
Error control for Video Streaming with Small Data Units

Jari Korhonen1
Norwegian Univ. of Science and Technology (NTNU)

Centre of Quantifiable Quality of Service (Q2S)
NO-7491 Trondheim, Norway

jari.korhonen@q2s.ntnu.no

Pascal Frossard
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Laboratory (LTS4)
CH-1015 Lausanne, Switzerland

pascal.frossard@epfl.ch

ABSTRACT
In multimedia streaming, small errors are typically easier to mask
with common error concealment strategies, but small packet size
increases the overhead caused by network header information. To
reduce the header overhead, large packets are typically favored.
In multimedia streaming applications, every packet comprises
ideally one individually decodable data unit only. Unfortunately,
large packets penalize the error concealment performance at the
decoder, which may lead to large and fluctuating distortion. In
this paper, we propose an error control mechanism based on
efficient packetization of small independent decoding units.
Instead of using erasure correction codes to protect packets as
such, it gathers several small source data units in each transport
packet together with redundancy data units, and the distribution of
the units is chosen in order to minimize the distortion at the
decoder. The proposed technique has been evaluated by
simulating an H.264/AVC video streaming system and comparing
the performance against conventional erasure protection scheme
involving large data units. The results show that in the presence of
packet losses the proposed mechanism provides smoother
perceived video quality degradation performance than the
conventional packetization and generic forward error correction
mechanisms.

Categories and Subject Descriptors
H.4.3 [Information systems applications]: Communications
applications – Computer conferencing, teleconferencing, and
videoconferencing.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Video Coding, Multimedia Streaming, Forward Error Correction.

1. INTRODUCTION
Basically, there are two basic approaches to recover from packet
losses in video communications over packet-switched networks.
First, the receiver application can try to reconstruct the missing or
damaged parts of the video stream, possibly without any support
from the sender application, interpolating them from the correctly
received neighboring parts of the stream. This strategy is often
referred as error concealment (EC), as it intends to conceal the
perceptual impact of errors instead of actually correcting them.
Another strategy is to regenerate the missing parts of data by
using added redundant information in the transport stream
(forward error correction, FEC) or requesting retransmissions for
the lost data (automatic repeat request, ARQ).
Due to timing constraints and inadequate support for
retransmissions in multi-user applications, ARQ is often not a
viable option for error recovery in multimedia communications.
FEC is therefore usually preferred in most of the low delay
streaming applications that can afford some packet loss. Generally
speaking, FEC can be used to decrease the observed residual loss
rate of source data blocks or symbols, but it cannot guarantee
fully reliable delivery of data. This is why FEC and EC are
typically used to complement each other. Error concealment
mechanisms work generally best if the lost regions are small,
since adjacent video information can be used for masking the
damaged areas. In particular, a large number of small lost sections
distributed smoothly over the video frames often result in better
perceived quality than smaller number of large losses. This is the
rationale behind several interleaving mechanisms and techniques
facilitating error concealment, such as flexible macroblock
ordering (FMO) standardized in H.264/AVC [1, 2].
Ideally, each transport packet contains a single individually
decodable data unit. Fragmented units may become entirely
useless if just one of the fragments is lost, and on the other hand,
it would be desirable to allocate as little data in each packet as
possible in order to minimize the impact of a single packet loss
[3]. Unfortunately, small packet payload leads to large header
overhead and inefficient use of the transport channel capacity [1].
This is why packetization techniques always present a
compromise between bandwidth efficiency and resilience against
packet losses. In this paper, we propose a scheme that aims to
alleviate the problem with large losses without increasing the
packet header overhead. Several small and independently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiMedia’08, July 7–9, 2008, Oulu, Finland.
Copyright 2008 ACM 978-963-9799-25-7/08/07… $5.00.

1This work was partially carried out at during the tenure of an ERCIM
“Alain Bensoussan” Fellowship Programme.

peri
Callout

peri
Typewriter
Mobimedia 2008 July 7-9, 2008, Oulu, Finland.
Copyright 2008 ICST ISBN 978-963-9799-25-7
DOI 10.4108/ICST.MOBIMEDIA2008. 3910

peri
Typewriter

peri
Typewriter

peri
Typewriter

decodable data units are gathered in a network packet, in addition
to FEC redundancy data units. An efficient technique for
distribution of the data units in the transmission packets is
proposed in order to minimize the distortion caused by the loss of
any combination of transport packets.
The rest of this paper is organized as follows: Section 2
summarizes the background and the relevant related work.
Section 3 describes the proposed packetization and FEC
mechanism in details. The scheme is evaluated and compared
against traditional packetization in Section 4. Finally, the
concluding remarks are given in Section 5.

2. BACKGROUND AND RELATED WORK
2.1 Video Coding and Error Resilience
In H.264/AVC, the basic element for decoding is called network
abstraction layer unit (NALU) [1]. One NALU may contain
decoding parameters or a slice of picture data for either predicted
or intra frames. Each slice comprises one or more macroblocks of
16x16 pixels. Basically, the slice size can be selected rather freely
from one macroblock even up to the all macroblocks in the frame.
Typically, lost NALUs are detected by using sequence numbers.
When a loss is observed, appropriate error concealment can be
applied to replace the missing data. The simplest method is to
repeat the latest correctly received slice or frame, but better
results can be achieved with more advanced algorithms. Even
though error concealment is not formally included in H.264/AVC,
non-normative error concealment features have been defined for
the standard. For self-contained intra frames (I-frames), weighted
pixel value averaging can be used to interpolate each pixel in a
missing macroblock using the pixel values from the correctly
decoded neighboring macroblocks. For predicted frames (P- and
B-frames), it is possible to predict the motion vectors of lost
macroblocks by analyzing the motion activity in the correctly
received slices [4].
To facilitate error concealment, the H.264/AVC standard includes
several tools, such as flexible macroblock ordering (FMO) [1].
With FMO, the macroblocks within a frame can be interleaved or
scrambled so that adjacent macroblocks will be allocated in
different NALUs. In this way, the probability of losing adjacent
macroblocks can be reduced. There are several possible
interleaving and shuffling patterns that can be used for FMO. In
practical experiments, FMO with a simple checkerboard pattern
(dispersed mode) has been reported to improve the average
performance significantly when packet losses occur [5].
Data partitioning tools have also been proposed in H.264/AVC,
where it is possible to generate partitions with different perceptual
importance (A, B and C partitions). With unequal error
protection (UEP) before transmission, the partitions with higher
importance can be protected better, for example by using stronger
FEC codes to protect the high priority NALUs. However, a loss of
a header partition (A partition) will render the related B and C
partitions useless. This is why the use of data partitioning is
advisable only if very strong protection can be afforded to protect
the A partitions. For example, it is reported in [1] that FMO
outperforms data partitioning even when the A partitions are
protected by sending each of them two or three times in different
transport packets.

2.2 Forward Error Correction
There are several different alternatives to implement FEC for
video streaming applications. The simplest method is to repeat the
source data blocks or packets several times to increase the
probability that at least one of the redundant copies is received.
This method may introduce enormous overhead and often much
smaller amount of redundancy can produce comparably good
results. A well-known and simple technique is to apply binary
exclusive OR (XOR) operation across the source symbols. If one
of the source symbols (packets) is lost, it can be recovered by
applying the XOR operation to the FEC symbol and the
remaining source symbols. RFC 2733 lists several ways of using
XOR-based FEC schemes [6].
Optimal error correcting capability can be achieved by using
maximum distance separable (MDS) codes, such as Reed-
Solomon (RS) codes. An RS(n,k) encoder takes k source symbols
as input and generates n-k FEC symbols as output. The group of n
symbols (k source symbols and n-k FEC symbols) is defined as a
coding block that is transmitted over a lossy transport channel. An
RS decoder can then regenerate the original source symbols from
any k of the n symbols in the block [7]. Unfortunately, if more
than n-k symbols are lost, none of the lost source symbols can be
recovered. This is a clear weakness in case the fraction of lost
packets even occasionally exceeds n-k symbols per block.
Streaming applications are likely to experience bursts of losses,
which may result in dramatic quality drop when several large
packets are lost consecutively. In this case, it would be better to
recover at least part of the lost packets to avoid the loss of
consecutive media packets.
Typically, interleaving can be used to address the problem of
bursty packet losses, in order to attain a smooth distribution of the
lost media units [8]. However, efficient interleaving across several
RS coding blocks causes significant latency when coding blocks
are long. To achieve smoother data recovery performance within a
coding block it is possible to use partial RS codes [9] or low-
density parity check (LDPC) codes optimized for high loss rates
[10]. Unfortunately, the cost of better error recovery probability at
high loss rates is the lower error recovery probability at low loss
rates. In addition, partial RS codes leave part of the data
unprotected, and LDPC codes cannot achieve as good overall
error recovery capacity as RS codes. This is why these
approaches only offer a limited flexibility in the design of the
error control. This is certainly not ideal for common applications
where data are not clearly distributed into different levels of
importance.
In order to design more adaptive error control solutions, UEP
scheme based on priority encoding transmission (PET) has been
proposed in [11]. PET scheme segments the source data in units
of different priorities and protects these units unevenly with
different erasure correction codes (typically, RS codes with
different code rates). Then, data units from each priority class are
allocated in each packet as illustrated in Figure 1. In this example,
layer 1 (highest priority) is protected with a strong RS(7,2) code,
layer 2 with RS(7,4) code and layer 3 with RS(7,6) code. With
unequal error protection, the data of highest priority are more
likely to be fully recovered. At the same time, the number of
quality levels that can be decoded increases with the number of
packets received by the decoder.

Recall that RS codes can only recover data when the number of
losses is smaller than n-k packets. Since packets can contain
source media data or FEC redundancy, the residual data loss rate
does not only depend on the fraction of lost units in a coding
block, but also on which units are lost. For the same number of
lost packets L>n-k, the data loss process might be very different,
depending if the lost packets cover L FEC packets, L media data
packets, or a mix of media data and FEC packets. This leads to
varying loss recovery performance, and unstable quality at the
decoder.

To alleviate the stability problem and make the residual data loss
characteristics smoother, a packetization strategy for short audio
frames has been proposed in [12]. Similarly to PET, the proposed
scheme allocates several data units in each packet. However, the
source data units are built to be approximately equal in
importance. Therefore, equal FEC protection is implemented. The
target of this design is to spread source and FEC units evenly
among packets. In addition, every coding group should occupy a
unique set of packets. The scheme is illustrated in Figure 2 (in this
example, an MDS(3,2) code is used for all 7 coding blocks). More
details of the scheme are explained in Section 3.

3. PROPOSED SCHEME
In this paper, we focus on a simple streaming scenario, where
H.264/AVC video is transmitted over a packet erasure channel
using IP/UDP/RTP protocol stack without retransmissions. In
order to improve the performance of error concealment, we have
adapted the packetization scheme proposed in [12] for streaming
H.264/AVC video. Allocation of data units is said to be ideal if
there is no conflict between any two (or more) coding blocks. In
this context, a data unit may refer to either a source data unit
(such as NALU) or FEC data unit. Conflict of coding blocks is
defined as follows: we say that two blocks conflict if they occupy
two or more same packets. For example, if two RS(5,3) coding
blocks occupy packets {1,2,3,4,5} and {1,2,6,7,8}, respectively,

they are in conflict, since they both occupy packets 1 and 2. In
contrast, coding blocks that occupy packets {1,2,3,4,5} and
{1,6,7,8,9}, are not in conflict.

The benefit of ideal allocation is that the fluctuation of the
residual loss rate can be reduced as small as possible when packet
losses hit source NALUs and FEC units unevenly. Since every
possible combination of packet losses lead to different mix of data
unit losses within each non-conflicting coding block, the residual
NALU loss rate converges toward average with all possible
combinations of a certain number of lost packets. Ideal allocation
can be achieved for an RS(n,k) code if the constraints in Equation
(1) are fulfilled (B coding blocks are allocated in P packets, each
packet can accommodate N units). Large values of n and B would
result in smoother distribution of residual losses, but on the other
hand, longer latency due to longer packetization cycle. Often, it is
simplest to choose N=n and B=P, and then P is easily solved from
Equation (2).

PPnnB

PNBn
−=−

=
22)(

 (1)

 1)(2 +−== nnBP (2)

The algorithm (1) shown below (similar as in [12]) can be used to
derive B unique combinations of n packets (among P packets in
total, indexed from 1 to P) that do not conflict with each other.
The computational overhead of the algorithm is not a significant
problem, since it is possible to generate a precomputed table of
ideal packet combinations offline. Function
find_ideal_comb is called recursively to test exhaustively all
possible combinations, starting from {1,2,…,n}, until all B non-
conflicting combinations have been found (or all possible
combinations have been trialed and the algorithm fails). When the
ideal allocation is known, the packetizer takes B RS coding blocks
for each packetization cycle and allocates the NALUs and FEC
units among packets according to the attained list of non-
conflicting combinations.

Algorithm 1: find the optimal allocation of data units

call find_ideal_comb({Ø}, {1,2,…,n})

function find_ideal_comb(comb_list, test_comb)
 insert test_comb to comb_list
 if size(comb_list) == B
 return true
 Endif
 while next_test_comb != {P-n+1,…,P} // last comb.
 compute next_test_comb
 if next_test_comb does not conflict with comb_list
 if find_ideal_comb(comb_list, next_test_comb)==true
 return true
 else
 remove next_test_comb from comb_list
 endif
 endif
 end while
 return false
end function

Figure 1. Priority encoding transmission. S=Source, F=FEC

unit, numbers denote different coding blocks (layers).

Figure 2. Data unit allocation as proposed in [12]. S=Source,

F=FEC unit, numbers denote different coding blocks.

In [12], it is assumed that the size of all the source data units and
FEC units is the same. Unfortunately, this assumption is not
realistic with many advanced coding standards. In the JM
reference encoder for H.264/AVC [13], the maximum NALU size
can be defined, but NALU sizes cannot be made exactly the same
(in theory, it would be possible to get close to a constant size, but
it would pose a significant extra complexity burden at the
encoder). In RS coding, the FEC units must be as long as the
longest of the source units (see Figure 3); this is why the actual
FEC overhead in bytes is usually larger than the FEC overhead
measured in the number of packets (n-k)/k. For example, if three
packets of sizes {150,200,250} bytes are protected with two FEC
packets of 250 bytes, the overhead in the number of packets is
2/3, but the actual overhead in bytes would be
(2·250)/(150+200+250)=5/6. In order to minimize the extra FEC
overhead, the length of the NALUs should fluctuate as little as
possible. One of the benefits of using small NALUs is that the
variation of NALU sizes can be suppressed.

To minimize the transport packet header overhead, the total
packet payload should be close to the maximum transport unit
(MTU) size (in the Internet, MTU is usually assumed to be
around 1400-1500 bytes). Therefore, when there are N units
packed in each packet, the maximum NALU size should be close
to MTU/N. However, the maximum NALU size cannot be chosen
arbitrarily to fulfill this condition, since the meaningful range of
NALU sizes depends also on the coding parameters. As a rule of
thumb, the lower the bitrate, the smaller the NALUs should be.
On the other hand, very small NALU size cannot be
recommended since it would decrease the coding efficiency due
to increased NALU header overhead.

4. EVALUATION
We show the importance of efficient packetization in error control
by comparing the proposed scheme to a baseline system
represented in Figure 3. RS(5,3) code has been chosen for erasure
protection, ie. each group Gi of three source NALUs
(Gi={S3i,S3i+1,S3i+2}) is protected by two RS FEC units
(F1(S3i,S3i+1,S3i+2) and F2(S3i,S3i+1,S3i+2)). This code is considered
as a good option for streaming applications, since the coding
block is rather short and the protection level is sufficient for
relatively high loss rates. In fact, even lower protection level
could be sufficient in many practical networking scenarios, and
our example is primarily targeted on environments where high
packet loss rates may occur (such as some wireless multicast
systems, for example).

For the baseline scheme, we have used maximum NALU size of
1400 bytes. One NALU or FEC unit is allocated in each packet.
Source packets and the respective FEC packets are transmitted
consecutively as illustrated in Figure 3. In the concept system, the
maximum NALU size is 280 bytes and five data units are
accommodated per packet (three NALUs and two FEC units).
Each packetization cycle contains 63 NALUs and 42 FEC units,
resulting in 21 packets per cycle in total. With these parameters,
ideal allocation of data units can be attained. The packetization
scheme is illustrated in Figure 4.

In order to evaluate the performance of the proposed scheme, we
have simulated both baseline and concept packetization schemes
in Matlab. In the simulations, we have used two different CIF
sequences ‘Soccer’ and ‘Foreman’, 30 frames per second. JM

Figure 3. Baseline packetization and FEC.

Figure 4. The basic principle of the proposed combined packetization and FEC.

reference codec version 13.2 [13] has been used for encoding and
decoding the sequences. In the first set of experiments, both
sequences have been encoded using the two different maximum
NALU sizes (280 and 1400 bytes) and quantization parameter
(QP) 30. Every ninth frame is an I-frame, B-frames are not used.
The standard JM concealment (motion copy) has been used and
FMO (dispersed mode) has been enabled to facilitate error
concealment. Because the original sequences were rather short,
several copies were concatenated to form longer sequences of
approximately 600 frames to ensure that the experiment results
are statistically significant. This configuration represents a typical
video sequence suitable for streaming.

Because of the larger NALU header overhead, the bitrate of the
encoded sequences is slightly increased when small NALUs are
used. However, it is worth noting that with large maximum
NALU size the variation of actual NALU sizes is also higher.
This leads to larger FEC overhead and smaller average packet
size, which in turn increases the average packet header overhead.
Tables 1 and 2 summarize the essential parameters of the
‘Foreman’ and ‘Soccer’ sequences, respectively. As the results
show, the approximately 5% higher bitrate of the stream encoded
with small NALUs is largely compensated in transport rate due to
lower FEC and header overhead (typical IP/UDP/RTP headers of
40 bytes are assumed to form the packet header overhead). The
difference in transport stream bitrate is approximately 2% only.
Packet erasure channel have been simulated by dropping packets
randomly in an independent fashion. In practice, this is done by
generating random numbers ri between 0 and 1, and dropping
packet i if ri is smaller than the threshold value θ (0<θ<1). Six
different values of θ={0.075, 0.15, 0.2, 0.25, 0.3, 0.35} have been
used to cover the range of meaningful packet loss rates for each
four test sequences. According to some studies, a realistic packet
loss scenario involves bursty packet erasure patterns [14,15].
However, bursty packet losses can be spread more smoothly by
interleaving, and in fact, our scheme scrambles the original
sequence of NALUs quite efficiently. A random packet loss
model is therefore considered appropriate for the evaluation of the
proposed system.

Table 1. Characteristics of the ‘Foreman’ sequences (QP=30)

 Long NALUs Short NALUs
 PSNR 38.43 38.43
 Average coded bitrate 624 kbit/s 653 kbit/s
 Average packet size 1013 B 1332 B
 Average transport rate 1,151 kbit/s 1,168 kb/s

Table 2. Characteristics of the ‘Soccer’ sequences (QP=30)

 Long NALUs Short NALUs
 PSNR 38.12 38.13
 Average coded bitrate 791 kbit/s 832 kbit/s
 Average packet size 1210 B 1341 B
 Average transport rate 1,429 kbit/s 1,472 kbit/s

The resulting packet loss traces have been applied to real
H.264/AVC streams and the sequences have been decoded, using
the standard JM error concealment feature (motion copy). The
results were analyzed by measuring the PSNR compared to the
original video sequences. The resulting PSNR values have been

plotted as a function of the observed packet loss rate in Figure 5
(‘Foreman’ sequence) and Figure 6 (‘Soccer’ sequence). As both
of the curves show, the use of short NALUs and the proposed
packetization scheme improve the video quality notably
(approximately 1 dB), when the packet loss rate exceeds 0.15. At
low packet loss rates below 0.1, the residual NALU loss rate is so
low that the perceived quality degradation is negligible. The
performance difference is rather similar for both ‘Foreman’ and
‘Soccer’, so it is assumed that the results can be generalized for a
relatively large variety of different content types.

0 0.1 0.2 0.3 0.4
28

30

32

34

36

38

Packet Loss Rate
PS

N
R

Quality vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 5. PSNR results for ‘Foreman’ sequence (QP=30).

0 0.1 0.2 0.3 0.4
28

30

32

34

36

38

Packet Loss Rate

PS
N

R

Quality vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 6. PSNR results for ‘Soccer’ sequence (QP=30).

Several studies suggest that occasionally occurring severe errors
are more harmful for the overall subjective video quality than
more smoothly distributed smaller errors [8,14,15]. With this in
mind, we have analyzed also the variance of the PSNR values of
individual frames in each test case. Since the proposed
packetization scheme divides each frame in larger number of
slices than the baseline scheme, the proportion of frames impacted
by losses is higher. On the other hand, the impact of losing a
small slice is smaller than the impact of losing a large slice. This
is why the proposed scheme is supposed to reduce the quality
fluctuation significantly. To illustrate this effect, Figure 7 shows a
trace of PSNR values from ‘Soccer’ sequence with packet loss
rate 0.2. Frames from about 100 to 175 show slightly better
quality for the baseline scheme (long NALUs), but on the other
hand, the large quality fluctuation observed in frames from 175 to
250 is significantly reduced by using the proposed scheme.

In order to analyze the quality fluctuation more systematically,
we have measured the variance of PSNR values in each test case.
The results are shown in Figures 8 and 9 for ‘Foreman’ and
‘Soccer’, respectively. As the results indicate, the use of small
NALUs and the proposed packetization scheme reduce the

observed variance in quality substantially at all packet loss rates
higher than 0.1. This is why we could assume that the subjective
quality improvement achieved by using the proposed scheme
could be even bigger than the PSNR values shown in Figures 5
and 6 suggest.
In the scenarios described above, the average encoded frame size
is approximately from 2500 bytes (‘Foreman’) to 3500 bytes
(‘Soccer’). Since FMO is used, each frame is divided in at least
two slices (NALUs). Therefore, the average NALU size without
restricting it at the encoder would be approximately 1250-1750
bytes. This justifies the maximum NALU sizes used in our
experiments: maximum NALU size of 1400 bytes means typically
two slices per frame, whereas maximum NALU size of 280 would
result in approximately 10 slices per frame. However, with lower
or higher bitrates these parameters would not necessarily be
appropriate. In order to analyze the concept with different
bitrates, we have repeated the experiments also with very high
(QP=20) and very low (QP=40) quality versions of the ‘Foreman’
sequence.
The bitrate for the high quality stream is approximately 2.5
Mbit/s. Due to the MTU limitation in the traditional Internet, it is
not reasonable to use NALUs larger than 1400 bytes. Therefore,
we have used similar parameters as in the first set of experiments
(maximum of 1400 bytes for large NALUs and 280 bytes for
small NALUs), resulting in average of 8 slices per frame with
large NALUs and 40 slices per frame with small NALUs. It is
expected that the error concealment performance approaches
perfect recovery asymptotically when the slices get smaller. This
is why the difference in loss resilience assumedly suppresses
when the slices get smaller, even though the relative difference
remains the same as in our first test case. This assumption is
confirmed by the experimental results shown in Figure 10. In fact,
long NALUs seem to work slightly better at small PLRs (<0.2).
The quality variation show more favorable results for small
NALUs, but even then the difference is slighter than shown in
Figures 8 and 9 above. Due to the limited space, the quality
variance curves for this test case are omitted in this paper.

0 0.1 0.2 0.3 0.4
30

35

40

45

Packet Loss Rate

P
SN

R

Quality vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 10. PSNR results in ‘Foreman’ sequence (QP=20).

In the low quality scenario, the bitrate for the encoded stream
without NALU size restrictions is approximately 230 kbit/s, and
the average frame size is about 1000 bytes. Therefore, a
reasonable maximum NALU size with FMO would be 500 bytes.

100 150 200 250
25

30

35

40

Frame Number

P
SN

R
PSNR Evolution

Long NALUs
Short NALUs

Figure 7. Trace of PSNR values in ‘Soccer’ sequence
(PLR=0.2).

0 0.1 0.2 0.3 0.4
0

5

10

15

Packet Loss Rate

V
ar

ia
nc

e
of

 P
SN

R

Quality Variation vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 8. PSNR variance in ‘Foreman’ sequence (QP=30).

0 0.1 0.2 0.3 0.4
0

5

10

15

Packet Loss Rate

V
ar

ia
nc

e
of

 P
SN

R

Quality Variation vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 9. PSNR variance in ‘Soccer’ sequence (QP=30).

We have repeated similar experiments as described above with
the low quality bitstream, using maximum NALU size of 500
bytes for large NALUs and 100 bytes for small NALUs. These
sizes are roughly in the same proportion to the bitrate as in the
first set of experiments with QP=30. The resulting PSNR value
curves are shown in Figure 11. As the results show, the
performance difference between small and large NALUs is
resembles relatively accurately to the behavior observed in the
first set of experiments. The PSNR variance curves, although not
presented here, show similar tendencies.

0 0.1 0.2 0.3 0.4
28

29

30

31

32

33

34

Packet Loss Rate

P
SN

R

Quality vs. Packet Loss Rate

Long NALUs
Short NALUs

Figure 11. PSNR results in low quality ‘Foreman’ sequence
(QP=40).

As the results show, performance of error concealment can be
substantially improved by dividing video frames in small slices
and using a sophisticated scheme for packetizing and protecting
the slices. However, to ensure optimal performance, the size of
NALUs should be selected carefully. If the slices are too small,
the benefit of the scheme is lost due to the decreased compression
efficiency. On the other hand, MTU of the underlying network
defines the upper limit for NALU size. This is why the proposed
scheme is not ideal for streaming video data of extremely high or
low bitrates. Anyways, the advantages of the concept are obvious
at typical bitrates in video streaming applications. Reasonable
NALU size can be defined by simple heuristics, and deeper
analysis of NALU size selection is out of the scope of this paper.

5. CONCLUSIONS
In this paper, we have proposed a packetization and FEC scheme
for streaming H.264/AVC video, based on small individually
decodable units (NALUs) and even distribution of source NALUs
and FEC data units within transport packets. According to the
experiments, the proposed scheme provides significant
improvement in the subjective video quality in the presence of
packet losses, both by increasing the overall quality and reducing
the fluctuation of quality from frame to frame. The drawback of
using small NALUs is the decreased compression efficiency
caused by larger total NALU overhead. However, we have shown
that due to the generally less varying size of small NALUs, the
decreased compression efficiency can be largely compensated by
reduced FEC and packet header overhead.

6. REFERENCES
[1] Wenger, S. 2003. H.264/AVC over IP. IEEE Trans. on

Circuits and Systems for Video Techn. 13, 7 (Jul. 2003).
645-656.

[2] ITU-T, 2005. Advanced Video Coding for Audiovisual
Services. ITU-T Recommendation H.264.

[3] Clark, D., and Tennenhouse, D. 1990. Architectural
Considerations for a New Generation of Protocols. In Proc.
of ACM SIGCOMM Symposium (Philadelphia, PA, USA,
Sep. 24-27, 1990). 200-208.

[4] Wang, Y-K., Hannuksela, M., Varsa, V., Hourunranta, A.,
and Gabbouj, M. 2002. Error Concealment Feature in the
H.26L Test Model. In Proc. of ICIP ’02 (Rochester, NY,
USA, Sep. 22-25, 2002). II-729-II-732.

[5] Yim, C., Kim, W., and Lim, H. 2005. Analysis and
Performance Evaluation of Flexible Macroblock Ordering
for H.264 Video Transmission over Packet-Lossy Networks.
In Proc. of PCM ’05 (Jeju Island, Korea, Nov. 13-16, 2005).
LNCS 3767, Springer-Verlag, Berlin, Germany. 120-131.

[6] Rosenberg, J., and Schultzrinne, H. 1999. An RTP Payload
Format for Generic Forward Error Correction. IETF RFC
2733.

[7] Lin S., and Costello, D. J., 1983. Error Control Coding:
Fundamentals and Applications. Prentice-Hall, Englewood
Cliffs, NJ, USA.

[8] M. Claypool, and Zhu., Y. 2003. Using Interleaving to
Ameliorate the Effects of Packet Loss in a Video Stream. In
Proc. of MNSA ’03 (Providence, RI, USA, May 19-12,
2003). 508-513.

[9] S. Karande, and H. Radha. 2003. Partial Reed-Solomon
Codes for Erasure Channels. Proc. of ITW ’03 (Paris,
France, Mar. 31-Apr. 04, 2003). 82-85.

[10] A. Dimakis, J. Wang, and K. Ramchandran. 2007. Unequal
Growth Codes: Intermediate Performance and Unequal Error
Protection for Video Streaming. In Proc. of MMSP ’07,
(Chania, Greece, Oct. 1-3, 2007). 107-110.

[11] Albanese, A., Blömer, J., Edmonds, J., Luby, M., and Sudan,
M. Priority Encoding Transmission. In Proc. of FOCS ’94
(Santa Fe, NM, USA, Nov. 20-22, 1994). 604-612.

[12] Korhonen, J., Huang, Y., and Wang, Y. 2006. Generic
Forward Error Correction of Short Frames for IP Streaming
Applications. Multimedia Tools and Applications 29, 3 (Jun.
2006). 305-323.

[13] H.264/AVC Reference Software Archive. Available online:
http://iphome.hhi.de/suehring/tml/download /old_jm/

[14] Girod, B., Stuhlmüller, K, Link, M., and Horn, U. 1999. Loss
Resilient Internet Video Streaming. In Proc. of VCIP ’99
(San Jose, CA, USA, Jan. 1999). 833-844.

[15] Huitika, T., and Driessen, P. 2003. Datagram Loss Model for
Non-Interactive Real Time Streaming Video. In Proc. of
PACRIM ’03 (Victoria, Canada, Aug. 28-30, 2003). 756-
759.

