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ABSTRACT

We present in this pape a novd distributed coding sheme for
losslessand progresve mmpresgon of multispectral images. The
main drategy of this new scheme is to explore data redundancies
at the decode in orde to design alightweight yet very efficient
encode suitable for onboad goplicaions during aquisition of
multispectral image A sequence of increasing relution layers is
encodad and tranamitted succesively untl the origind image @n
be losslesdy recongructed from dl layers. We asume tha the
decode with abundant resources is able to perform adative re-
gion-based predictor estimation 1o capture spdially varying gec-
tral corrdation with the knowledge of lower-relution layers,
thusgeneate high qualiy sdeinformation for desoding the high-
errelution layer. Progressve trangmisson enables the spectral
corrdation o berefined succesively, reallting in gradudly im-
proved decoding peformance of highe-rewlution layers as more
data ae decodd. Simulations have been carried outto demon-
strate tha the propogd scheme, with innovdive combinaion of
low complexity encoding, lossless @mpres$on and progresve
coding, can acheve compditive peformane conpaing with
high cmmplexity state-of-he-art 3-D DPCM technique

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data Conpaction and
Cormmpresson —imagecompresson, distributed coding

General Terms
Algorithms/Design

Keywords
Distributed coding, progressve coding, lossless compresson, mul-
tispectial images low complexity encoding

1. INTRODUCTION

Multispectral images are composd of a nunmbe of bands
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representing the same area of the erth wrface in different spec-
tral intervals. As the ontemporay technologes advance in re-
mote sensng ystems, multispectral daa are produed & increa-
singly highe spatial, spectral, tempord and raliometric resolu-
tions However, together with this wedth of information genea-
tion comes the chdlenges of trangmitting such hugeamount of
daa over limited-capaity chainds from the remote platform to
the ground &ation. Thus efficient compresson algorithms are
highly demanded in orde to match the avdable bandwidth to the
ever increasing nultispectral image daa geneation. Snce evan
the least distortion nay lead to erroneous interpretation of the
consdered scene or incorrect estimation of he groundparametrs,
we focusour resarch onlosslesscompressonin orde to recover
the origind image from the @mpressed daa without any loss of
information.

Another desirable feature for multispectral images compressonis
progressve recongruction. Such featureis very useful when users
are browsing the image daa for secific applicaions This re-
quiresthe enode to produe abit stream that isable to providea
sequence of resolution layers for effective ddivery. Thefirst layer
correspondsto some highly compressed version and ach succes-
sive layer provides more detail s. These layers are decoded succes-
sively so tha theimage is quickly displayed & low-resolution and
then gradudly refined. For the areain which usrs have little
intered, the orresponding high-reslution layers need not be
tranamitted so that bandwidth can besaved for tranamitting nore
usesful imagedaa. The recentdtill-im age compresson gandad,
JPEG 2000, provides such features in its extended form[1]. How-
ever, like other two-dimensond (2-D) schemes [2], JPEG 2000 &
unéble to obkin optma results for the inhaently three
dimengond (3-D) multispectral images since only spaia redun-
dang is exploited. To improve compresson peaformance, some
3-D schaneshave beenspecificaly designed in thelag few yeais
for multispectral images in orde to efficiently remove both Paia
redundancy and gectral redundancy [3], [4], [5], [6]. Although
these 3-D scheames can provide high compresson peformane
and ome of them offer progressive trangmisson [3], [4], the dada
decorrdation implemented & the enodae, i.e., pradiction or dis-
crete wavelet trandform (DWT), are generally computation ens-
tive and memory conaumpive. This will impose on the encode a
heavy computationd burden tha a remote platform is usudly
unable to dford. Therefore, the remote sensng g/stems havebeen
longing for a conpletey new coding scheme with competing
requirements in low computationd complexity at enode and
high mmpresson dficiency for image @ding. The objedive of
this reeach is indeed to devéop aschame © meet such chd-
lengesandto provide progressve mmpresson feature aming &
therequired onboad gplicaions
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Figure 1: Framework of the proposed system

To design alow complexity enmde, we need to move the high
complexity exploitation of daa corrdation to he decode on he
ground, where computation @pability and nenory capady are
abundant. Distributed source coding (DSC) provides a new and
promising lution © uch a problem. Based on 3Sepian-Wolf
theory [7], corrdated sources can be compressed by separate en-
codes without performance loss as long & they are jointly de-
code. This dlows usto move computation mmplexity from en-
code to decode s0 & to fadlitate the resouraes dlocation of
remote sendng g/stems. However, there has been surprisingly
little work on DSC of multispectral images. Until recently, only a
few approahes have been atempted to assess the potential of
DSC for multispectral image @mpresson [8], [9]. Over the years,
the draightforward ectral decorrdation nmethods have led to
some unaccepable performance loss, and the spatia decorrdation
opeationsvia DWT/spdial prediction, haveincreagd encode’s
computation burde and resulted in very limited pradicd schemes.

In this reearch, we ®ekto desgn a pacical DSC-based codec
with the dedred characterstics of progresive tarsmisson, low
complexity ercoding, losskss @mpression and high compresson
efficiency suitalle for onbaard applicaions. The image is first
patitionad into anunber of dices by Pecialy designed sampling.
These dicesare hen encodal independently and tranamitted pro-
gressvely. Deading starts from the first dice and te lowest-
relution layer is then recondructed. As more dicesare decods,
a highe-relution layer can beobtined. Ultimately, the origind

image is completely recovered after all dicesare decod# Al-

thoughthe first dice contains dgnificantly reduced data, it is still

adequae to represent the spectral dependency of the origind im-
agesnce pdially adpcentpixels retan similar spectral depen-
deng. The subsequent dlices are succesively decoded with the
side information generated by accesing the previoudy decodel
sices aswell asthe preceding nultispectral bands To capture the
nongationay spectral corrdation of multispectral images, an
adgptive region-based prediction dgorithm is performed to ac-
quire high qualiy sde information. With more dices avalable,
the decode aaquires higher quéity side information and thus
better compresson peformance. Conpaing with the onvention-
a entropy coding based 3-D schames [3], [4], [5], [6], the pro-
poed DSC gproah has an alditiond advantage besides low
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encoding mmplexity and progresve trangmisson. Tha is, it can
aso provide potentia error resili ence by preventing error propa-
gation cused by prealiction mismatch which often oacursin pre-
dictive coding schemes. Furthermore, asdecorelation transorm
is not employed, the propo®gd scheme is easy to be extended to
near-lossless compresson gplicaion by adding a quatizer be-
fore extracting bi-planes so as i provide highe compresson
ratio. The reason tha a trandorm coding scheme is not suitable
for near-lossless @mpression has been discussed in [6].

It should be noted tha to the best of our knowkdge this is the
first distributed ocoding-based schame that provides lossless &
well as progressve recongruction for multispectral images. The
compresgon peaformance of the propoed sheme is compaable
to the best-known lossless compresson tednique reported in the
literature with much reduced encode complexity .

The reg of this pgper is organized as follows. In Sedion 2, we
outlinethe propogd DSC-based multispectral image mmpresson
system In Secion 3,we describe the strategy of sde information
geneation by means of region-based adgptive prediction dgo-
rithm. In Sedion 4, we report the experimental results to demon-
strate the performance of the propogd sheme. Sedion 5 con-
cludes this pgper with asummary.

2. THE PROPOSED SYSTEM

Based on he DSC theory, each band of multispectral images is
encodal sepaately and the ompressed dreams are trangmitted to
the decode for joint decoding. In this resach, the first band is
encodal by a onventiond intra mode codec, such & lossless
JPEG [2], and other bands are en@ded with the propogd DSG
based codec.Figurel illustrates the propogd DSC-based multis-
pectral image compresson s/stem for the K" band B, assuming
that the previousk-1 bandshave dready been decoded.

We propog an efficient way to compressthe image progressvely
in resolution, such tha the decode can quickly obtin a low-
reolution layer, from which the local spectral corrdation is
leaned and used to generate side information for te highea-
relution layer. The low-relution layer is required to beable to



represent well the nongationary spectral corrdation of he entire
multispectral image Since paially adpcentpixels representing
the sanme obpctare very much likely to havesmilar sectral de-
pendency, patial daa satered ove the imageaaquired by sam-
pling are chosen asalow-relution layer in this pgoer.

Asillugrated in Hgurel, & the enmde theimageBy isfirst pa-
titionedinto anumnber of dices B{B’--- Bi® by sampling andeach
diceis encodel in the same bit-plane-by-bit-plane fashion usng a
bit-plane extractor and a binay LDPC encode. The genemated
syndrone bits of these dices are tranamitted progressvely. Snce
spectral corrdation etimation & the decode requires basic in-
formation of B, some satistics of thefirst dice are catulated and
trangmitted to the decodea. At the decode, al sicesare decodd
successvely garting from the first diceB; . With the knowledge
of B}, denoting the first dice of the aljacent band By; decoded
previoudy and the satistics of B} transmitted from the encode, a
linear predictor is estimated and u®d to geneate sde information
of B}, denoted by SI; . B; isthen decoded usng an LDPC decod-
er by combining SI; with the received syndrome bits. Different
from B , other dices {B, |2<1<16} are decoded in squence
with dde information acquired in a distinct way because of the
availability of B;B?---B*. First, the local spectal carelaion is
ceptured and usd to generate side information of B, by means of
an adaptive region-based praliction algorithm to exploit nonsa-
tionay spectral corrdation. Afterwards the gatistic of correlated
noise is estimated by context modding o exploit resdud corrda-
tion. The decoding peformance of these dices is improved grad-
udly by capturing nmore accurae spectral corrdation from in-
creasng dlices After dl slices are decoded, they are regroupel to
losslesdy recondruct the origind image.

Thefollowing gives the verbose descriptionsof detailed geps

The parition of B by sampling is performed in ths fashion: By is
divided into 4x4 size bbdks, eachof which is labded as illu-
strated in Figure 2. Then all pixels labded by |, one pixel from
each block, ae groupel togeher to form the M slice
B, (1=1,2,...,16).These dicesare appopriately ordaed such tha
the sub-image recongructed from BiB?---B is a subsampled
version of he origind image and is expected to beable to charac-
terize he gpectral corrdation of the whole image

Bit-planes of eachdlice ae extacted and encoded indgpendently
usng abinary LDPC encode, generating syndrore bits s=xH,
where H is a sparse parity check matrix and x is a bit-plane The
acamulated syndrone bits are stored in a buffe and ransmitted
increasingly upon reuest. The tranamission starts from the first
dice and repeats for each dice from the mog significant bit-plane
(MSBP) to theleast significant bit-plane (LSBP).

The four omponents of the enode are al lightweightin compu-
tationd complexity. Firstly, sampling and &tracting bi-planes
involves no mmputation. Seacndly, LDPC encoding an beim-
plemented by energy effi cient modulus 2 additionsin linear com-
plexity because of the sparsenessof H. Thirdly, statistics calcula-
tion leads to only relatively small increase in encode complexity
since only thefirst slices of two consautive bands are involved.
Therefore, the propogd scheme indeed provides a very low com-
plexity encode.
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Figure 2: Block labeling

B, is decoded first. Side information ofB; is generated by em-
ploying a1*-orde linear modd:

Sk=aBiy Ay @

where o; and g; chaacteizing the spectral corrdation of B; and
B, are obained by Leas-Squae (LS) techniqueto minimize the
mean gquaed praliction erors (MSFE):

E[BiBLl] - B aj - E 3;1—1
E(B, )1-HB ] EB] )
Bi = EIB] a,HB]

where E[] represns the expetaton. Except E[B!], B B ]
tha are tranamitted from the enodea, al other calculations n-
volved in praictor estimation given by (2) are carried outat the
decode. Sl isthen combined with the received syndrome bits to
perform LDPC decoding unde the aumpion that the prediction
errorsare Laplacedistributed.

1 _
ay =

Notice hat this scheme uses only onepredictor defined by (1) and
only ore bard to predct the first dicein order to avoid additional
heackr informaton ard camnputation at the encader. Howewer, a
sinde predctor is likely inadegiate o cope with the atially vary-
ing characterstics of multispectal data, ard catse degradaion of
the canpression performarce forthe first dice.

Unlike te first dice, other dicesare decaled more eficiertly by
mears of sophsticaied specral decarelaion method. Oice he
first dice & decaled the decaler ohtains a low-resolution image.
By accesing the low-reolution image, the decode is able to
estimate the local spectral carelaion of the arrent band and sev-
eral previoudy decodel bandgo gererate the side information for
decding the rext dice. As one nore dice is decoded, a highe-
relution layer is then recanstructed ard used to acqlire nore
accunte Pectral corelaion and higher quéity side information
for decoding he subsequent dice This processis iterated until the
whole image is losslesdy recondructed. Detais of the sde infor-
mation gererafion algorithm for slices{B, | 2< 1< 16 will be ds-
cussel in Secion 3.

Eadc dice is decoded in a dmilar way uing an LDPC decode
after the mrresponding dde information is produed. Bit-planes
of eachdlice are demdad successvely garting from MSBP to
LSBP, even thoughthey are encoded indgrendently. When de-
coding the less significant bit-planes, the previoudy decodel
more signifi cant bit-planes are used as secnday sde information.
For the ™ bit-plane of the "™ slice, the pogerior probaility of the
n™ bit can becomputed by:

PX,=DISl) X BBy, ISl,). be{og ©)
i€ b

where x, is the ™ bit of the arrent bit-plane, B, , is the ™ pixel
of thel" dlice, Sl , isthe sde informaton o B, ,, T,aeaset of



values who= j-1 moresignifi cant bits are previoudy decode, the ™
bt is b and te less dgnificant bits ae uncertan,
and p(B, , | Sl ,) relatesthe orrdation beween B, and S|, ,,
which is wsually asumedto be aLaplace distribution.

For ead bit-plane the decode attempts to peform decoding
upon receiving a subset of syndrone bits. If it fails, additiond
syndrone bits are requested from the enoder buffe through
feedback. The proaess of request and desoding s repeated until
the decoding & succesdul [10]. The decode, combined with feed-
back, provides rae flexibility for each bit-plane, which is esertial
in adgpting to he nondationay characteristic of multispectal im-
ages. The esimation of such characterigtic is diffi cuit and expensve
to track atthe enmde. The reseach on rate dlocation a encoder
when feedback is unavail able remains as our future work.

There are two modes for incremental decoding of heimage res-
lution and predsion. The relution modeyields progressve spa-
tial relution @& more dices are decodal. The precision mode
succesively increa®s pixel accuacy of the decoding slice as
more bit-planes are decod#g By reolution node the syndrome
bits are trangmitted in such an orde that dl bit-planes of the low-
estreolution sice ae first decoded, followed by all bit-planes of
the next highe-reslution dice untl all slices are demdd to
recover the origind image in a lossless fashion. For eachdlice,
pixels are gradudly refined to full precision in the orde of in-
creasing significance. Such succesive recanstruction d image
adds desirable features to the mdec to provde the capability for
image browsing and progresve tranamisson, aswell asnaurd
prioritizetion for layered proedion schemes. In addition, with the
incementl dicesavailalle at the decaler, the acgired spectal
correlaion canbe refined gradudly and thusthe decoding pefor-
marce i erharced that is, the compresson peformance of DSC
bendits from such successve decoding.

3. SIDE INFORMATION GENERATION

Since multispectral images are captured by obsrving the same
area of the erth wrface in different spectral intervals, the same
objed appears condstently in dl bands that is, pixels of the same
objed exhibit smilar spectral dependency whereas different ob-
jeds probaly have distinct spectral degpendencies. Thus the op-
timal prediction can be acquired usng aset of pralictors, each of
which chaacteizes one type of spectral dependency. To distin-
guish pixels with dmilar or different spectral corrdation, the im-
agecan befirst segmented into anunber of statisticdly homoge-
neous regions Pixels in the same region ae assumed to exhibit
similar spectral dependency.

3.1 Image segmentation

Although he arrent band is unavail able a the decode, segmen-
tation can be implemented on te previoudy decoded bandssnce
the dructures of multispectral bands are assumed to be highly
corrdated. The objedive of ssgmentation is to Sngle out regions
with pixels of each region hasing smilar spectral corrdation.
Therefore, smilarity measurement of regions should depend not
only on he spatial datistic butaso on he spectral features. In our
reseach, theimageis initially segmergd by a k-meansalgorithm
[11] usng avector panning the spectral dimenson, denoted by
v ={Bk,iln|i 1 m}: as the feature of the n™ pixel. This cluster-

n
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ing dgorithm results in ove-segmentation with a large number of
small regionsand even isolated poins sine spdial correlation is
not conddered. To aquire texturd regions a MRF modd over
region adjacency grgph (RAG) of the prdiminary segmented
regionsis defined and over-segmented regions are gppropritely
merged to ninimize the defined energy function [12]. Different
from the onventiond region-based entropy coding shemes [13],
there is no need to ranamit the segmentation mep dnce the seg-
mentton is implemened at the decode. Therefore, the image
can be daboraely segmented into a nunmber of relatively small
and nodeate regionssuch tha eachregion exhibits homogeneous
statistics.

3.2 Adaptive Region-based Prediction

For the " dlice B, (1=2,3,...16), the side information isgeneated
by aset of linear predictors representing the local spectral correa-
tion of he arrent band and anumber of previoudy decoded
bands Based onthe knowledge of I-1 dices of the arrent band
and m previous bands {B, ; |i =1,2;-- m m<k} tha have been
decodd, the spaialy varying ectal corelaionis aptured. To
better adept to the nonsttionay chaacteristics of multispectral
images, a paricular predictor is adgtively egimated for each
pixel of BL by learning gectral corrdation from neighborng
pixels. Denote B, , the n™ pixel of B, and (v, h,) the correspond-
ing coordinate. Define a 2D neghborhood for Bll<.n by
Ly={(v.h)|lv v| wlh<h| w}. For each pixel B, , a group
of ndghboring pixels tha have aready been decoded @e selecied
as follows and u®d to edimate thelocal spectral correlation:

1) Pixels bdonging to he same region with B, are seleced
with top-priority. Denote the nunmber of the seleded pixels
¢ . Neighborihg decoded pixels in the same region ae
picked garting from the nesreg oneuntl ¢’'=c, where cis a
predefined value representing the rumber of pixels that are
expecied to be sekced For some gnall regons, there ae
very few or even no deoda pixels, i.e, c'<c. That is,
neighborng deoded pixels in the sane regon with B, are
not enough b represent the local statistic of B, , . If so, go ©
step 2).

2)  Neighboing pixels with regon lakels different from B,  are
used as secandary cardidate. The difference between the
neighborng pixel B, ,, a postion (v h) and B, is om-
puted by

2

d :g( le—i,n Bk—i,v,h)_ (4)

where (v, h) e L,,. If disless than a prese threshold, the pix-
el B, is seleced If there tll exists ¢'<c after al pixels
inL, are visited, go D dep 3).

3) Other decoded pixels in L, are seécied without any con-
straint unil ¢'=c.

The eligible pixels are visited in anincreasng orde of the atial

distance fromB| , in dl the three above steps Snce the selecied

pixels are likely inadejuae © edimate anm™orde predictor, m
1%“orde predictors are adopied:

Slllfin):ak—i,nBlL—in Beiin #E1L2--m (5)



where «,;,, f, represent the spectral corrdation of he arrrent
band B, and the previousband B, ; (i=1.2,...m) & the postion of
(vn, hy). The coéficient of each preictor ae catulatedusng the
selecied pixels by means of LS agorithm o yield minimum
MSFE, denoted by mspg . . B, is then prelicted & the
weighted sum of the outputof mpredictors

S|l|<,n = guL—i,nSIIL(in) (6)
i=1 '
where
1

U= (7)
m n'\Spéfi,n
X1
j=1 rTBp‘ﬁfj,n

This region-based prediction algorithm captures the local spectral
features by adudly exploiting bot spectral and spatial statistics.
Thus it is quite €ffi cient for multispectral data decorrdation.

3.3 Correated Noise Statistic Estimation

Although t is assuned to geneate a memoryless version of pre-
diction erors by peforming daa decorrdation, the prediction
errors (also caled corrdated nose in DSC) dill exhibit residud
corrdation. To exploit this chaacteristic, context modding is
caried outto patitionthe noise into several Satisticaly hormoge-
neous signds. Since noise values are unknown as the origind
imageis unavail able, the mnitext of each pixel B, iscomputed as
the MSFE of the seleded néghboring pixels:

Ctxil(.n = g“luL—i,nmspd(—i,n (8)

The noise is then dassified into anunmber of classes by partition-
ing the histogran of the ontext. As a onsquence, muliple
modds, each following aLaplacedistribution butwith different
variance, will better approximate te spaially varying statistics,
and thusimprovethe decoding peformance.

4. EXPERIMENTAL RESULTS

The propoed scheme has been implemented on ®veral Landst

Thematic Mappea (TM) images, with 256256 piels, 8 bits/pixel

and 3$x bands(the sixth band was omitted because of its poor
reolution and limited sectral corrdation). Figure 3 sows the
fifth band of wo test daa sets. The first onerepresents an area
near Lisbon and the second onerepresents an aea in the south-

west of Janga, China To acheve opimal decorrdation, the
bands sequence is rearranged to meximize the aveage cross

corrdation beéween any couple of coneautive bands The opt-

mum orderng for TM images was aaquired offline to be
1>22>3->7-2>5->4 [5]. Asauming tha the first band is available
at the decode, the other bands are compressed by the proposd

DSC codes. All previoudy decoded bands(mek-1) ae used to

predict the airrent band. The LDPC codeis regular with degree 3
and length 4096bits so & to encode a bit-plane of eachslice as
onecode

4.1 Compression Results

The variance of prediction arors are reported in Table 1 and Ta-
ble 2, where o represents the MSPE of the " slice produed by
our region-based pradiction dgorithm and ¢ represents the MSFE
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of the whole image produed by the classfied 3-D pradiction
algorithm propogd in [6] with 12 prelictors and 22%orde 3-D
causal prediction. The nunber of sleded ndéghboring pixels cis
set to bethe number of decoded pixelsin aL,, neghborhood wit
w=2 for dices B (I <4) and w=1 for dices B, (l > 4) asuuming
that al relative pixels are in a honogeneous region. For actud
neighboring pixels seledion, wis set to be5 to guaantee a high
probaility tha there are enough deoded pixels with the same
labd in the L,, ndghborhood As obsrved from Table 1 and Ta-
ble 2, 02 dmos diminish monobnousy with repect to the in-
crea® ofl. This indicates that more accuate pectral corelation
is acquired asmore data are avdlable. Compaing with the class-
fied 3-D prediction agorithm, the proposd praliction dgorithm
produes poore reailts for dices B, (1<4 for TM-Lisbon, <8
for TM-Jiangal) because the dda used to estimate the spedral
corrdation ae too spase and indude no decoding pixels. How-
eva, the prediction preision is improved for slices B, (1>4 for
TM-Lisbon, | >8 for TM-Jiangau) since with enough déa avdla-
ble, the region-based prediction dgorithm better adgpts to the
spatially varying characteristic of multispectral daa, which out-
weighsthe dravback in thelad of the decoding piels.

The bit-rates pe pixel are reported in Table 3 and Table 4. The
performance of the propoed scheme is compared with tha of the
state-of-he-art lossless compresson tedniques. The lossless
JPEG dandad [2] is seleced as a typical 2-D compresson
scheme with low enmding mmplexity. The 3-D differential pulse
codemodulation (DRCM) based scheme propogd in [6], the best
performance scheme to our knowedge is used as the benchmark
for peformance evduaion. As shown in Table 3 and Table 4, the
DSC scheme dgnificantly outpeforms the lossless JPEG codec
by 0.7-1.6 bits per pixel (bpp). Compaed with the 3-D DRCM
based scheme, equivalent and even lower bit-rates are obtained
for TM-Lishonwhile a loss of about0.2 bpp $ observed for TM-
Jianga. The compresgon dficiency is dgnificantly affected by
the prediction peformance, which can be obsrved from the
tables. Better prediction peformance togeher with much less
header information cntributes to the improved compresson dfi-
ciency for some bandsof TM-Lisbon.

The propo®d region-based praliction dgorithm is different in
three apects with regect to the clasified 3-D prediction dgo-
rithm propo=d in [6]. First, the region-based prediction dgorithm
can bdter adgpt to the nonsttionay chaacteristic of the image
than the block-based prediction dgorithm adopied in [6]. There-
fore, the propo®d <cheme can improve the prediction pefor-
mance sgnificantly for images with wesker sationarty, such &
TM-Lisbon. Semnd, having onl parial accessto the image our
prediction dgorithm is based on he sumpion tha pixelsin the
same region retain similar spectra dependency. Hence, the
schemeis able to perfform well in leaning the local spectral core-
lation from neghboring pixels for TM-Lisbon, mosly conssting
of smooth regions but not so well for TM- Jiangau, mainly con-
sisting of texture regions which is probaly less consgstent with
the consumpion. Third, no gaia prediction is adoped in our
schame.

4.2 Encoding complexity

The motivation of the propogd DSC sheme is to design alow
complexity enode. To illugrate the enoda complexity reduc-
tion for the propo®d scheme, Tabé 5 depicts the enoding ime



per band, aveaged over he test daa sets of 100 runs usng dif-
ferent enoda's run on acomputer with aPentium IV 3GHz CPU.
As expected, the DSC encode reveals remarkable complexity
redudion ompared with 3-D DPCM [6] and even weighslighter
than lossless JPEG [2]. Therefore, the propogd DSC schame
indeed reaults in a lightweight enode with high cmpresdon
effi ciency suitable for onboad gpplicaions

5. CONCLUSION

In this paper, we have described anovd DSC scheme for multis-
pectral images in orde to design alightweight yet efficient en-
code by moving dda decorrdation opeations to the decode.
The image is compresed progresvely so tha the decode can
have patial acces to the image initially, from which the local
spectral corrdation is leaned and ued to generate the side infor-
mation for deoding he next resolution level. As more dicesare
decodd, highe-relution image is recongructed and nore accu-
rate spectral corrdation is acquired, resulting in gradudly im-
proved decoding peformance. The major innovdion lies in the
design of algptive region-based prediction dgorithm t capture
both gaia and pectra varying characteristic of muttispectral
images. The eperimental results demondrate that the proposd
scheme yields exallent compresson peformance, and is compet-
itive with the best dgorithms avalable in literature with very low
complexity encode suitable for onboad proessng in nultispec-
tral image aquisition.

(@) TM-Lisbon

(b) TM-Jiangsu
Figure 3: Thefifth band of the test images
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Table 1. Variance of prediction errorsof TM-Lisbon

c Band2 | Band3 | Band7 | Band5 | Band4

0, 5.38 | 39.62| 108.34 209.98 252.08
0 4 170 | 803 | 17.12| 34.5% 59.15
0 4 167 | 6.92| 11.94 2543 36.74
04 4 144 | 611 | 11.86 21.76 33.11
05 4 059 | 296 | 4.33| 7.26 12.1p
06> 4 055 | 210 | 3.17| 593 1171
o 4 0.52 1.67 | 3.17| 576/ 10.92
g 4 0.54 171 | 263| 565  8.56
0o 4 0.44 1.86 | 265| 4.41 6.67
o | 5 0.42 1.32 1.86| 3.90| 6.09
o’ | 5 0.44 125 | 208| 417 6.36
o | 6 0.40 123 | 214| 420 6.08
o | 6 0.42 143 | 217| 3.74/ 591
ol |7 0.39 1.09 | 210| 3.91| 5.79
ot |7 0.42 114 | 205| 4.02| 5.56
o | 8 0.39 1.17 1.97| 3.86| 5.52
o? 072 | 213 | 491| 940/ 111y

Table 2. Variance of prediction errorsof TM-Jiangsu

c Band2 | Band3 | Band7 | Band5 | Band4
012 1.90 7.92 35.54| 34.83 18.28
0,2 4 1.89 6.10 19.29 18.31 12.24
032 4 1.72 5.52 16.97| 16.51 10.12
042 4 1.64 5.44 16.12 16.49 11.62
052 4 1.31 4.08 11.53 12.5% 8.0%
062 4 1.32 4.12 11.32 12.79 8.04
o7 4 1.36 4.19 10.93 12.23 7.98
052 4 1.35 4.05 10.59 11.86 7.16
g2 4 0.91 2.44 6.23 8.27 4.41
0162 5 0.89 2.32 6.15 8.13 4.35
o112 5 0.83 2.27 6.12 8.08 4.14
0152 6 0.87 2.25 6.13 8.10 4.25
018 6 0.84 2.18 6.20 8.13 4.04
o1 7 0.86 2.21 6.14 8.04 4.11
0152 7 0.81 2.12 6.12 7.92 4.14
016 8 0.83 2.08 6.07 7.83 4.07
o 0.95 2.44 6.51 8.34 4.53




Table 3. Bit-rates per pixel of TM-Lisbon (bpp)

Codec L ossless JPEG DSC 3-D DPCM
Band2 3.50 1.84 1.75
Band3 4.04 2.63 2.58
Band7 3.93 2.78 2.82
Band5 4.43 3.14 3.25
Band4 4.04 3.23 3.33

Table 4. Bit-rates per pixel of TM-Jiangsu (bpp)

Codec L ossless JPEG DSC 3-D DPCM
Band2 3.60 2.55 2.36
Band3 4.39 3.38 3.12
Band7 4.76 4.01 3.76
Band5 5.48 4.21 3.99
Band4 4.75 3.76 3.52

Table 5. Average encoding time per band (ms)

Encoder L ossless JPEG DSC
Time 62 31

3-D DPCM
34476
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