External Flash Filesystem for Sensor Nodes with sparse
Resources

Stephan Lehmann
stephan.lehmann@tu-
berlin.de

Stephan Rein
stephan.rein@tu-
berlin.de

Clemens Gihmann
clemens.guehmann@tu-
berlin.de

Wavelet Application Group
Department of Energy and Automation Technology
Chair of Electronic Measurement and Diagnostic Technology
Technische Universitét Berlin

ABSTRACT

This paper describes a free filesystem for external flash mem-
ory to be employed with low-complexity sensor nodes. The
system uses a standard secure digital (SD) card that can
be easily connected to the serial port interface (SPI) or any
general input/output port of the sensor’s processor. The
filesystem is evaluated with SD- cards used in SPI mode and
achieves an average random write throughput of about 40
kByte/sec. For random write access throughputs larger than
400 kByte/sec are achieved. The filesystem allows for stor-
age of large amounts of sensor or program data and can assist
more memory expensive algorithms. It requires 7 kByte of
program memory and about 570 Bytes of RAM.

Categories and Subject Descriptors

D.4.3 [Software]: Operating Systems—File Systems Man-
agement

General Terms

Performance, Measurement

Keywords

SD-card, Camera sensor, Signal-controller

1. INTRODUCTION

Actual hardware for sensor nodes allows highly complex
calculations including signal processing algorithms for data
processing. But while clock rates grow continuously, inte-
grated memory is still extremely limited in the lower pro-
cessor price segments. Several algorithms and sensor tasks
need a big chunk of memory, e.g., for image processing the
complete image data may be required to be kept in memory.
Even though processing these images can often be optimized

Mobimedia 2008 July 7-9, 2008, Oulu, Finland.
Copyright 2008 ICST ISBN 978-963-9799-25-7
DOI 10.4108/ICST.MOBIMEDIA2008.4027

o~ v w

for using just a few kilobytes of RAM, the source data must
be accessible. Another memory intensive task concerns long-
term sensor logs.

A cost effective solution of this memory problem could be
external flash memory. Flash memory is non-volatile and
therefore power failure safe. Flash memory can be obtained
either as raw flash or as standard flash devices such as USB-
sticks or SD- cards. Raw flashes are pure flash chips which
do not provide a controller unit for wear levelling- that is,
a technique for prolonging the service life of the erasable
storage media - or garbage collection. They provide just a
simple command set to address and read or write the mem-
ory, whereas flash devices such as SD- cards or USB sticks
inherit a controller to access a raw flash chip and to provide
a more complex command set to the developer. On low-
complexity sensor nodes raw flash has several drawbacks:
Raw flash comes either with a parallel or serial interface.
On sensors with a low pin count as described beneath, a
serial flash would be an appropriate choice. But sensors
using raw flash must manage a flash file system including
wear-levelling and garbage collection. Such a file system is
usually log structured where the log grows in the sensors
RAM reducing its free resources even more. Therefore the
file system described here uses a standard SD- card, which
is actually a block oriented serial flash device. SD- cards
and the compatible Multi Media Cards can be accessed eas-
ily via a SPI compatible interface. Figure 1 shows the pin
assignment of an SD-Card. In small series SD- cards are
even cheaper than raw flash. The cards contain a controller
which takes care of wear levelling and garbage collection. Of
course using a SD- card instead of raw flash has drawbacks
too to be discussed when we explain the file system design.

The filesystem was developed and implemented for the two
signal-controllers dsPIC30F and dsPIC33F from Microchip.
It is applicable to the complete Microchip signal-controller
family. Except for the software for the SPI routines, the
whole filesystem is written in ANSI C and should be easily
portable to any other embedded device. The filesystem is
a part of the project Spisa [8] sensorboard basic software
but can be used separately too. The Sensorboard uses a
dsPIC30F4013 with 29.4912 MIPS and 2048 bytes RAM.
The software SPI clock is approximately 4.2 MHz while the
SD- card supports clock rates up to 25 MHz (20 MHz for
MMC). For interfacing the SD- card the general purpose
I/O- Port B is used. Any other I/O- Port would work too.

peri
Callout

peri
Typewriter
Mobimedia 2008 July 7-9, 2008, Oulu, Finland.

Copyright 2008 ICST ISBN 978-963-9799-25-7

DOI 10.4108/ICST.MOBIMEDIA2008.4027

peri
Typewriter

pin SD mode SPI mode
|ZI|E|E| 1 chip select| chip select
|E| 2 CMD MOSI
3 GND GND
4 vCccC vCccC
5 CLK SCLK
SD Card 6 GND GND
7 DAT MISO
8 NC NC
9 NC NC

Figure 1: Pin assignment of SD- cards. The card
can be connected to any controller with SPI inter-
face. Together with an appropriate filesystem, the
card can tremendously extend the features of a sen-
sor node including data storage or more memory
intensive data processing algorithms.

The paper is organized as follows. In the next subsection,
related literature is reviewed. In section 2 the design of the
filesystem is described. In section 3 then the file system
performance is evaluated. Section 4 finally considers future
work and gives a conclusion.

1.1 Reated Work

As described before, two types of file systems are usually
used with flash memory. The first type are flash file sys-
tems working on raw flash. They are usually log structured
and need to implement wear levelling and garbage collection.
Examples for flash file systems are given in 7] and [2]. The
other group of file systems are conventional file systems such
as FAT, NTFS or EXT3. They work on a hardware abstrac-
tion layer called the flash translation layer. A description of
flash translation layers can be found in [1] and [3]. A SD-
card has its own controller which implements a flash transla-
tion layer and therefore allows to implement any filesystem.
While flash file systems are usually very efficient because
of optimization for a special hardware, the flash translation
layer provides much more flexibility. Using a raw flash with
a log structured flash file system tends to use too much RAM
for the log. A good approach to reduce log costs using hash-
ing technologies can be found in [4]. Furthermore, using
a standard SD- card is cheaper for small series and more
flexible when changing flash size. On the PC, the filesys-
tem for SD- cards is FAT16 and FAT32 for SDHC Cards.
Implementing FAT16 with a RAM footprint of 512 bytes is
possible but relatively inefficient because random access in
a file needs to walk through the files sectors. The file system
described here is designed for teaching and research inves-
tigations, where a small sensor node with sparse resources
is applied. It is developed in the scope of signal processing
operations. In the wavelet classes students use Mathworks
Matlab or the free pendant GNU Octave to gain first experi-
ences with transformation and signal processing algorithms.
They then proceed with the Spisa sensorboard. To have
a flexible interface between Matlab/Octave and the sensor-
board, it is possible to exchange matrices between them us-
ing a special terminal program. Therefore the filesystem

should handle special matrix files natively. As a filesystem
that fulfills the given requirements is not available, an own
flexible and low-complexity filesystem was designed.

2. SYSTEM ARCHITECTURE

The file system architecture is designed regarding certain
assumptions for the typical usage. First of all the sensors
are expected to provide just a small amount of RAM, that
is typically about 1024 Bytes. Furthermore, it is assumed
that a sensor generally uses a small number of relatively
large files. Due to this, random access within one file is
assumed to be more important than optimized file finding
in the file system. At last it is assumed that modern SD-
cards provide more than enough memory for a sensor so that
file system fragmentation is acceptable.

These assumptions lead to the following set of complexity
demands for the file system design:

e read/write access within a file is O (1)

e file create/open/close/find/delete is O (n)
e format card O (1)

e defragment card O (n)

e RAM usage O (1)

2.1 Filesystem organization

To achieve the described goals the file system is organized
as follows: The file system divides the SD- card into two seg-
ments. The first segment is the file system table containing
all status information. The table is subdivided into a header
of constant length and table entries. Each table entry stands
for one file on the SD- card. The table starts at the lowest
SD- card address and grows towards higher addresses while
creating new files. The second segment contains the data of
the files. The data segment begins at the highest address
of the SD- card and grows towards lower addresses. Figure
2 shows the described file system layout on the SD- card.
The file system header with card status information takes

SD Card
|
table header | table entries data
0 SD- Card address

Figure 2: File system organization. The SD- card is
divided into two segments, the file system table and
the data files.

40 Bytes and is located at the beginning of the card. Figure
3 shows the table header design including the corresponding
language structure definition for the C program. The first
header member FSID holds the file system id string which is
used by the file system to check whether the card is formated
with the file system described here or not. CS holds the card
size in bytes, TS the table size in bytes, NO the number of
files saved, and 0S the sum of all file sizes. While TS and 0S

typedef struct
file system id string 12 bytes {
char FSI D[12];
card size 4 bytes Ul NT32 CS;
UI NT32 TS;
table size 4 bytes Ul NT32 NO;
UI NT32 OS;
number of files 4 bytes Ul NT32 US;
Ul NT32 FS;
sum of file sizes 4 bytes Ul NT32 LE;
} SpisaFS_TH;
used space 4 bytes
free space 4 bytes
address of last entry 4 bytes
Z: 40 bytes

Figure 3: The file system table header. It contains
general information on the card and the included
files.

hold the exact sizes of the table header and files, US is used
to save the real space used on the card. To be more precise,
an SD- card is typically divided into 512 byte blocks, and
thus the file system is designed to reserve multiple of these
blocks for the table. For each file it reserves multiple blocks
too. Therefore the space used on the SD- card is usually
greater than the table and file sizes. When deleting a file
the table will be rearranged so that there will be no gaps
between the entries. But the files will not be rearranged
because of the high complexity. Because of this the sum of
file sizes 0S decreases after deleting a file but the used space
US can stay the same. FS holds the free space in bytes. It
can be calculated by subtracting US from CS. The last table
header member LE is used to save the address of the last
entry in the table.

The table entries describe the properties of the saved files.
Contrary to the file system table header, the table entries
do not have a fixed size. They are divided into two parts.
The first part is sized 20 Bytes and contains information de-
scribing the file attributes. The second part is the filename
saved as a zero terminated C- String. The filename is of vari-
able length with a maximum of 236 bytes. Figure 4 shows
the design of the table entry structure including the cor-
responding C programming language definition. Because of
the variable filename length, each entry has to save its size in
ES. As described in section 1.1 the file system is designed to
directly support two-dimensional matrices containing scalar
elements as special files. To determine the filetype the type
byte typ is used. At the moment 8 different filetypes are
supported by the file system, as illustrated in table 1. ADR
holds the start address of the file data and PRE the address
of the previous entry which is needed when deleting a file.
DIM holds the dimension of the matrix saved in the file. The
upper two bytes of DIM code the number of rows of the ma-
trix, and the lower two bytes code the number of columns.
Together with TYP one can calculate the file size which is
stored in 0S. If the filetype is 0 then DIM equals 0S. The
pointer to the filename is only used on the sensor but also
saved to the SD- card. Even if the memory for the filename
is allocated dynamically on the sensor it is located directly

typedef struct

entry size 1 bytes {
Ul NT8 ES;
file type 1 bytes Ul NT8 TYP;
Ul NT32 ADR;
start address of data 4 bytes Ul NT32 PRE;
Ul NT32 DI M;
address of prev. entry| 4 bytes Ul NT32 OS;
char* | D;
file dimension 4 bytes } SpisaFS_TE;

file size 4 bytes

pointer to filename 2 bytes

filename (entry size - 20) bytes|

Z: (entry size) bytes

Figure 4: File system table entry that describes the
properties of a single file. Each file has its own file-
name that can be of variable length.

behind the entry on the SD- card.

2.2 File System Functions

The file system organization described above builds the
basis for fundamental file operations. The file system soft-
ware provides basic hardware access functions that are ex-
tended to file operations. There are just four functions nec-
essary to access the SD- card. Most functions use a one byte
error code as return value. If that is not the case it will be
said explicitly. The list of functions is given as follows.
UINT8 mmc_init () is used to initialize the SD- card.
UINT32 mmc_cardsize() calculates the card size from the
SD- card status registers. The return value is the card size
in bytes. If it is less than 40 Bytes, it is an error code.
UINT8 mmc_read_block(bnr,data,n) reads the first n bytes
from the block bnr of the SD- card.

UINT8 mmc_write_block(bnr,data,n) writes n bytes to the
first part of block bnr.

The SPI protocol to implement these functions can be found
in the SD Specifications [6] and in the Hitachi MultiMedi-
aCard datasheet [5].

The file operations are based upon the hardware functions.
A short description of their functionality is detailed as fol-
lows.

UINT8 mmc_format ()

Formating the SD- card is done by three steps. First of all
the SD- card is initialized, then the card size is calculated.
Based on the card size the table header is created and writ-
ten to block 0 of the SD- card. Because formating uses a one
register read and one block write instruction, its complexity
is O (1) as demanded in the introduction.

UINT32 mmc_preAllocObject(id, type, size, dim)

This function implements the file create operation. It is
called with the filename (id), the file type (type), the file
size (size) which should be preserved for the file, and the
dimension (dim) of the matrix contained in the file. To cre-
ate a file the existing entries are checked for the filename. If
the filename already is in use, the function terminates with

Table 1: Filetype overview. The filesystem can
handle eight different types of matrices containing
floating-point or different formats of integer num-
bers.

an error code. If the filename is not already used, the file
system header is checked for the free space. If the remaining
space on the card is less than the size requested by size, the
function terminates with an error code. If the free space is
adequate, the last existing table entry is read and based on
its information the new table entry is created. Finally the
new table entry is written directly behind the formerly last
entry. This writing is normally a read-modify-write opera-
tion (RMW). If the entry crosses a 512 byte boundary on the
SD- card, the writing actually needs two RMWs. Creating
a file needs to check all entries, for which the complexity is
O (n) and up to two read and write operations. This leads
to a complexity of O (n) as demanded in the introduction.
UINT8 mmc_writePartOfObject(data, off, adr, size)
This function implements the file write operation. It is
called with a pointer to the data that shall be written (data).
The second parameter (off) is the offset from the begin
of the file where the data segment shall be located. The
third parameter (adr)is the start address of the file and the
last parameter (size) is the size of the data segment. Us-
ing the given information it is easy to calculate to which
blocks the data must be written. For the first and last block
RMWs might be necessary. All other blocks will be com-
pletely rewritten and are therefore pure block writes. Be-
cause the addresses are calculated directly from the param-
eters, a write access is of the complexity O (1). The com-
plexity of the whole write operation depends on the data
segments size and is therefore O (n).
UINT8 mmc_readPartOfObject(data, off, adr, size)
This function implements the read operation and works
similar to the write operation. The complexity is of the
same order too.

Type | Description int mmc_remove (id)
0 No special format. This is an ordinary byte per This function implements the file delete operation. The
byte file. only parameter is the filename. First of all the entries are
1 This file contains a 2d matrix containing sin- checked for the filename. If the file does not exist, the func-
gle precision floating point values. Size of one tion terminates returning an error code. If the file exists the
element is 4 bytes. entry will be deleted while the data remains on the card. To
2 This file contains a 2d matrix containing signed delete the entry all following entries are shifted to the lower
8 bit integer values. Size of one element is 1 addresses by the length of the deleted entry. Afterwards the
byte. table header is updated accordingly. Figure 5 illustrates the
3 This file contains a 2d matrix containing signed delete process. Searching and shifting the entries is of com-
16 bit integer values. Size of one element is 2
byte' headeren,,“): 1 ?ntry 2 en"tr)‘/l 3 free spaceffile 3| file 2 | file 1
4 This file contains a 2d matrix containing signed A BCD B
32 bit integer values. Size of one element is 4
mmc_remove("A");
byte.
5 This file contains a 2d matrix containing un- 1. shift entries
signed 8 bit integer values. Size of one element oty 1 enty 2 Tenty 3
islbyte, header " "BCD" ngr free spacelfile 3| file 2 | file 1
6 This file contains a 2d matrix containing un-
signed 16 bit integer values. Size of one element
is 2 byte.
7 This file contains a 2d matrix containing un- header ?;t(r:):)"z t(?lla"z en"tE:)'l' *free spacefiile 3| fite 2 | file 1
signed 32 bit integer values. Size of one element L
is 4 byte. v
header entry 2 en”tr)'/v 8 n‘tr)'/l g free spacelffile 3| file 2 | file 1

"BCD" B "B

2. update header accordingly

entry 2 |entry 3
header Y N y

"BCD" B

free space file 3| file 2

. unusable space (until defragmentation)

\:\ invalid data
\:\ changed data

Figure 5: Delete operation. The file to be deleted
is addressed through its filename. The data remains
on the card until the following entries have been
shifted onto its position.

plexity O (n) while updating the header is of O (1). There-
fore, the complexity for the whole delete operation is O (n).
UINT32 mmc_find(id)

This function is used by the delete and create file opera-
tion. It takes a filename and checks the table entries for it. If
a file with the same entry exists it returns the start address
of the file. If the file does not exist the function returns an
error code. As described before the function’s complexity is
O (n).

UINT8 mmc_append(data, size)

A special mode of sensor operations is to take measure-
ments over an undefined period. Therefore, the file system
provides this method to efficiently append data to the last
created file. The last file can be extended without creating
a larger copy. To append data the write operation can be
used as always but the entry and header must be updated
appropriately. The function does not check whether the ap-
pended data fits into the structure of the file. Appending a
matrix with a vector will cause unpredictable results. The
complexity of appending data is O (n), where n is again the
size of the data chunk.

UINT8 mmc_defrag()

When deleting a file the data segment at the end of the
SD- card tends to fragment. As described above the file
create operation does not care for these fragmentation gaps.
When the lost space grows too large, the defragmentation
operation can be used to close the gaps between the files.
To do so it uses the naive algorithm of shifting files behind
a gap by the gap size towards higher addresses. Figure 6
illustrates the defragmentation process. This operation is

entry 2 |entry 3 . . .
header "BCD" ng free space file 3| file 2
mmc_defrag();
1. shift files

entry 2 entry 3 . .
header “BCD" wg free space file 3| file 2

entry 2 entry 3 . . .
header “BCD" ng free space file 3| file 2 | file 2

/)

entry 2 entry 3 . . .
header “BCD" g free space file 3| [file 3| file 2
2. update header and entries accordingly

entry 2 entry 3 . .
header “BCD" wg free space file 3| file 2

. unusable space (until defragmentation)

\:\ invalid data
\:\ changed data

Figure 6: Defrag operation. The defragmentation
function can be used to close the gaps between the
files.

still of the complexity O (n), but depending on the number
of files, the fragmentation rate, and the file sizes, it can be
relatively slow.

To conclude the description above table 2 shows the worst
case complexity of all file operations as multiples of read /write
block operations. The factors used to calculate the complex-
ity are number of files saved on the SD- card (n), the size
of the data to read/write (s), and the size of one special file
(f5(0)).

The total RAM usage of the file system is 512 bytes for
read- modify-write operations. Because the file system table
is not cached in RAM, there is just an overhead of about 60
bytes caused by the call stack when using the file operations.
The filesystem needs 7 kBytes program memory in total.
The low level hardware function use 1.2 kByte while the
filesystem operations use 5.8 kByte.

The filesystem is developed in the scope of the project
Spisa and is integrated into the software framework of the
provided sensorboard. Therefore, it contains functions for
interacting with the terminal program used to exchange data
between the PC and the sensorboard. These functions are
the main reason why the filesystem takes that much program
memory. The pure file operations take about 2.5 kByte of

Complexity

1 X read 4+ 1 X write

(n+2) X read + 3 x write
[s +512] X read

2 x read + [s + 512] x write

File Operation
Format SD- card
Create File
Read from file
Write to file

Delete file 2(n+1) x read+ (2n + 1) x write

Find file n+1x read

Defragment data <2n +1+ i [fs(i) = 512]) X
read - +
<n + 14 3o[fs(0) + 5121) x
write =

Table 2: Worst case complexity of all file operations
as multiples of read/write block operations.

program memory.

The terminal program developed for the sensor allows for
easily exchanging files between the PC and the sensor. The
following list explains the basic terminal commands for ac-
cessing the file system on the sensor from the PC.

mmc init.

This command initializers the SD- card on the sensor-
board into SPI mode. This command has to be called first.
All other commands expect an initialized SD- card. Of
course they print an error message if that is not the case.

mmc clear.
This command formats the SD- card with the filesystem
described in here.

mmc status.

This command prints the contents of the filesystem table
header to the terminal. The output is formated for good
readability. This command might be used to check whether
a defragmentation operation has to be started or not.

mmc dir.

This command prints the properties of all files on the SD-
card in a table like form to the terminal. It is inspired by
the die command used at the windows shell. The output is
not sorted. All files are printed in exactly the order they
appear on the SD- card.

mmc load file <p1> <p2>.

To load a file from the PC to the SD- card this command
is used. It behaves like the copy command on the PC, which
means that the first parameter is the source file on the PC.
The second parameter is the target file on the SD- card.

mmc load file <p1> <p2>.

To save files from the SD- card to the PC this command
is used. The first parameter is the source file on the SD-
card. The second parameter is the target file on the PC. The
second parameter is optional. If it is omitted the filename
is the SD- card file name which will be expanded by a file
extension determined from the type byte.

mmc remove.

This command is used to delete a file on the SD- card.
The parameter is the target file on the SD- card.

mmc find.

To check whether a file exists on the card or not this func-
tion can be used. If the file exists it prints its address and
otherwise an error message to the screen.

mmc tidy.

This command starts the defragmentation of the SD- card.
This command is the most time-consuming one.

The command names differ in some cases from the intu-
itive names one would choose. This results again from the
software framework provided with the sensorboard. Each
command and subcommand must be unique from the first
letter on. The terminal and the sensor only checks the first
letter of each command word. The sensorboard uses a soft-
ware stack to store data in RAM, and therefore the letter ’s’
cannot be used for the SD- card. Fortunately the protocol
used to access the SD- card derives from the MultiMediaC-
ard and therefore "mmc” is a proper command too. The
same reasoning works for "mmc clear” for the format opera-
tion. It is just because the ’f’ is needed for "mmc find”.

The file system provides all typical basic file operations.
Nevertheless some functionality is still missing. At the mo-
ment the file system does not provide any file access synchro-
nization. Sensors using a multitasking system could corrupt
the file system integrity by accessing files which are currently
used by other processes. Normally it is possible to interrupt
the block read and write function without causing problems.
But when the interrupt tries to access the card while another
process uses it, the card will cause unpredictable errors.

3. PERFORMANCE EVALUATION

The description of functionality of the file operation rou-
tines was concluded by the calculation of their complexity.
The complexity of file operations is given as multiples of
block read/write operations. To specify the performance,
the data throughput of several SD- cards, MCC Cards and
MMC Mobile Cards was measured. It turned out that the
basic behavior of all cards is the same. The cards differ
only in their extreme values. This can be explained by the
characteristics of flash memory. Reading flash memory can
usually be done in units of single bytes. But to write data
the area to be overwritten must be erased beforehand. Such
an area is called an erase block. Several erase blocks are
usually organized in erase sectors. Several erase sectors are
organized in a page. When writing to a SD- card the card
controller may need need to erase the block first which takes
some time. The card controller uses different erase modes.
It can erase a block, a sector, or the whole flash chip. The
erase performance differs from flash to flash. But generally
erasing the whole flash takes more time than erasing a sec-
tor. Erasing a sector takes more time than erasing a block.
But in relation to size of the erase area, the speed of eras-
ing the whole flash is much higher than erasing a sector,
while this is faster than erasing a block. Not all of these
coherences can be found also in figure 7, which shows the
performance plot of a 64 MB MMC Mobile Card. The plot
contains 50 measurements of reading and writing 100 either
sequentially or randomly ordered blocks. The left side of
the plot shows the sequential read/write performance. It

can be seen clearly that the reading is relatively constant
at a high level of about 430 kByte/sec. The write perfor-
mance is heavily dependent of the erase strategy of the card
controller. The poorest performance usually appears at the
first write block (17kByte/sec - 75kByte/sec). The card con-
trollers designed for a PC system provide relatively large
caches. Therefore, it assumes to receive several blocks at a
time and preerases a sector. This takes some time which
leads to the poor write performance of the first block. But
most of the following blocks perform much better (96% in
a range of 300kByte/sec - 304kByte/sec). The controller
seems to be able to do some further optimizations because
the plot does not show as much erase cycles as expected of
a card with an erase block size of 16kByte.

The right side of the plot shows the random read/write
performance. As expected the read performance is nearly
the same as in sequential mode. The write performance
turns out to be much worse (40kByte/sec) than in sequen-
tial mode. The card controller has no chance to preerase
any areas that are needed for the next block write.

The difference between all measured cards are just the
extreme values. Read performance was nearly the same for
all cards (420 kByte/sec - 440 kByte/sec). This is due to
the limited speed of the sensorboard. As described before
standard SD- cards are capable of using a serial clock of up
to 25 MHz. The sensorboard provided by project Spisa can
create a serial clock of about 4.2 MHz. This results from
the clock frequency Fcy, which is 29.4912 MHz. To set
or clear a pin on the sensorboard it needs 2 clocks. One
clock for setting the value and a second one for the rise/fall
time. So one serial clock period could reach a maximum
of F%’. But not only the clock but the MOSI pin has
to be set properly. This results in a clock of FCTY ~ 4.2
MHz. It is expected that a more performant hardware that
comes near the 25 MHz maximum serial clock could reveal
differences between the tested cards. Sequential write per-
formance was in average nearly the same for all cards (about
300 kByte/sec). But the minimum throughput ranged from
5kByte/sec to 18 kByte/sec. The larger the cards the lower
is their minimum throughput which comes from larger erase
block sizes of larger cards. Random write performance de-
pends strongly on the minimum write throughput, which
causes smaller cards to be the better choice for embedded
systems.

Due to this behavior it is strongly recommended to try to
optimize any algorithm that uses a SD- card to write at least
2 sequential blocks at a time. This increases the performance
to about 160 kByte/sec. Of course many algorithms need
to randomly access blocks, but under certain circumstances
they can be altered to do a few redundant reads resulting in
sequential writes. Writing more than one block at a time is
also a matter of RAM, so special solutions for each hardware
have to be realized.

4. CONCLUSION

The proposed filesystem fulfills all requirements to a mem-
ory extension for sensor nodes with sparse resources. It uses
a small RAM footprint and allows for random access within
a file. The filesystem is used by project Spisa for teaching
and research. Applications that use this filesystem are the

sequential read/write (64 MB MMC Mobile Card)
500 -

450 -

400 -
t read results

wol L Write results

TR | 06.26%

250 -

throughput [kiB/s]

200 -

B0 L e et e . cees s e o w s ee ee 0.78%

100

50 0.94%

ol write minimum is 17.6 kiB(s)) ,
0 20 40 60 80 100 120
blocks (512 bytes each)

throughput [kiB/s]

random read/write (64 MB MMC Mobile Card)
500

450 -

400 -
t read results

wol L Write results

300 e i T Wi o ETTy T s e aeei a v]3.28%
:]0.02%

250

200 -

0.44%
100~

16.2%

80.06%

0 20 40 60 80 100 120
blocks (512 bytes each)

Figure 7: Read/write performance of the proposed filesystem with a 64 MB MMC Mobile Card . The left
plot shows the performance when the blocks are accessed sequentially. The right plot refers to randomly
accessed blocks. The right numbers give the percentage of data samples that are located in the marked areas.
Whereas the read performance is similar for the sequential and the random case, the write performance is
more than seven times worse in average for the random case.

software framework of the Spisa sensorboard including file
exchange between the PC and the sensor via a serial inter-
face and a camera to take VGA pictures to be stored on
the SD- card. In research the filesystem is used for image
processing using wavelet and classic compression algorithms.

Our future investigations concern the optimization of the
filesystem to support lock mechanisms for parallel file ac-
cessing. For sensor nodes with extremely sparse resources
(<512 Bytes RAM) the filesystem will provide virtual block
sizes. These allow the use of blocks smaller than 512 Bytes
and therefore need less RAM for read-modify-write opera-
tions. We plan to make the filesystem freely available at

8.

5. REFERENCES

[1] Chin-Hsien Wu. A flash translation layer for
huge-capacity flash memory storage systems.
Proceedings of the IEEE/ACS International Conference
on Computer Systems and Applications (AICCSA’08),
pages 100 — 107, April 2008.

[2] S. Jain and Y.-H. Lee. Real-time support of flash
memory file system for embedded applications.
Proceedings of the Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous
Systems and the Second International Workshop on
Collaborative Computing, Integration, and Assurance
(SEUS’06/WCCIA’06), April 2006.

[3] S.-Y. Kim and S.-I. Jung. A log-based flash translation
layer for large nand flash memory. Proceedings of the

8th International Conference on Advanced
Communication Technology (ICACT’06), 3:1641-1644,
Feb. 2006.

S.-H. Lim, C. Lee, and K.-H. Park. Hashing directory
scheme for nand flash file system. Proceedings of the 9th
International Conference on Advanced Communication
Technology (ICACT’07), pages 273 — 276, February
2007.

Renesas Technology Corp. MultiMediaCard 16
MByte/32 MByte/64 MByte/128 MByte Rev. 5.0, Jan.
2003. available at
http://doc.chipfind.ru/renesas/hb28b064mm2 . htm.
SD Group and Technical Committee SD Card
Association. SD Specifications Part 1 Physical Layer
Simplified Specification Version 2.00, Sept. 2006.
available at
http://www.sdcard.org/about/memory_card/pls/.

J. Wang and Y. Hu. A novel reordering write buffer to
improve write performance of log-structured file
systems. IEEE Transactions on Computers,
52(12):1559-1572, December 2003.

Wavelet Application Group. Project homepage of Spisa
- Signal Processing Intelligent Sensor Applications.
http://www.mdt.tu-berlin.de/research/wavelets,
2004-2008.

