
Fractional Wavelet Filter for Camera Sensor Node with
external Flash and extremely little RAM

Stephan Rein
stephan.rein@tu-

berlin.de

Stephan Lehmann
stephan.lehmann@tu-

berlin.de

Clemens Gühmann
clemens.guehmann@tu-

berlin.de

Wavelet Application Group
Department of Energy and Automation Technology

Chair of Electronic Measurement and Diagnostic Technology
Technische Universität Berlin

ABSTRACT
This paper introduces the fractional wavelet filter as a tech-
nique to compute fractional values of each wavelet subband,
thus allowing a low-cost camera sensor node with less than
2 kByte RAM to perform a multi-level 9/7 picture wavelet
transform. The picture dimension can be 256x256 using
fixed-point arithmetic and 128x128 using floating-point arith-
metic. The technique is applied to a typical 16 Bit sensor
node architecture with external flash memory, which allows
to line-wisely read and write picture data.

Categories and Subject Descriptors
I.4.10 [Computing Methodologies]: Image Processing
and Computer Vision—Image Representation; B.3.2 [Hardware]:
Memory Structures—Design Styles

General Terms
Algorithms, Performance, Measurement

Keywords
Fractional wavelet filter, Camera sensor node, Flash memory

1. INTRODUCTION
Camera sensor nodes are small wireless devices that gather,

process and transfer environmental pictures. These devices
can be stationary or mounted on moving objects. A possi-
ble application for a camera sensor network may be remote
assistance for moving vehicles concerning localization and
computer-assisted maintenance.

As the bandwidth is very limited in wireless sensor net-
works, data compression techniques are inevitable when large
amounts of data, e.g., pictures, have to be transferred. The
wavelet transform is an established decorrelating tool that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiMedia ’08, July 7-9, 2008, Oulu, Finland
Copyright 2008 ACM ISBN 978-963-9799-25-7/08/07 ...$5.00.

allows coding algorithms to achieve superior compression
gains among current picture compression techniques. A
standard coding technique is the SPIHT algorithm [9] that
especially outperforms other techniques for high compres-
sion rates while being conceptually fairly simple. However,
as the wavelet transform itself is a memory intensive pro-
cedure, wavelet based compression has hardly arrived on
the low energy consuming micro-controllers that drive low
cost sensor nodes. Thus the design of low-memory wavelet
transform schemes is still a current research activity, see sec-
tion 1.1. This paper addresses this problem by introducing
a wavelet filter system - that is, the fractional wavelet fil-
ter, for the Daubechies 9/7 wavelet (also called the FBI-
Wavelet), which reads and writes the picture data row-
wisely and roughly allocates 1.2 kBytes for a fixed-point
wavelet transform with the picture dimension N=256. We
do not consider the conceptually less complex 5/3 wavelet
transform that works with less coefficients or the integer
wavelet transform, as these generally give lower compres-
sion gains.

The fractional filter is applied and evaluated on an own
sensor node architecture called Spisa (see http://www.mdt.

tu-berlin.de/research/wavelets) or OpenSensor [8]. It
uses the Microchip dsPIC30F4013, i.e., a 16 Bit digital sig-
nal controller with 2 kByte RAM, the camera module C328-
7640 with an universal asynchronous receiver/transmitter
(UART) interface (available at http://www.comedia.com.

hk), and an external 64 MByte secure digital (SD) card as
a flash memory, connected to the controller through a serial
peripheral interface (SPI) bus. The data of the SD-card is
accessed through an own filesystem [10]. Camera and SD-
card both can be connected to any controller with UART
and SPI ports. The system is designed to capture still im-
ages.

The paper is organized as follows. In the next subsec-
tion, related literature is reviewed. In section 2, the main
principle of the picture wavelet transform and its implemen-
tation is outlined. In section 3, the fractional filter for the
wavelet transform is detailed. We have implemented two for-
ward transforms, one using floating-point numbers for high
precision and another transform using fixed-point numbers
that needs less memory while being computationally more
suitable for a 16 Bit controller. In section 4, the two imple-
mentations for the fractional filter are evaluated on a 16 Bit
signal controller sensor node with two kByte RAM concern-
ing picture quality, flash memory access and computation

peri
Callout

peri
Callout

peri
Typewriter
Mobimedia 2008 July 7-9, 2008, Oulu, Finland.

Copyright 2008 ICST ISBN 978-963-9799-25-7/08/07

DOI 10.4108/ICST.MOBIMEDIA2008. 4026

peri
Typewriter

peri
Typewriter

times. In the last section we conclude the paper and de-
scribe our future work.

1.1 Related Work
One major difficulty in applying the discrete two- dimen-

sional wavelet transform to a platform with scarce resources
is the need for large memory. Implementations on a per-
sonal computer (PC) generally keep the whole source and/or
destination picture in memory, where horizontal and verti-
cal filters are applied separately. As this is generally not
possible on a resource-limited platform, the recent litera-
ture addresses the memory-efficient implementation of the
wavelet transform. A very large part of the literature con-
cerns the implementation of the wavelet transform on field
programmable gate arrays (FPGA), see for instance [11, 3,
1, 4]. The FPGA-platforms are generally designed for one
special purpose and are not an appropriate candidate for
a sensor node that has to perform many tasks concerning
communication and analysis of the surrounding area, see
[5, 8] for details. This work is different from the litera-
ture on FPGAs in that it considers the 9/7 picture wavelet
transform for a micro- or a signal-controller with very little
RAM. Such a solution can easily be integrated in current
sensor network platforms and offers much flexibility. Costs
and programming efforts are limited as the extension only
concerns a standard SD-card, a camera module, and a soft-
ware module for the transform. The most related work to
this paper is given in [2], where a line-based version of the
wavelet transform is given. The authors describe a system
of buffers where only a small subset of the coefficients has to
be stored thus tremendously reducing the memory require-
ments compared to the traditional approach. A very efficient
implementation of the line-based transform using the lifting
scheme and improved communication between the buffers is
detailed in [6], where the authors use a PC-based C++ im-
plementation for demonstration. However, in the context of
our requirements it is not applicable to a sensor node with
extremely little RAM as it uses in ideal case 26 kByte RAM
for a six-level transform of an 512x512 picture, whereas the
approach given in this paper would only require roughly 5
kByte using the floating-point scheme. We could not find
any paper where the 9/7 picture wavelet transform is imple-
mented on a low-cost 16 Bit signal-/micro-controller.

2. WAVELET TRANSFORM
A tutorial on the picture wavelet transform and its fea-

tures is given in [12]. We here just outline how the wavelet
transform can be computed with filter operations while we
start with one dimension to explain the basics for the pic-
ture transform. In the following subsections the fractional
wavelet filter is detailed using floating-point and fixed-point
numbers.

2.1 Wavelet Filtering
A one-dimensional discrete wavelet transform can be per-

formed by low- and highpass filtering of an input signal with
the dimension N , which can be a single line of a picture. The
two resulting signals are then sampled down - that is, each
second value is discarded, and then form the approximations
and details, which are two sets of N/2 wavelet coefficients.
In this work the Daubechies biorthogonal 9/7 filter is em-
ployed, which is part of the JPEG2000 standard and the
basis for many wavelet compression algorithms, including

lowpass highpass
index real Q15 real Q15

0 0.852699 27941 0.788486 25837
±1 0.377403 12367 -0.418092 -13700
±2 -0.110624 -3625 -0.040689 -1333
±3 -0.023849 -781 0.064539 2115
±4 0.037828 1240 0 0

Table 1: 9/7 Analysis wavelet filter coefficients in
real and Q15 data format.

the embedded zerotree (EZW) or the set partitioning in hi-
erarchal trees (SPIHT) algorithm [12]. The approximations
L(i) can be computed with

L(i) =
4

X

j=−4

linepic(i + j) · Al(j), i = 0 . . . N − 1 (1)

and the details H(i) with

H(i) =
3

X

j=−3

linepic(index + i) · Ah(j), i = 0 . . . N − 1,

(2)
where Al(j) and Ah(j) denote the filter coefficients given in
table 1, respectively. Note that the sample down operation
can be incorporated by only computing the required coeffi-
cients, thereby avoiding useless computation. At the signal
boundaries, we perform a symmetrical extension to avoid
border effects, e.g., a signal s(i), i = 0 . . . N − 1 is extended
for the highpass filter as follows:
sext = s(3)s(2)s(1)s(0)s(1) . . . s(N−1)s(N−2)s(N−3)s(N−
4)
The filter is slided over the signal in such a way that the
center of the filter is located upside the i th signal value s(i),
e.g., for i = 1:
Ah(-3) Ah(-2) Ah(-1) Ah(0) Ah(1) Ah(2) Ah(3)
s(2) s(1) s(0) s(1) s(2) s(3) s(4)

For the lowpass filter the center of the filter slides over the
even values i = 0, 2, . . . , N − 1, for the highpass it moves
over the odd values i = 1, 3, 5, . . . N .

A one-level picture wavelet transform can be computed by
first performing a one-dimensional transform for each line
and then repeat this operation for all the columns of the
result - that is, apply the low- and the highpass in vertical
direction. The horizontal transform results into two matrices
with N rows and N/2 columns, which we denote by L and H
for the approximations and details, respectively. The second
operation leads to four square matrices of the dimension
N/2 denoted by LL, HL, LH, HH , which are the so-called
subbands. The two operations can be repeated on the LL
subband to get the higher level subbands, e.g., HL2 refers
to the second level HL subband that is computed by first
horizontally filtering LL1 and then vertically filtering the
result. An example of a two-level wavelet transform is given
in figure 1.

3. FRACTIONAL WAVELET FILTER
In this section the fractional wavelet filter - that is, a com-

putational scheme to compute the picture wavelet transform
with very little RAM memory, is explained. The data on the
SD-card can only be accessed in blocks of 512 Bytes, thus
a sample-wise access as easily executed with RAM memory

HL1

HH1LH1

LL2 HL2

Figure 1: An example of a 2-level picture wavelet
transform. Each one-level transform results into
four subbands denoted by LL, LH, HL, HH. The con-
trast of each subband was adjusted to fill the entire
intensity range.

on PCs is here not feasible. Even if it is possible to access a
smaller number of samples of a block, the read/write time
would significantly slow down the algorithm, as the time to
load a few samples is the same as for a complete block. The
fractional filter has to take this restriction into account.

For the first level, the algorithm reads the picture samples
line by line from the SD-card while it writes the subbands
line-wisely to a different destination on the SD-card. Two
single lines of the LL/HL subbands and two lines of the
LH/HH subbands build a destination line, respectively. For
the next level the LL subband contains the input data. Note
that the input samples for the the first level are of the type
unsigned char (8 Bit), whereas the input for the higher level
are either of type float (floating point filter) or INT16 (fixed-
point filter) format. The filter does not work in place and
for each level a new destination matrix is allocated on the
SD-card. However, as the SD-card has plenty of memory,
it does not affect the sensor’s resources. This also allows to
reconstruct the picture from any level (and not necessarily
from the highest level, as it would be necessary for a trans-
form illustrated in figure 1). The scheme is illustrated in
figure 2.

3.1 Floating-Point Filter
The floating point wavelet filter computes the wavelet

transform with a high precision, as it uses 32 Bit floating
point variables for the wavelet and filter coefficients as well
as for the intermediate operations. Thus the pictures can
be reconstructed without loss of information. The wavelet
filter uses three buffers of the dimension N - one for the cur-
rent input line and two buffers for two destination lines each
of them building a row of the LL/HL subbands and a row
of the LH/HH subbands. The filter computes the horizontal
wavelet coefficients on the fly, while it computes a set of frac-
tions (here we denote fractions as a part of a sum) of each
subband destination line. Let ll(i, j, k), lh(i, j, k), hl(i, j, k),
and hh(i, j, k) denote the fractional subband wavelet coeffi-
cients, where i = 0, 2, 4, . . . N/2−1 and j = −4 · · ·+4 assign
the current input line as i ∗ 2 + j. k = 0 . . . N/2− 1 denotes

horizontal filter

SD−card

vertical filter area

FLOAT/INT16

FLOAT/INT16

UCHAR
FLOAT/INT16 LL HL

LH HH

LL HL

HHLH

Al(j)/Ah(j)

update

read
line

destinationpic

current input row

Figure 2: Proposed system for the picture wavelet
transform. The horizontal wavelet coefficients are
computed on the fly and employed to compute the
fractional wavelet coefficients that update the sub-
bands. For each wavelet level, a different destination
object is written to the SD-card. Thus the picture
can be reconstructed from any level.

the horizontal coefficient index. The fractional coefficients
are defined as follows:

ll(i, j, k) = Al(j)

4
X

l=−4

pic(i ∗ N + k + l) · Al(l) (3)

lh(i, j, k) = Ah(j)
3

X

l=−3

pic(i ∗ N + k + l) · Al(l) (4)

hl(i, j, k) = Al(j)
4

X

l=−4

pic(i ∗ N + k + l) · Ah(l) (5)

hh(i, j, k) = Ah(j)

3
X

l=−3

pic(i ∗ N + k + l) · Ah(l) (6)

The final coefficients are computed by update operations
and thus first have to be initialized: LL(i, k) = LH(i, k) =
HL(i, k) = HH(i, k) = 0 |∀i,k. For j = −4 . . . 4, the update
operations are then given by

LL(i, k)+ = ll(i, j, k) LH(i, k)+ = lh(i, j, k) (7)

HL(i, k)+ = hl(i, j, k) HH(i, k)+ = hh(i, j, k) (8)

The special requirement for the fractional filter is that j
stays constant for updating all subband rows. The process
of updating the destination lines is repeated until the final

subband coefficients have been estimated. The pseudo-code
of this procedure uses the horizontal filter functions filtL and
filtH. The low- and highpass filter coefficients from table 1
are accessed through al(j) and ah(j), where j denotes the
filter index. The floating-point code for the first level is
given as follows:

1FLOAT LL HL [N] ;
2FLOAT LH HH [N] ;
3UINT8 l i n e p i c [N] ; / / cur r ent row
4INT8 i ; // cur r ent row index
5INT8 j ; // v e r t i c a l f i l t e r index
6INT8 k ;// ho r i z on ta l d e s t i na t i on index
7f o r (i=N/2−1; i >=0; i −−){
8// i n i t the two de s t i na t i on bu f f e r s :
9UINT8 b ;
10f o r (b=0;b<N; b++){LL HL [b]=0;LH HH[b]=0;}
11f o r (j=−4;j <=4; j++){
12INT16 l i n e i n d e x=i ∗2+ j ;
13i f (l i n e i ndex <0) l i n e i n d e x ∗=−1;//sym .
14e l s e i f (l i n e i ndex >N−1) // exten
15l i n e i n d e x=2∗N−2− l i n e i n d e x ; // s i on
16// get the cur r ent l i n e from the SD−card :
17GetFromSD(l i n e i n d e x ∗N,& l i n e p i c ,N, ’ pic ’) ;
18f o r (k=0;k<N/2; k++){
19FLOAT L=f i l t L (& l i n e p i c , k∗2 ,N) ;
20LL HL [k]+=L∗ a l (j) ; // update LL
21LH HH[k]+=L∗ah (j −1);//update LH
22FLOAT H=f i l tH (& l i n e p i c , k∗2+1,N) ;
23LL HL [k+N/2]+=H∗ a l (j) ; // update HL
24LH HH[k+N/2]+=H∗ah (j −1);// update HH
25}
26}
27// here wr i te the two bu f f e r s ’LL HL ’
28//and ’LH HH’ to the SD−card :
29WriteToSD (i ∗N,&LL HL ,N, ’ dest ’) ;
30WriteToSD ((i+N/2)∗N,&LH HH,N, ’WTpic ’) ;
31}

For each vertical filter area, nine input lines have to be read.
As the filter moves up by two lines (implicit vertical down
sampling), the total number of lines to be read is given as
N/2 · 9, where NxN is the picture dimension.

When the filter input area moves up, the input row of
the last block could be used for the current filter area, thus
reducing the number of repetitive readings. For an NxN
picture, the number of line readings would reduce to to N/2·
8. For simplicity and because of time constraints, this is not
yet implemented in the fractional filter.

For the higher levels the input data is not the original
picture anymore but the previous LL-subband. Thus, the
current input row (see line 3) has to be of the type float (32
Bit). The number of bytes required for a multi-level wavelet
transform of a picture with the dimension Npic is given as

Bytesfloat =



Npic/level · 9, level = 1
Npic/level · 12, level > 1,

where level refers to the required wavelet level.Table 3.1
gives the required Bytes for the floating point implemen-
tation with an 128x128x8 input picture for different levels.

3.2 Fixed-Point Filter
As many other low-cost processors, the dsPIC controller

does not give any hardware support for floating-point op-
erations. If they are coded anyway, the compiler translates
them to integer operations. Switching an algorithm from
floating- to fixed-point can result into time and power sav-

floating-point fixed-point
N level Bytes level Bytes Format

256 - 1 1280 Q10.5
128 1 1152 2 768 Q11.4
64 2 640 3 640 Q12.3
32 3 320 4 512 Q13.2
16 4 160 5 384 Q12.2

Table 2: RAM Bytes required for each Wavelet
Level using a 128x128 picture for floating-point and
an 256x256 picture for fixed-point calculation. The
data format for fixed-point calculation is given in
the Texas Instruments Notation.

ings with the cost of less precision, need for a thorough num-
ber range analysis, and more programming work. Thus us-
ing a fixed-point format for the fractional filter can help to
reduce the computational requirements and to reduce the
RAM memory needed for the destination subbands. A tu-
torial on using the fixed-point format for wavelet filtering
is given in [7]. We here just shortly review the method-
ology for fixed-point arithmetic. Fixed-point numbers are
internally stored as an integer number (and the two- comple-
ment is used for the bit-wise representation). A binary N-bit
fixed-point number denoted by its integer value a has exp(a)
fractional bits - that are the bits after the radix point, and
N − exp(a)− 1 integer bits. Note that exp(.) here refers to
the exponent and not to the exponential function. A stan-
dard notation for such a format is the Texas Instruments
Qm.n format, with m = N − exp(a) − 1 and N = exp(a).
The real number A to be interpreted by the user is then
given as

A = a · 2−exp(a). (9)

The fractional fixed-point filter can then be realized by first
transforming the real wavelet coefficients to the Q0.15 for-
mat, see table 1. The second requirement is that for all
add and multiply operations the exponent has to be taken
into account. For an add operation, the both operands must
have the same exponent. A multiply operation will require
a result exponent given by the sum of the input exponents.
Both operations can be supported by an exponent change
function that is realized by left or right bit-shift. Regarding
these requirements, the fixed-point filter can be programmed
similarly as the floating-point filter.

As the number range of the wavelet coefficients gets larger
from level to level, the output data format has to be en-
larged from level to level. The study in [11] on the required
range reports the data formats in table 3.1 to be sufficient.
(Note that there is a general difference when the usage of
fixed-point numbers for wavelet transforms is discussed in
the literature. Sometimes, the fixed-point numbers are only
used for the representation of the wavelet coefficients, as it
is done in [11]. In this work, when a fixed-point algorithm is
discussed, this includes the coefficient representation as well
as the internal calculations.) For the first wavelet level, the
input data format is Q15.0, as the picture samples are in-
teger numbers. Note that the L- and H-wavelet coefficients
(computed by the functions filtL and filtH) are already com-
puted in the data format of the final level (even if they may
need a smaller range than the subband coefficients). The

memory requirements for the fixed-point filter are given as

Bytesfixed =



Npic/level · 5, level = 1
Npic/level · 6, level > 1

and are given in table 3.1 for the levels 1-5.

4. PERFORMANCE EVALUATION

4.1 Quality Measurements
The floating-point transform gives perfectly reconstructed

pictures. The fixed-point transform introduces errors through
the filter computations.

For the quality evaluation the GreySet1 test images from
the Waterloo Repertoire (available at http://links.uwaterloo.
ca/bragzone.base.html) were chosen. This set contains 12
256x256x8 greyscale images in the graphics interchange for-
mat (GIF). The pictures were converted to the portable net-
work graphics (PNG) format using the convert command of
the software suite ImageMagick (available at http://www.

imagemagick.org). Finally, the data was converted to plain
text with unsigned char numbers using the software Octave.
ImageMagick and Octave both are included in many free
linux distributions.

The quality measurements evaluate the fractional fixed-
point filter computing the peak signal-to-noise ratio (PSNR)
to compare the original image with the reconstructed im-
age, which is generated through a wavelet transform of the
orginal image followed by an inverse wavelet transform. We
have implemented a reference transform in C including a
floating-point and a fixed-point format version, which were
employed to develop the fractional wavelet filter for the cam-
era sensor. The reference implementation gives the same re-
sults than the final forward fractional filter for the camera
sensor and thus was employed for the PSNR measurements.
The measurements include six wavelet levels for the given
set of pictures. Even if for us there was no quality degra-
dation visible, the picture reconstruction was not lossless.
Figure 3 demonstrates that the PSNR values for the first
level range from 60 to 87 dB, whereas the higher levels give
much lower PSNR ranging from 47 to 57 dB. The reason for
this difference may be that the input for the first level are
integer numbers that are represented without loss of preci-
sion. For the levels 2-6 there is roughly a difference of 1-2
dB between the levels. The loss of precision affects the pic-
ture quality, but this may be of little interest when a lossy
compression algorithm is employed, as for instance the bit-
plane coding technique SPIHT. In the lossy mode, SPIHT
cuts the least significant bits of and thereby can give very
high compression ratios.

4.2 Time Measurements
For the time measurements the forward fractional wavelet

filter was employed on the camera sensor for a six-level for-
ward wavelet transform. The 2 kBytes of the sensor’s RAM
did allow to transform a 128x128x8 picture with floating-
point precision and a 256x256x8 picture with reduced fixed-
point precision. Table 4.2 gives the times needed for the
transform listed by read and write SD-card access times
and processor computing times. The floating-point trans-
form takes 16.18 seconds and the fixed-point transform 11.64
seconds. The floating-point algorithm is very slow because
the processor does not support the required high-precision
arithmetic. Instead, the operations are realized through

time [sec]
Tread Twrite Tcompute Ttotal

float128 1.421 0.5425 14.22 16.18
fix256 2.839 1.085 7.716 11.64

Table 3: SD-card access and processor computing
times for a six-level wavelet transform. For the
floating-point measurement an 128x128x8 picture
and for the fixed-point measurement a 256x256x8
picture were transformed. The floating- point algo-
rithm is very slow because the compiler translates
the computations to 16 Bit integer operations.

heavy compiler support. The floating-point computations
are about seven times slower than the fixed-point compu-
tations. This is even more remarkable, as the computing
times take the largest amount of total time. Unexpectedly,
the flash memory is not the bottleneck of the fractional fil-
ter, even if there is large overhead in the read process, as
the rows are read repetitively. In most applications, the
fixed-point algorithm will be preferable as the floating-point
algorithm is much slower even for a four times smaller input
picture while it needs the same amount of RAM.

5. CONCLUSION
In this paper the fractional wavelet filter technique was

introduced as a computation scheme that allows the picture
wavelet transform to be implemented with very low RAM
requirements. The fractional wavelet is applied to a cam-
era sensor node that uses a 16 Bit low-cost signal controller
with 2 kByte of RAM. The floating-point fractional wavelet
transform takes an 128x128x8 picture as an input and needs
16 seconds for six wavelet levels, whereas the fixed-point
filter only roughly needs 12 seconds while transforming a
256x256x8 picture.

Even if we could not see any quality degradation in the
pictures, the fixed-point reconstruction is not lossless. How-
ever, when a bitplane coding technique is applied the quality
may not be affected in the lossy mode as the least significant
bits of the coefficients are cut anyway. The fixed-point filter
is a preferable choice as the wavelet based coding techniques
especially give superior results with high compression ratios.

The fractional filter uses a SD-card to read the image and
to write the wavelet subbands. An external flash memory
is a very realistic extension to a camera sensor node, as the
data of several pictures has to be stored anyway, includ-
ing the original and the transformed picture. It is barely
feasible to immediately send out the computed wavelet co-
efficients to the sensor network, as there might be network
congestion or internal ongoing operations with higher pri-
ority. The fractional filter operates line by line and thus
allows the usage of a filesystem that only can access blocks
of 512 Bytes. Remarkably, as the time measurements show,
the SD-card is not the bottleneck of the transform but the
filter computations.

In our future work we will implement an inverse fractional
filter and incorporate the lifting scheme. The lifting scheme
cannot be applied to the vertical filtering technique of the
fractional filter and also not to the horizontal transform of
the first level, as the input lines of this level have to use an
integer buffer array to not exceed the memory. The lifting
scheme allows to compute the one- dimensional transform

 40

 50

 60

 70

 80

 90

 100

b
i
r
d

b
r
i
d
g
e

c
a
m
e
r
a

c
i
r
c
l
e
s

c
r
o
s
s
e
s

g
o
l
d
h
i
l
l

h
o
r
i
z

l
e
n
a

m
o
n
t
a
g
e

s
l
o
p
e

s
q
u
a
r
e
s

t
e
x
t

P
S
N
R

[
d
B
]

lev1
lev2
lev3
lev4
lev5
lev6

Figure 3: PSNR quality measurements for the fixed-point wavelet transform. The proposed system uses the
fractional filter for the forward transform and a standard inverse transform. Even if there was no quality
degradation visible, the transform is not lossless. The first level gives very high PSNR values as the transform
input values are integers. The quality loss may not affect a lossy compression algorithm as least significant
bits are cut anyway.

in place -that is,there is only one buffer for the input and
output values, where the applied buffer must have the ap-
propriate size to contain the final wavelet coefficients. It
thus can be applied to the higher levels of the horizontal
transform, as the input lines for these levels take variables
with the larger data format anyway (and not just 8 Bit un-
signed char as for the first level input). Another method
to reduce the computational time and to offer an industrial
solution may be to use assembly language filter operations.

Even if the transform is very slow and intended for still im-
ages, it might have many applications in current sensor net-
works, including robotics or space exploration. The trans-
form can be a preprocessing technique for many compression
algorithms that can help to reduce network congestion and
overall energy. Our future work will also concern the devel-
opment of a low-complexity version of SPIHT for a picture
compression on the camera sensor.

As we already have discussed in section 1.1, the wavelet
techniques for signal processing in sensor networks have not
yet extensively been discussed in the literature. A reason for
this may be that the micro controllers that are generally ap-
plied for these networks are regarded to not fulfill the com-
putational and the memory requirements. The fractional
wavelet filter shows that more complex signal processing al-
gorithms can be applied to sensor networks and may be a
good starting point for future investigations in this field.

6. REFERENCES
[1] J. Chilo and T. Lindblad. Hardware implementation

of 1d wavelet transform on an fpga for infrasound
signal classification. IEEE Transactions on Nuclear
Science, 55(1):9–13, Feb. 2008.

[2] C. Chrysafis and A. Ortega. Line-based, reduced
memory, wavelet image compression. IEEE
Transactions on Image Processing, 9(3):378–389, Mar
2000.

[3] K.-C. Hung, Y.-J. Huang, T.-K. Truong, and C.-M.
Wang. Fpga implementation for 2d discrete wavelet
transform. Electronics Letters, 34(7):639–640, Apr
1998.

[4] S. Ismail, A. Salama, and M. Abu-ElYazeed. Fpga
implementation of an efficient 3d-wt temporal
decomposition algorithm for video compression. IEEE
International Symposium on Signal Processing and
Information Technology, pages 154–159, Dec. 2007.

[5] H. Karl and A. Willig. Protocols and Architectures for
Wireless Sensor Networks. John Wiley & Sons, 2005.

[6] J. Oliver and M. Perez Malumbres. On the design of
fast wavelet transform algorithms with low memory
requirements. IEEE Transactions on Circuits and
Systems for Video Technology, 18(2):237–248, Feb.
2008.

[7] S. Rein. Fixed-Point Arithmetic in C: A Tutorial and
an Example on Wavelet Filtering. Wavelet Application
Group, Technische Universität Berlin, 2008. available
at www.mdt.tu-berlin.de/research/wavelets.

[8] S. Rein, C. Gühmann, and F. Fitzek. Mobile Phone

Programming, chapter Sensor Networks for
Distributive Computing, pages 397–409. Springer,
2007.

[9] A. Said and W. Pearlman. A new, fast, and efficient
image codec based on set partitioning in hierarchical
trees. In IEEE Transactions on Circuits and Systems
for Video Technology, volume 6, June 1996.

[10] S.Lehmann, S.Rein, and C.Gühmann. External flash
filesystem for sensor nodes with sparse resources.
submitted to Mobimedia’08.

[11] T.W.Fry and S. Hauck. SPIHT image compression on
FPGAs. In IEEE Trans. on Circuits and Systems for
Video Technology, volume 15, Sept. 2005.

[12] B. Usevitch. A tutorial on modern lossy wavelet image
compression: Foundations of JPEG2000. In IEEE
Signal Processing Magazine, Sept. 2001.

