 
Although it is assumed to generate a memoryless version of pre-
diction errors by performing data decorrelation, the prediction 
errors (also called correlated noise in DSC) still  exhibit residual 
correlation. To exploit this characteristic, context modeling is 
carried out to partition the noise into several statistically homoge-
neous signals. Since noise values are unknown as the original 
image is unavailable, the context of each pixel ,

l

k nB is computed as 
the MSPE of the selected neighboring pixels: 

, ,
1

,

m
l l
k n k i n

i

l
k i nctx u mspe�

 
� ¦                 (8) 

The noise is then classified into a number of classes by partition-
ing the histogram of the context. As a consequence, multiple 
models, each following a Laplace distribution but with different 
variance, will  better approximate the spatially varying statistics, 
and thus improve the decoding performance. 

4. EXPERIMENTAL RESULTS 
 

The proposed scheme has been implemented on several Landsat 
Thematic Mapper (TM) images, with 256×256 pixels, 8 bits/pixel 
and six bands (the sixth band was omitted because of its poor 
resolution and limited spectral correlation). Figure 3 shows the 
fift h band of two test data sets. The first one represents an area 
near Lisbon and the second one represents an area in the south-
west of Jiangsu, China. To achieve optimal decorrelation, the 
bands sequence is rearranged to maximize the average cross-
correlation between any couple of consecutive bands. The opti-
mum ordering for TM images was acquired offl ine to be 
1Æ2Æ3Æ7Æ5Æ4 [5]. Assuming that the first band is available 
at the decoder, the other bands are compressed by the proposed 
DSC codec. All  previously decoded bands (m=k-1) are used to 
predict the current band. The LDPC code is regular with degree 3 
and length 4096 bits so as to encode a bit-plane of each slice as 
one code. 

4.1 Compression Results 
The variance of prediction errors are reported in Table 1 and Ta-
ble 2, where 2

lV  represents the MSPE of the l th slice produced by 
our region-based prediction algorithm and 12 represents the MSPE 

of the whole image produced by the classified 3-D prediction 
algorithm proposed in [6] with 12 predictors and 22nd-order 3-D 
causal prediction. The number of selected neighboring pixels c is 
set to be the number of decoded pixels in a Lw neighborhood with 
w=2 for slices ( 4)l

kB l d  and w=1 for slices ( 4)l
kB l ! assuming 

that all  relative pixels are in a homogeneous region. For actual 
neighboring pixels selection, w is set to be 5 to guarantee a high 
probability that there are enough decoded pixels with the same 
label in the Lw neighborhood. As observed from Table 1 and Ta-
ble 2, 2

lV  almost diminish monotonously with respect to the in-
crease of l. This indicates that more accurate spectral correlation 
is acquired as more data are available. Comparing with the classi-
fied 3-D prediction algorithm, the proposed prediction algorithm 
produces poorer results for slices l

kB  ( 4l d  for TM-Lisbon, 8l d  
for TM-Jiangsu) because the data used to estimate the spectral 
correlation are too sparse and include no decoding pixels. How-
ever, the prediction precision is improved for slices l

kB  ( 4l !  for 
TM-Lisbon, 8l !  for TM-Jiangsu) since with enough data availa-
ble, the region-based prediction algorithm better adapts to the 
spatially varying characteristic of multispectral data, which out-
weighs the drawback in the lack of the decoding pixels. 

The bit-rates per pixel are reported in Table 3 and Table 4. The 
performance of the proposed scheme is compared with that of the 
state-of-the-art lossless compression techniques. The lossless 
JPEG standard [2] is selected as a typical 2-D compression 
scheme with low encoding complexity. The 3-D differential pulse 
code modulation (DPCM) based scheme proposed in [6], the best 
performance scheme to our knowledge, is used as the benchmark 
for performance evaluation. As shown in Table 3 and Table 4, the 
DSC scheme significantly outperforms the lossless JPEG codec 
by 0.7~1.6 bits per pixel (bpp). Compared with the 3-D DPCM 
based scheme, equivalent and even lower bit-rates are obtained 
for TM-Lisbon while a loss of about 0.2 bpp is observed for TM-
Jiangsu. The compression effi ciency is significantly affected by 
the prediction performance, which can be observed from the 
tables. Better prediction performance together with much less 
header information contributes to the improved compression effi-
ciency for some bands of TM-Lisbon. 

The proposed region-based prediction algorithm is different in 
three aspects with respect to the classified 3-D prediction algo-
rithm proposed in [6]. First, the region-based prediction algorithm 
can better adapt to the nonstationary characteristic of the image 
than the block-based prediction algorithm adopted in [6]. There-
fore, the proposed scheme can improve the prediction perfor-
mance significantly for images with weaker stationarity, such as 
TM-Lisbon. Second, having only partial access to the image, our 
prediction algorithm is based on the assumption that pixels in the 
same region retain similar spectral dependency. Hence, the 
scheme is able to perform well  in learning the local spectral corre-
lation from neighboring pixels for TM-Lisbon, mostly consisting 
of smooth regions, but not so well  for TM- Jiangsu, mainly con-
sisting of texture regions, which is probably less consistent with 
the consumption. Third, no spatial prediction is adopted in our 
scheme.  

4.2 Encoding complexity 
The motivation of the proposed DSC scheme is to design a low 
complexity encoder. To illustrate the encoder complexity reduc-
tion for the proposed scheme, Table 5 depicts the encoding time 
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per band, averaged over the test data sets of 100 runs, using dif-
ferent encoders run on a computer with a Pentium IV 3GHz CPU. 
As expected, the DSC encoder reveals remarkable complexity 
reduction compared with 3-D DPCM [6] and even weighs lighter 
than lossless JPEG [2]. Therefore, the proposed DSC scheme 
indeed results in a lightweight encoder with high compression 
effi ciency suitable for onboard applications. 

5. CONCLUSION 
 

In this paper, we have described a novel DSC scheme for multis-
pectral images in order to design a lightweight yet effi cient en-
coder by moving data decorrelation operations to the decoder. 
The image is compressed progressively so that the decoder can 
have partial access to the image initially, from which the local 
spectral correlation is learned and used to generate the side infor-
mation for decoding the next resolution level. As more slices are 
decoded, higher-resolution image is reconstructed and more accu-
rate spectral correlation is acquired, resulting in gradually im-
proved decoding performance. The major innovation lies in the 
design of adaptive region-based prediction algorithm to capture 
both spatial and spectral varying characteristic of multispectral 
images.  The experimental results demonstrate that the proposed 
scheme yields excellent compression performance, and is compet-
itive with the best algorithms available in literature with very low 
complexity encoder suitable for onboard processing in multispec-
tral image acquisition. 

 

 

(a) TM-Lisbon 

 
(b) TM-Jiangsu 

Figure 3: The fifth band of the test images 
 

Table 1. Variance of prediction errors of TM-Lisbon 

 c Band2 Band3 Band7 Band5 Band4 

11
2  5.38 39.62 108.34 209.98 252.28 

12
2 4 1.70 8.03 17.12 34.55 59.15 

13
2 4 1.67 6.92 11.94 25.43 36.74 

14
2 4 1.44 6.11 11.86 21.76 33.11 

15
2 4 0.59 2.96 4.33 7.26 12.10 

16
2 4 0.55 2.10 3.17 5.93 11.71 

17
2 4 0.52 1.67 3.17 5.76 10.92 

18
2 4 0.54 1.71 2.63 5.65 8.56 

19
2 4 0.44 1.86 2.65 4.41 6.67 

110
2 5 0.42 1.32 1.86 3.90 6.05 

111
2 5 0.44 1.25 2.08 4.17 6.36 

112
2 6 0.40 1.23 2.14 4.20 6.08 

113
2 6 0.42 1.43 2.17 3.74 5.91 

114
2 7 0.39 1.09 2.10 3.91 5.79 

115
2 7 0.42 1.14 2.05 4.02 5.56 

116
2 8 0.39 1.17 1.97 3.86 5.52 

1
2  0.72 2.13 4.91 9.40 11.17 

 
Table 2. Variance of prediction errors of TM-Jiangsu 

 c Band2 Band3 Band7 Band5 Band4 

11
2  1.90 7.92 35.54 34.83 18.28 

12
2 4 1.89 6.10 19.29 18.31 12.24 

13
2 4 1.72 5.52 16.97 16.51 10.12 

14
2 4 1.64 5.44 16.12 16.49 11.62 

15
2 4 1.31 4.08 11.53 12.55 8.05 

16
2 4 1.32 4.12 11.32 12.79 8.04 

17
2 4 1.36 4.19 10.93 12.23 7.98 

18
2 4 1.35 4.05 10.59 11.86 7.16 

19
2 4 0.91 2.44 6.23 8.27 4.41 

110
2 5 0.89 2.32 6.15 8.13 4.35 

111
2 5 0.83 2.27 6.12 8.08 4.16 

112
2 6 0.87 2.25 6.13 8.10 4.25 

113
2 6 0.84 2.18 6.20 8.13 4.04 

114
2 7 0.86 2.21 6.14 8.04 4.11 

115
2 7 0.81 2.12 6.12 7.92 4.14 

116
2 8 0.83 2.08 6.07 7.83 4.07 

1
2  0.95 2.44 6.51 8.34 4.53 
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Table 3. Bit-rates per pixel of TM-Lisbon (bpp) 

Codec Lossless JPEG DSC 3-D DPCM 

Band2 3.50 1.84 1.75 

Band3 4.04 2.63 2.58 

Band7 3.93 2.78 2.82 

Band5 4.43 3.14 3.25 

Band4 4.04 3.23 3.33 

 
Table 4. Bit-rates per pixel of TM-Jiangsu (bpp) 

Codec Lossless JPEG DSC 3-D DPCM 

Band2 3.60 2.55 2.36 

Band3 4.39 3.38 3.12 

Band7 4.76 4.01 3.76 

Band5 5.48 4.21 3.99 

Band4 4.75 3.76 3.52 

 
Table 5. Average encoding time per band (ms) 

Encoder Lossless JPEG DSC 3-D DPCM 

Time 62 31 34476 
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