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ABSTRACT
The compression of natural images and their transmission
over multi-hop wireless networks still presents many chal-
lenges for the researchers and industry. In this paper we
present a new block-based rate-distortion optimization al-
gorithm that can encode efficiently the coefficients of a criti-
cally sampled, non-orthogonal or even redundant transform.
The basic idea is to construct a specialized graph such that
its minimum cut minimizes the energy functional. We pro-
pose to apply this technique for rate-distortion Lagrangian
optimization in block-based subband image coding. The
method yields good compression results compared to the
state-of-art JPEG2000 codec, as well as a general improve-
ment in visual quality.

1. INTRODUCTION
Nowadays, the majority of image-compression algorithms
use wavelet transforms, attempting to exploit all the sig-
nal redundancy that can appear within and across the dif-
ferent subbands of a spatial decomposition. The wavelet
transform has been succesfully used for image representation
[1], due to its energy compaction capacities and compres-
sion efficiency [2]. However, efficiency of a coding scheme
highly depends also on bit allocation. In order to maximize
the compression efficiency, high-complexity subband-based
image-compression schemes, as the state-of-the-art compres-
sion standard, JPEG2000 [1], may be used in wireless net-
works.

In this paper we present a rate-distortion optimization based
on graph cuts, which can compress efficiently the coefficients
of a critically sampled or even redundant, non-orthogonal
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transform. As described in [3, 4, 5], problems that arise in
computer vision can be naturally expressed in terms of en-
ergy minimization. Each of these methods consists in mod-
elling a graph for an energy type, such that the minimum
cut minimizes globally or locally that functional. Usually,
these graph constructions are dense and complex, design-
ing the energy function at pixel level. For example, in [6]
the graph cut provides a clean, flexible formulation for im-
age segmentation. With a grid design, the graph provides a
convenient manner to encode simple local segmentation de-
cisions and presents a set of powerful computational mecha-
nisms to extract global segmentation from these simple local
(pairwise) pixel similarities. Good energy-optimization re-
sults based on graph cuts were obtained in image restoration
[7], as well as in motion segmentation [8], texture synthesis
in image and video [9], etc. As it will be shown by the exper-
imental results, the method gives good compression results
compared to the state-of-the-art JPEG2000 codec. The pa-
per is organized as follows: Section 2 describes the solution
for rate-distortion optimization using graph-cuts, by model-
ing distortion energy interactions at block level. Some ex-
perimental results obtained with the proposed methods for
both wavelet-based and edge-oriented contourlet-based im-
age coding are presented in Section 3. Finally, conclusions
and future work directions are drawn in Section 4.

2. IMAGE COMPRESSION USING GRAPH
CUTS

As mentioned in the introduction, we propose to use the
graph-cut mechanism for the minimization of the rate- dis-
tortion Lagrangian function and thus find the optimal set of
quantizers satisfying the imposed constraints. To this aim,
we have designed a specialized graph able to represent a
subband decomposition taking into consideration the corre-
lations between subbands in a multiresolution approach.

In the following, we express the Lagrangian functional as
a discrete sum accumulating the contribution of each cod-
ing unit (subband or block) in terms of rate and distortion
induced by the quantization. Moreover, the graph model is
planar, and the energy function we intend to optimize is con-
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vex, so the minimum graph cut can be found in polynomial
time.

2.1 Graph design
Consider the weighted graph G = (V, E, W ), with V -vertices,
E-edges and positive edge weights W , which have not only
two, but a set of terminal nodes, Q ∈ V . Recall that a
subset of edges EC ∈ E is called a multiway cut if the ter-
minal nodes are completely separated in the induced graph
G(EC) = (V, E − EC , W ) and no proper subset of EC sep-
arates the terminals in EC . If C is the cost of the multi-
way cut, then the multi-terminal min-cut problem is equiv-
alent to finding the minimum-cost multiway cut. For our
optimization problem, the terminals are given by a set of
quantizers Q, and the coding units give the rest of the ver-
tices V −Q. The edges and their weights/capacities will be
defined in the following depending on the coding strategy
(subband or block coding) and the distortion functional.

In [7], Y. Boykov et al. find the minimal multiway cut by
succesively finding the min-cut between a given terminal and
the other terminals. This approximation guarantees a lo-
cal minimization of the energy function that is close to the
optimal solution for both concave and convex energy func-
tionals. As the rate-distortion Lagrangian lies on a convex
curve (i.e. D(R)), we propose to use the method in [7] for
its optimization.

2.2 Lagrangian rate-distortion functional
Consider the problem of coding an image at a maximal rate
Rmax with a minimal distortion D. Each image consists of a
fixed number of coding units (spatial subbands or blocks of
coefficients), each of them coded with a different quantizer
qi, qi ∈ Q (Q being the quantizers set). Let Di(qi) be the
distortion of the coding unit i when quantized with qi, and
let Ri(qi) be the number of bits required for its encoding.
The problem can now be formulated as: find min

∑
i
Di(qi),

such that
∑

i
Ri(qi) = R ≤ Rmax.

In the Lagrange-multiplier framework, this constrained op-
timization is written as the equivalent problem:

min
∑

i

(Di(qi) + λRi(qi)) , R ≤ Rmax (1)

where the choice of the Lagrangian parameter λ > 0 mea-
sures the relative importance between distortion and rate
for the optimization and which can be determined using a
binary search. The advantage of problem formulation in
Eq. (1) is that the sum and the minimum operator can be
exchanged to:

∑

i

min (Di(qi) + λRi(qi)) , R ≤ Rmax (2)

This formulation obviously reveals that the global optimiza-
tion can now be carried out independently for each coding
unit, making an efficient implementation feasible.

2.2.1 Rate estimation
For the rate estimation of the quantized coding units we
consider a non-contextual arithmetic coder [10], which uses
a zero-order entropy model, where the M quantized coef-
ficients of a given coding unit are random i.i.d. variables

following a Gaussian distribution. Thus, the zero-order en-
tropy (H) estimation in bits/variable (i.e., coefficient) is ob-
tained as:

H = −
M∑

i=1

pi log2 pi, (3)

where pi is the probability of the ith coefficient. The result-
ing entropy estimate per coding unit is weighted by the size
of the coding unit in order to obtain the total entropy of the
quantized image.

2.2.2 Distortion estimation
The distortion D between the original image x and the quan-
tized one, x̂, is estimated in the following as the L2 norm,
i.e. :

D = ‖x − x̂‖2
. (4)

This model will be futher developed, in order to obtain a
good distortion estimate in the spatial domain, rather than
in the transform domain, as is usually done for orthonormal
transforms.

2.3 Graph design with cross-correlation dis-
tortion at the block level

Recall that we have written the distortion D between the
original image, x, and the quantized one, x̂, as the L2 norm,
i.e. D = ‖x − x̂‖2. In a first approximation [11], we have
considered only the diagonal terms, i.e.:

DI
∼=

∑

i

‖xi − x̂i‖
2 (5)

which amounts to estimating the distortion between the con-
tribution to the image and to the quantized image of only
the ith subband.

In a second approximation, we have also considered the
cross-correlation terms, i.e.:

D ∼= DI +
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉 (6)

where N (i) is a neighborhood of i, containing closely cor-
related subbands. Indeed, given the limited support of the
wavelets, the closer in scale and frequency are the subbands,
the higher the correlation among them. In practice, this
neighborhood could be described by the geometrical position
of the subbands in a multiresolution decomposition (where
only the vertical and horizontal directions are considered),
or by simply linking the subbands in a chain-manner, one
after another (for example, in Fig. 1, the neighborhood rela-
tions are indicated by the black edges in the graph). Thus,
Eq. (6) can be written as:

D =
∑

i

‖xi − x̂i‖
2

︸ ︷︷ ︸
Di

+
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉︸ ︷︷ ︸
Di,i′

(7)

We have shown in [12] that in this case, the function to be

Digital Object Identifier: 10.4108/ICST.MOBIMEDIA2009.7427 
http://dx.doi.org/10.4108/ICST.MOBIMEDIA2009.7427 



Figure 1: Contourlet decomposition with three levels (left) and three-way graph-cut repartition (right) (q1

partition in red, q2 partition in green, q3 partition in blue, where the regular edges are with full black lines,
terminal links in colors and the cut-edges in gray lines).

minimized is:

min
∑

i




‖xi − x̂i‖

2 + λR(i)
︸ ︷︷ ︸

Edata(i)

+
∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉

︸ ︷︷ ︸
Esmooth(i)





(8)

In the following, we propose to extend the subband level
distortion estimation presented in [12] to the block level
(Fig. 2). This extension comes naturally, as the smaller
the coding unit, the more correlated in amplitude are the
coefficients within it. At block level, Eq. (8) becomes:

min

X∑

i=1

Nb∑

j=1

‖xi,j − x̂i,j‖
2 + λR(i, j)

︸ ︷︷ ︸
Edata(i,j)

+

∑

(i′,j′)∈N (i,j)

|〈x̂i,j − xi,j , x̂i′,j′ − xi′,j′〉|

︸ ︷︷ ︸
Esmooth(i,j)

(9)

where X, respectively Nb represent the number of subbands,
respectively blocks in each subband, xi,j denotes the image
reconstucted only from the jth block of the ith subband and
〈x̂i,j − xi,j , x̂i′,j − xi′,j′〉 measures the correlation between
the neighbour blocks.

The minimization of the energy function defined above is
equivalent to the best partition of quantizers per subbands
blocks. Note that for Esmooth we have used the sum of
absolute values of cross-correlation terms, in order to en-
sure that our regular vertices will have associated positive
weights. Our graph will have therefore B = X × Nb − 1
regular vertices. The neighbourhood system, N , contains

Figure 2: Block graph design: two-level wavelet de-
composition with four-blocks subband division and
chain network design for the regular vertices.

now only position correlation links EN (i.e., edges between
neighbour blocks, as described in Fig.2). The geometrical
model can be described as: G = (V, E) where V = B ∪ Q,
E = EN ∪ EQ and Q/EQ represent the quantizers set/the
links between block nodes and quantizers. For the terminal
links, EQ, the weights are given by the direct costs in terms
of distortion and rate induced by the quantization (i.e., the
edge between block b and quantizer q, (b, q), has the associ-
ated weight wb,q = Db(q) + Rb(q)). The capacity between
two regular neighbour blocks ((bi, bi′) ∈ EN ) is defined as
the absolute value of the cross-correlation distortion induced
by the current quantization of these blocks.

3. APPLICATION TO SUBBAND IMAGE
COMPRESSION

In the following, we propose to apply the proposed graph-cut
minimization model to subband image compression. Some
results are drawn in the framework of classical separable
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wavelet image coding, as well as for a geometrical transform,
namely the contourlet decomposition [13]. Note that the
method can be applied to almost any existing decomposition
(wavelets, Xlets, subbands, blocks, may them be critically
sampled / redundant etc.).

3.1 Wavelet image compression with graph-
cuts

Due to their energy compaction efficiency, the biorthogo-
nal filter banks are the most used in image compression [1].
This is the reason for which we consider in our simulation
framework both the 5/3 and 9/7 filter banks for the spatial
decomposition.

3.1.1 Experimental results
For our simulations, we have considered two representa-
tive test images: Barbara (512x512 pixels) and Mandrill
(512x512 pixels), which have been selected for the difficulty
to encode their texture characteristics.

We have used dead-zone scalar quantization, with q ∈ {20,

. . . , 210}. The dead-zone has twice the width of the other
quantization intervals. All the images have been decom-
posed over five spatial levels with the floating-point 5/3 and
9/7 filter banks. Note that for rate estimation in the alloca-
tion algorithm we have used a simple (non-contextual) arith-
metic coder [10], while JPEG2000 codec [1] uses a highly op-
timized contextual coder. The JPEG2000 results have been
obtained with the Kakadu framework.
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Figure 3: Rate-distortion comparison for Mandrill
image with 9/7 wavelet subband decomposition

As it can be remarked from Fig. 3 and Fig. 4, the results
obtained with the 9/7 wavelet subband decompostion of
JPEG2000 are between 0.5 and 1.5 dB higher than those
obtained with the proposed graph-cut rate-distortion algo-
rithm. This situation can be explained by the fact that the
9/7 filter bank is very close, from an energy partition point
of view, to an orthonormal decomposition. As illustrated
in Fig. 5 and Fig. 6, our method seems to better cope with
non-orthogonal decompositions at very low bitrates (≤ 0.1
bpp).
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Figure 4: Rate-distortion comparison for Barbara
image with 9/7 wavelet subband decomposition
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Figure 5: Rate-distortion comparison for Mandrill
image with 5/3 wavelet subband decomposition

One can remark that distortion approximation at subband
level taking into account the cross-correlation among sub-
bands always leads to better results than the simple model
without cross-correlation terms, by using a more realistic
correlation model. Moreover, the finer level of represen-
tion for the coding units, the higher the correlation among
these units, as it can be remarked from the presented re-
sults, having an average gain of 0.25 dB over the preceeding
rate-distortion curve obtained with a subband-level cross-
correlated distortion model.
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Figure 6: Rate-distortion comparison for Barbara
image with 5/3 wavelet subband decomposition

3.2 Contourlet image compression with graph-
cuts

The drawback of separable wavelets is the limited orienta-
tion selectivity, as they fail to capture the geometry of the
image edges. In order to overcome the problem of edge rep-
resentation, Minh N. Do and Martin Vetterli have defined a
new family of geometrical wavelets, called contourlets [13].
With contourlets, one can represent the class of smooth im-
ages with discontinuities along smooth curves in a very effi-
cient and sparse way. These decompositions have been suc-
cessfully applied in image segmentation and noise removal,
as well as in image compression: as shown in [14], the codec
based on wedgelets gives better performance in image com-
pression than the JPEG2000 standard at very low rate.

3.2.1 Experimental results
For a better comparison, we have considered the same test
images: Barbara (512x512 pixels) and Mandrill (512x512
pixels). We have used dead-zone scalar quantization, with
q ∈ {21, . . . , 210} and a 5-level contourlet decomposition,
where the coarsest three decomposition levels consist of a
9/7 separable wavelet transform (i.e., 3 directions), and the
finest two levels are represented with a 16- and 32-band
biorthogonal directional filter. The efficiency of this hybrid
scheme has been proved in [15].

As shown in Figs. 7 and 8, our method surpasses JPEG2000
at low bitrates, even though it employs a redundant trans-
form. Note that for the rate estimation in the allocation al-
gorithm we have used a simple (non-contextual) arithmetic
coder [10], while JPEG2000 codec uses highly optimized con-
textual coder.

4. CONCLUSION
In this paper we have presented a block-based graph-cut
method for rate-distortion optimization in image coding.
Its great advantage is that it can be applied to decompo-
sitions which are not necessarily orthonormal. As shown by
experimental results, it can efficiently encode both wavelet
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Figure 7: Rate-distortion comparison for Mandrill
image with contourlet subband decomposition
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Figure 8: Rate-distortion comparison for Barbara
image with contourlet subband decomposition

and contourlet coefficients compared to standard RD cod-
ing tools, enhancing thus the wireless transmission efficiency.
Moreover, the proposed method could be further used with
vector quantizers.
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