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ABSTRACT
This paper addresses the problem of distributed image cod-
ing in camera neworks. The correlation between multiple
images of a scene captured from different viewpoints can be
effiiciently modeled by local geometric transforms of promi-
nent images features. Such features can be efficiently rep-
resented by sparse approximation algorithms using geomet-
ric dictionaries of various waveforms, called atoms. When
the dictionaries are built on geometrical transformations of
some generating functions, the features in different images
can be paired with simple local geometrical transforms, such
as scaling, rotation or translations. The construction of the
dictionary however represents a trade-off between approxi-
mation performance that generally improves with the size of
the dictionary, and cost for coding the atoms indexes. We
propose a learning algorithm for the construction of dictio-
naries adapted to stereo omnidirectional images. The algo-
rithm is based on a maximum likelihood solution that results
in atoms adapted to both image approximation and stereo
matching. We then use the learned dictionary in a Wyner-
Ziv multi-view image coder built on a geometrical correla-
tion model. The experimental results show that the learned
dictionary improves the rate-distortion performance of the
Wyner-Ziv coder at low bit rates compared to a baseline
parametric dictionary.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory—Data com-

paction and compression

Keywords
Distributed source coding, sparse approximations, multi-
view images

1. INTRODUCTION
Multi-view images are captured by a network of cameras

distributed in a 3D scene. Compared to conventional 2D
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images, multi-view images offer a richer description of the
captured scene because they convey both the texture and the
3D scene information. Camera networks have found usage in
applications such as surveillance, 3D television and robotics.

One of the main challenges in multi-view imaging has been
to come up with an efficient way to compress these images by
exploiting the multi-view correlation, without communica-
tion between cameras. Distributed source coding (DSC) can
offer here an elegant way to solve this problem. Namely, it is
possible to exploit the correlation between sources without
communication between encoders, as long as the decoding is
performed jointly [1, 2]. Distributed multi-view coding relies
on the knowledge of an appropriate multi-view correlation
model, whose estimation represents a difficult and widely
investigated problem. Simple block-translational models, as
the ones used for video compression, are suboptimal in the
multi-view case because images from different cameras are
rather correlated by more diverse local transforms of objects
in the scene, such as translation, scaling or rotation.

We have previously proposed a geometry-based correla-
tion model for multi-view images that relates image features
in different views by local transforms, such as translations,
rotations or scaling [3]. We have proposed to capture these
features by sparse image expansion with geometric atoms
taken from a redundant dictionary. The correlation model is
applied to the design of a DSC method with side information
for multi-view omnidirectional images mapped to spherical
images. The Wyner-Ziv coder is designed by partitioning
the dictionary into cosets based on atom dissimilarity. The
joint decoder uses the proposed correlation model to select
the best candidate atom within the coset and to find cor-
responding features in two views. Since the disparity infor-
mation can be estimated from atom transforms, the decoder
transforms the reference image using the disparity in order
to obtain an estimation of the Wyner-Ziv image and im-
prove the final decoded image. The DSC scheme has been
extended to handle a certain number of occlusions [4]. How-
ever, the choice of the dictionary in [3, 4] is empirical and
not optimized for multi-view image representation.

This paper proposes to learn stereo dictionaries and to use
them in distributed multi-view coding. Adapting the dictio-
nary to a specific task or imposing a proper structure in the
dictionary can yield significant performance improvement.
We design stereo dictionaries that have the optimal prop-
erties for both image approximation and scene geometry
estimation. We first propose a maximum likelihood (ML)
method for learning stereo dictionaries, where the epipo-
lar geometry is included in the probabilistic modeling. The
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learned atoms present high anisotropy characteristics and
substantially differ from atoms in single view learning. We
then use the learned dictionaries in the Wyner-Ziv coding
method proposed in [3]. The experimental results show that
the learned dictionary offers better estimation of the Wyner-
Ziv image. This leads to improved rate-distortion perfor-
mance of the Wyner-Ziv coder at low bit rates.

We first overview the related work on multi-view DSC
coding in Sec. 2. The Wyner-Ziv coder based on overcom-
plete geometric image representation [3] is briefly described
in Sec. 3. Sec. 4 introduces the new dictionary learning
method for stereo image representation. Experimental re-
sults for learning and distributed coding with the learned
dictionary are presented in Sec. 5. Sec. 6 concludes the pa-
per.

2. RELATED WORK
The application of DSC principles for multi-view coding is

generally based on the disparity correlation between views,
defined by the epipolar constraint. One part of the solu-
tions proposed in the literature are built on coding with
side information, which is a special case of DSC. For exam-
ple, cameras can be divided into conventional cameras that
perform independent image coding, and Wyner-Ziv cameras
that use DSC coding [5]. The Wyner-Ziv images are de-
coded using the interpolated image obtained by disparity
compensation from independent views. Wyner-Ziv coding
of stereo images with unsupervised learning of the dispar-
ity between two stereo views has been proposed by Chen
et al. [6]. This scheme requires a feedback channel from
the decoder to the encoder to ensure enough information
for disparity learning. Other solutions employ symmetric
distributed source coding that equally balances the bit rate
among different cameras. Gehrig and Dragotti have pro-
posed to model the multi-view correlation by relating the
locations of discontinuities in the polynomial representation
of images [7]. Their scheme considers translations as correla-
tion in multiple views, corresponding to the shifts of the dis-
continuities of the piecewise polynomials. A symmetric DSC
scheme for coding of multi-view omnidirectional image pro-
posed by Thirumalai et al. [8] is achieved using source parti-
tioning. Images are transformed using a spherical Laplacian
pyramid and progressively encoded with SPIHT. However,
the Laplacian Pyramid is very redundant and cannot reach
high compression gains.

Disparity-based solutions have been proposed also for dis-
tributed multi-view video compression. Several works build
on the advantages of distributed video and multi-view cod-
ing for exploiting both temporal and inter-view correlation [9,
10, 11]. They take different approaches for modeling the
correlation among views, like the disparity-based model [9],
affine model [11], or homography-based model [10]. Another
direction for the distributed multi-view video compression
is based on classical motion compensated video encoding at
each camera, while the inter-view correlation is exploited in
a distributed manner [12, 13]. The study on the influence
of multiple side information for distributed video coding has
been presented by Maugey et al. [14]. They show that mul-
tiple side information can increase the overall performance,
but at a price of higher decoding complexity.

The work presented in this paper differs from most of the
previous work since it exploits a more diverse types of geo-
metric correlation between multi-view images, such as trans-

lations, rotations and anisotropic scaling. Moreover, the dis-
parity estimation of scene geometry can be performed using
a single reference frame that has been highly compressed.
Finally, a very important property of the proposed method
is that it does not require a special camera arrangement in a
camera network, since the geometric correlation model can
cope with various local transforms. This makes the applica-
bility of our method more generic than that of distributed
coding methods designed for camera arrays.

3. GEOMETRIC WYNER-ZIV CODER

3.1 Correlation model by sparse approxima-
tions

The correlation model between multi-view images intro-
duced in [3] relates image components that approximate the
same 3D object in different views, by local transforms that
include translation, rotation and anisotropic scaling. Given
a redundant dictionary of atoms D = {φk}, k = 1, ..., N , in
the Hilbert space H, we say that the image y has a sparse

representation in D if it can be approximated by a linear
combination of a small number of vectors from D. There-
fore, sparse approximations of two1 multi-view images can
be expressed as yL = ΦIL

a + ηL and yR = ΦIR
b + ηR,

where IL,R labels the set of atoms {φk}k∈IL,R
participating

in the sparse representation, ΦIL,R
is a matrix composed of

atoms φk as columns, and ηL,R represents the approxima-
tion error. Since yL and yR capture the same 3D scene, their
sparse approximations over the sets of atoms IL and IR are
also correlated. Our geometric correlation model makes two
main assumptions in order to relate the atoms in IL and IR:
1. The most prominent (energetic) features in a 3D scene

are present in the sparse approximations of both images,
with high probability. The projections of these features
in images yL and yR are represented as subsets of atoms
indexed by JL ∈ IL and JR ∈ IR respectively.

2. These atoms are correlated by local geometric transforms.
We denote by F (φ) the transform of an atom φ between
two image decompositions that results from the change
of viewpoint.

Under these assumptions the correlation between the images
is modeled as a set of transforms Fi between corresponding
atoms in sets indexed by JL and JR. The approximation
of the image yR can be rewritten as the sum of the contri-
butions of transformed atoms, remaining atoms in IR, and
noise ηR:

yR =
X

i∈JL

biFi(φi) +
X

k∈IR\JR

bkφk + ηR. (1)

The model from Eq. (1) is applied in [3] to atoms from the
sparse decompositions of omnidirectional multi-view images
mapped on the sphere. The approach is based on the use of
a parametric redundant dictionary of atoms that are derived
from a single waveform that undergoes rotation, translation
and scaling. More formally, given a generating function g
defined2 in H, the dictionary D = {φk} = {gγ}γ∈Γ is con-
structed by changing the atom index γ ∈ Γ that defines ro-
tation (ψ), translation (τ, ν) and scaling parameters (α, β)
applied to the generating function g. This is equivalent to

1Two images are taken for the sake of clarity, but the cor-
relation model can be generalized to any number of images.
2In the case of spherical images g is defined on the 2-sphere
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applying a unitary operator U(γ) to the generating function
g, i.e., gγ = U(γ)g. The main property of the paramet-
ric dictionary is that the transformation of an atom by a
combination of translation, rotation and anisotropic scal-
ing transforms results in another atom in the same dictio-
nary. Let {gγ}γ∈Γ and {hγ}γ∈Γ respectively denote the set
of functions used for the expansions of images yL and yR.
When the parametric dictionary is used for both images,
the transform of the atom gγi

in image yL to the atom hγj

in image yR reduces to a transform of its parameters, i.e.,
hγj

= F (gγi
) = U(γ′)gγi

= U(γ′ ◦ γi)g. Due to the geomet-
ric constraints that exist in multi-view images, only a subset
of all local transforms between {gγ} and {hγ} are feasible.
This subset can be defined by identifying two constraints
between corresponding atoms, namely shape similarity con-
straint and epipolar constraint.

First, we assume that the change of viewpoint on a 3D
object results in a limited difference between shapes of cor-
responding atoms since they represent the same object in
the scene. From the set of atom parameters γ, the last three
parameters (ψ,α, β) describe the atom shape (its rotation
and scaling), and therefore they are taken into account for
the shape similarity constraint. We measure the similarity or
coherence of atoms by the inner product µ(i, j) = |〈gγi

, hγj
〉|

between centered atoms (at the same position (τ, ν)), and
we impose a minimal coherence between candidate atoms,
i.e., µ(i, j) > s. This defines a set of atoms hγj

in yR that
are possible transformed versions of the atom gγi

is denoted
as the shape candidates set. It is defined by the set of atoms
indexes Γµ

i ⊂ Γ, with

Γµ
i = {γj |hγj

= U(γ′)gγi
, µ(i, j) > s}. (2)

Second, pairs of atoms that correspond to the same 3D
points have to satisfy epipolar geometry constraints, which
represent one of the fundamental relations in multi-view
analysis. The decision on the epipolar matching of two
corresponding atoms is taken when their epipolar distance
dEA(gγi

, hγj
) is smaller than a certain threshold κ (for more

details on the epipolar atom distance we refer the reader
to [3]). The set of possible candidate atoms in yR, that re-
spect epipolar constraints with the atom gγi

in yL, called the
epipolar candidates set, is then defined as the set of indexes
ΓE

i ⊂ Γ, with:

ΓE
i = {γj |hγj

= U(γ′)gγi
, dEA(gγi

, hγj
) < κ}. (3)

Finally, we combine the epipolar and shape similarity con-
straints to define the set of possible parameters of the trans-
formed atom in yR as Γi = ΓE

i ∩ ΓS
i .

3.2 Wyner-Ziv coding
Based on the above geometric correlation model, a Wyner-

Ziv coding scheme for multi-view omnidirectional images has
been proposed in [3]. For the sake of completeness, we briefly
overview here this scheme, shown in Fig. 1. The Wyner-Ziv
coder is based on coding with side information, where image
yL is independently encoded, while the Wyner-Ziv image yR

is encoded by coset coding of atom indexes and quantization
of their respective coefficients. The approach is based on the
observation that when atom hγj

in the Wyner-Ziv image yR

has its corresponding atom gγi
in the reference image yL,

then γj belongs to the subset Γi = ΓE
i ∩ ΓS

i . Since Γi is
usually much smaller than Γ, the Wyner-Ziv encoder does
not need to send the whole γj , but can transmit only the
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Figure 1: Occlusion-resilient Wyner-Ziv coder

information that is necessary to identify the correct atom in
the transform candidate set given by Γi. This is achieved by
coset coding based on partitioning of Γ into distinct cosets
that contain dissimilar atoms with respect to their position
(τ, ν) and shape (ψ,α, β). Two types of cosets were con-
structed: Shape cosets and Position cosets. The encoder
eventually sends for each atom only the indexes of the cor-
responding cosets (i.e., kn and ln in Fig. 1). We design
Shape cosets by distributing all atoms whose parameters
belong to Γµ

i , for all i, into different cosets. The Position
cosets are designed as VQ cosets [3], which are constructed
by 2-dimensional interleaved uniform quantization of atom
positions (τ, ν) on a rectangular lattice.

The decoder matches corresponding atoms in the reference
image and atoms within the cosets of the Wyner-Ziv image
decomposition using the correlation model described earlier.
The atom pairing is facilitated by the use of quantized co-
efficients of atoms, which are sent directly. Each identified
atom pair contains the information about the local trans-
form between the reference and Wyner-Ziv image, which
is exploited by the decoder to update the disparity map be-
tween them. The transformation of the reference image with
respect to the disparity map provides an approximation of
the Wyner-Ziv image that is used as a side information for
decoding the atoms without a correspondence in the refer-
ence image. These atoms are decoded based on the minimal
mean square error between the currently decoded image and
the side information. Finally, the WZ image reconstruction
ŷR is obtained as a linear combination of the decoded image,
reconstructed by decoded atoms from ΦIR

, and the projec-
tion of the transformed reference image ytr to the orthogonal
complement of ΦIR

[3].

4. STEREO DICTIONARY LEARNING
The described Wyner-Ziv coding method has been imple-

mented in [3] using the overcomplete parametric dictionary
designed by uniform sampling of the transform parameters.
Namely, the translations and rotations have been uniformly
sampled on a linear scale, while the scaling parameters have
been sampled uniformly on a logarithmic scale. Even if this
choice has shown to result in dictionaries with good approx-
imation properties for images [15], it is certainly not optimal
especially for multi-view image representation with the pro-
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posed geometric correlation model.
We therefore propose a stereo dictionary learning method,

which is built upon the ML dictionary learning for monoc-
ular images introduced by Olshausen and Field [16]. The
stereo image case is considered, where the stereo images
follow the model in Eq. (1) and have the same number of
sparse components related by local transforms. We con-
sider a slightly more generic setting where the dictionaries
Φ = {φk},Ψ = {ψk} used to represent stereo images yL

and yR, respectively, are different. The maximum likeli-
hood learning of overcomplete dictionaries Φ,Ψ maximizes
the probability that stereo images captured by two cameras
with a relative pose (R,T) are well represented by a set of
atom pairs related by geometric transforms, under the spar-
sity prior. In other words, we want to simultaneously learn
the dictionaries Φ and Ψ that well approximate the stereo
images yL and yR, given the sparse stereo image model in
Eq. (1). Moreover, we want to maximize the probability that
the stereo images given by this model satisfy the disparity
relation, i.e., that the epipolar constraint between all cor-
responding points on yL and yR is satisfied. Maximization
of the disparity relations is crucial for learning dictionaries
that have atoms with good epipolar matching properties,
which is important in applications involving multi-view fea-
ture matching.

Formally, we want to solve the following optimization prob-
lem:

(Φ,Ψ)∗ = arg max
Φ,Ψ

〈max
a,b

logP (yL, yR,D = 0|Φ,Ψ)〉, (4)

where D = 0 denotes the event when the epipolar distance
between all corresponding points on yL and yR is equal to
zero (i.e., the epipolar constraint is satisfied). Marginalizing
over a and b we have that:

P (yL, yR, D = 0|Φ,Ψ) =

=

Z Z

P (yL, yR,D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ)dadb. (5)

We first need to define the joint distribution of coeffi-
cients a and b, given dictionaries Φ and Ψ, denoted as
P (a,b|Φ,Ψ). Let us assume that pixels keep their inten-
sity values under the local transforms induced by the view-
point change. This assumption holds in multi-view images
when the scene is assumed to be Lambertian, and when
atom transforms correctly represent the local object trans-
forms. Under this assumption, for a stereo atom pair φl, ψr

linked with a transform Flr the following equality holds (see
Lemma 1 in [17]):

〈yR, ψr〉 =
1√
Jlr

〈yL, φl〉, (6)

where Jlr is the Jacobian of the transform Flr. Using the
sparse image model and Eq. (6) we obtain the following
probabilities:

P (br|al, φl, ψr) = P (al|br, φl, ψr)

=
1

zb
exp

„

− 1

2σ2
b

(br − al√
Jlr

)2
«

, (7)

where zb is the normalization factor and σ2
b is the variance

of the zero-mean Gaussian noise that models the difference
between br and al/

√
Jlr. We further assume that pairs of

coefficients (al, br) are pair-wise independent, which is usu-
ally the case when image decompositions are sparse enough.

Then, the distribution P (a,b|Φ,Ψ) is factorial, i.e.:

P (a,b|Φ,Ψ) =
M
Y

l=1

M
Y

r=1

P (al, br|φl, ψr) =

P (a)P (b)

M
Y

l=1

M
Y

r=1

p

P (br|al, φl, ψr)P (al|br, φl, ψr), (8)

where we assume that priors on coefficients in each image
P (al) and P (br) are independent of the atoms. Although
in reality the distribution of the coefficients would depend
on an arbitrarily chosen dictionary, imposing the indepen-
dence of the coefficients with respect to the dictionary during
learning would actually lead to inferring a dictionary that
gives the same prior distribution of coefficients for all types
of images.

For modeling the priors on coefficients, we assume that the
coefficients al and br are i.i.d. and drawn from a Bernoulli
distribution over the activity of coefficients, where a coeffi-
cient is different from zero with probability p and equal to
zero with probability q. Thus, for p � q the Bernoulli dis-
tribution can well model the prior on the sparse coefficients
a and b. If we take p = 1/(1 + e1/λ), we have:

P (a) =
1

zλ
exp

„

−‖a‖0

λ

«

and P (b) =
1

zλ
exp

„

−‖b‖0

λ

«

,

where ‖ · ‖0 denotes the l0 norm and λ controls the level
of ”sparseness” of coefficients. For sparse vectors a and b,
the probabilities P (a) and P (b) are highly peaked at zero.
Thus, we can approximate the probability P (a,b|Φ,Ψ) by
its value at the maximum, since it is a product of a zero-
mean Gaussian distribution and discrete distributions tightly
peaked at zero. Eq. (5) then becomes:

P (yL, yR,D = 0|Φ,Ψ) ≈ P (yL, yR|a,b,Φ,Ψ) ·
·P (D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ), (9)

where we have used the fact that D = 0 does not bring more
information to yL, yR than Φ,Ψ. To evaluate our likelihood
function, we next need to find the probability that the epipo-
lar distance D is equal to zero given the stereo image model,
i.e., we need to find P (D = 0|a,b,Φ,Ψ). The probability
of epipolar matching for the stereo image pair can be mod-
eled by the product of probabilities of epipolar matching for
pairs of atoms that participate in sparse decompositions of
the left and the right image, i.e., whose coefficients al and
br are different from zero. If the epipolar estimation error is
assumed to be Gaussian with zero mean and variance σ2

D,
we can model the probability P (D = 0|a,b,Φ,Ψ) as:

P (D = 0|a,b,Φ,Ψ) =

1

zD
exp

 

− 1

2σ2
D

M
X

l=1

M
X

r=1

I(al)I(br)DE(φl, ψr)

!

. (10)

where I denotes the indicator function, zD is the normaliza-
tion factor and DE(φl, ψr) is the epipolar distance between
stereo atoms. This distance can be easily evaluated by sum-
ming over the epipolar distances between points paired by
the local transform between the corresponding atoms.

At this point, we have defined all components of the ob-
jective ML function in Eq. (9), except P (yL, yR|a,b,Φ,Ψ).
This probability can be modeled by a Gaussian white noise
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of variance σ2
I :

P (yL, yR|a,b,Φ,Ψ) = P (eL + eR)

=
1

zI
exp

„

− 1

2σ2
I

(‖yL −Φa‖2
2 + ‖yR −Ψb‖2

2)

«

, (11)

where we have used the fact that the sum of two zero-mean
Gaussian random variables is also a zero-mean Gaussian ran-
dom variable, and zI is the normalization factor. We can
now rewrite the ML learning problem in Eq. (4) as the fol-
lowing energy minimization problem:

(Φ,Ψ)∗ = arg min
Φ,Ψ

〈min
a,b

E(a,b,Φ,Ψ)〉, (12)

where E denotes the energy function given as:

E(a,b,Φ,Ψ) =
1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2) +

+
1

2σ2
D

M
X

l=1

M
X

r=1

I(al)I(br)DE(φl, ψr)

+
1

2σ2
b

M
X

l=1

M
X

r=1

(br − al√
Jlr

)2 +
1

2λ
(‖a‖0 + ‖b‖0). (13)

The energy function thus consists of four main summation
terms: 1) the approximation error term; 2) the epipolar con-
straint term; 3) the coefficient similarity term; and 4) the
sparsity term. Unfortunately, the energy function is not
convex, and we can find only the local minimum. We pro-
pose to use the Expectation-Maximization (EM) algorithm,
which alternates between two steps:
1. E step, which minimizes the energy over the coefficients

a and b, while keeping the dictionaries fixed. Coefficients
are found using a modified version of the Matching Pur-
suit (MP) algorithm. It selects the atoms that give the
minimal value of the energy function, and then removes
the contribution of those atoms from the stereo images.
Thus, it selects m atoms for each of the stereo images.

2. M step, which minimizes the energy over the dictionaries
Φ and Ψ, while keeping the coefficients fixed. Given the
coefficients, the energy is a continuous function of Φ and
Ψ, and can be minimized using the conjugate gradient
method.

In the first iteration, the dictionaries are initialized ran-
domly. The following iterations take the fixed values from
the previous iteration. The E step and M steps are itera-
tively repeated until the convergence is achieved. The learn-
ing should be performed from a large set of different multi-
view images with different camera poses.

5. EXPERIMENTAL RESULTS
This section first shows the results of stereo dictionary

learning. We then use the learned dictionary in the Wyner-
Ziv coding scheme described in Section 3.2 and compare
its performance to the Wyner-Ziv coder with the uniformly
sampled dictionary parameters.

5.1 Learning results
Since the scaling parameters are the most important for

stereo matching, while translations and orientations are highly
dependent on the position of the sensors, we choose here to
focus on learning only the scaling parameters of the atoms.
A parametric dictionary can then be constructed by apply-

Table 1: Initial and learned scale parameters for the
left and the right image, for different values of ρ.

Initial dictionary learned dictionary
ρ = 0 ρ = 1

α(L) β(L) α(L) β(L) α(L) β(L)

13.15 5.98 8.61 6.34 10.82 8.68
14.06 7.78 22.19 7.30 16.92 13.72
6.27 10.47 3.40 3.56 3.81 5.05
14.13 14.58 25.88 22.95 26.00 19.73
11.32 14.65 14.52 14.78 5.57 11.25

α(R) β(R) α(R) β(R) α(R) β(R)

6.58 6.42 2.94 2.69 3.58 4.73
14.71 9.22 12.18 5.04 11.72 8.43
14.57 14.16 25.93 20.30 25.57 18.94
9.85 12.92 6.60 6.80 5.70 10.56
13.00 14.59 15.87 16.05 15.08 14.52

Initial scales in Φ Initial scales in Ψ

learned scales in Φ, ρ = 0 learned scales in Ψ, ρ = 0

learned scales in Φ, ρ = 1 learned scales in Ψ, ρ = 1

Figure 2: Subset of atoms in the initial and learned
dictionaries for the left and right images.

ing to the generating function the learned scales and a dis-
cretized set of translations and orientations.

We perform learning of stereo dictionaries for omnidirec-
tional images mapped to spherical images. For representing
spherical images, we use the formulation of a dictionary on
the 2-D unit sphere [3]. The generating function is a Gaus-
sian in one direction and its second derivative in the or-
thogonal direction. We have tested the proposed stereo dic-
tionary learning algorithm on our ”Mede” omnidirectional
multi-view database, which consists of 54 omnidirectional
images of an indoor environment. We have formed 216
pairs of images with different translation T between cam-
eras, while the rotation R is identity.

We have learned five pairs of scaling parameters. The
initial values of scales α(L), β(L), α(R) and β(R) have been
chosen randomly, and they are given in the first two columns
in Table 1. The atoms of the initial scales are shown in the
first row in Fig. 2. The whole dictionary is built from these
atoms by shifting them at all pixel locations and rotating
in four orientations. To see the influence of the part of the
objective function that relies on the multi-view constraint,
we have introduced a factor ρ that multiplies the second and
the third term in the energy function. When ρ = 0 the learn-
ing takes into account only the image approximation term,
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while increasing ρ puts more importance on the multi-view
correlation term. From Fig. 2 we can see that for ρ = 0,
the learned atoms are more elongated along the Gaussian
direction, and more narrow in the direction of the second
derivative of the Gaussian. These results are consistent with
the previous work on dictionary learning for single-view im-
age representation. However, for ρ = 1 we obtain different
results for atoms scales (see Table 1). The atoms become
more elongated along the direction of the Gaussian second
derivative and narrower in the direction of the Gaussian.
In addition, for ρ = 1 the learned scales generally tend to
give smaller atoms than for ρ = 0. Finally, we observe that
the dictionaries for both images are very similar since the
learning strategy is symmetric.

5.2 DSC with the learned dictionary
Since stereo learning results in two dictionaries that are

very similar, we will use the parameters only of the dictio-
nary Φ for sparse approximation of two Lab images shown
in Fig. 3. These are the same images used for evaluation
in [3], for the camera distance of 10 cm. Lab images do not
belong to the multi-view image database used for learning.

The Wyner-Ziv coder with the learned dictionary is es-
sentially the same as the one in [3], but with a different
dictionary used in the Matching Pursuit decomposition of
both images. The learned dictionary is built on a gener-
ating function that is a Gaussian in one direction and the
second derivative of a 2D Gaussian in the orthogonal direc-
tion (i.e., edge-like atoms). The position parameters τ and
ν can take 128 different values, while the rotation param-
eter uses 16 orientations. We have used the learned scales
of Φ, for ρ = 1. The image yL is encoded independently
at 0.21bpp with a PSNR of 30.61dB. The atom parameters
for the expansion of image yR are coded with the proposed
scheme. The number of position cosets is the same as in [3],
while we have used a smaller number of shape cosets (64 in-
stead of 128) since we have a smaller total number of scales.
The coefficients are obtained by projecting the image yR on
the atoms selected by MP, in order to improve the atom
matching process, and they are quantized uniformly.

We have introduced one additional change with respect to
the previous WZ coder. Namely, since the learned dictionary
is built only on edge-like atoms, many atoms in the MP ex-

(a) yL

(b) yR

Figure 3: Original Lab images. The natural omni-
directional images partially cover the sphere due to
the boundaries of the mirror in the omnidirectional
camera. The images are cropped to focus on the
captured part of the scene.
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Figure 4: Rate-distortion performance of the
Wyner-Ziv coding for image yR.

pansion align with the borders of the omnidirectional image
when mapped to a spherical image, due to the mirror bound-
ary. These atoms carry no geometry information, thus we
need to encode them independently. Encoder distinguishes
them from the other atoms when their translation parame-
ter along the θ axis on the sphere corresponds to the mirror
boundary. Therefore, the encoder sends an additional bit
per atom to indicate which atom is encoded by coset coding
and which one is independently encoded. Note that this was
not required in [3] since the dictionary used there included
also the 2D Gaussian atoms, which have been selected in the
beginning of MP. Since they are low-frequency atoms, they
do not align on the mirror boundary.

Fig. 4 shows the rate-distortion (RD) curves for the Wyner-
Ziv coding of image yR, where the dash-dotted line corre-
sponds to the uniformly sampled dictionary [3], and the solid
line corresponds to the learned dictionary. The dashed line
presents the RD performance of independent coding with
MP. We can see that the learned dictionary improves the
DSC performance only at low rates, while in the saturation
zone of WZ coding, it performs the same as uniformly sam-
pled dictionary. This suggests that the learned dictionary
is mostly beneficial for improving the estimation of the WZ
image obtained by disparity mapping from the reference im-
age yL, denoted as ytr. However, learning the dictionary
cannot correct the saturation effect of the proposed coder,
and one has to employ the error resilient solution presented
in [4].

The influence of the learned dictionary on the disparity
compensated estimation of the Wyner-Ziv image (ytr) is
shown in Fig. 5. The ytr image for the case of the uni-
formly sampled dictionary is shown in Fig. 5(a) (denoted as
yU

tr), while for the case of the learned dictionary is shown
in Fig. 5(b) (denoted as ytr). Both images correspond to
the last point on the RD curves in Fig. 4. Figures 5(c) and
(d) show respectively the differences between the images yU

tr

and ytr and the original WZ image yR, where white pixels
correspond to zero. We can see that the learned dictionary
results in a better estimation of the disparity map, which is
especially visible in the center of the image. In this area, the
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(a)yU
tr

(b)ytr

(c)1 − |yR − yU
tr|

(d)1 − |yR − ytr|

Figure 5: Comparison of the estimated WZ image
ytr, for the cases of uniform and learned dictionary.
(a) yU

tr for the case of uniform dictionary, (b) ytr

for the case of learned dictionary, (c) difference be-
tween yU

tr and the original WZ image, (d) difference
between ytr and the original WZ image.

disparity estimation using the uniform dictionary still leaves
small errors, while the atoms from the learned dictionary
correctly recover the disparity. This shows the advantage of
using the learned dictionaries for geometry based disparity
matching between stereo images, since it results in improved
RD performance of the proposed WZ coder.

6. CONCLUSIONS
This paper proposes the use of learned stereo dictionaries

for the Wyner-Ziv multi-view coding. We have presented a
maximum likelihood method for learning overcomplete dic-
tionaries adapted to multi-view image representation. The
learned dictionaries exhibit higher anisotropic atom prop-
erties and differ from the dictionaries used for single-view
image representation. We have applied the learned dictio-
nary to the Wyner-Ziv multi-view image coder previously
proposed in [3]. The experimental results show that the new
dictionary is mostly beneficial for improving the estimation
of the Wyner-Ziv image obtained by disparity mapping from
the reference image. Since this estimated image is used for
the final Wyner-Ziv image reconstruction, the learned dictio-
nary improves the RD performance of the Wyner-Ziv coder
at low bit rates compared to a uniformly sampled dictionary.
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