
Balancing Video on Demand Flows over Links with
Heterogeneous Delays

Gustavo Marfia(1), Claudio E. Palazzi(2), Giovanni Pau(1),

Mario Gerla(1), Medy Y. Sanadidi(1), Marco Roccetti(2)

1 Computer Science Department,
University of California Los Angeles,

Boelter Hall, Los Angeles, CA, 90095, USA
+1-310-825-4367

{gmarfia, gpau, gerla, medy}@cs.ucla.edu

2 Dipartimento di Scienze dell’Informazione,
Università di Bologna,

Mura Anteo Zamboni 7, 40127 Bologna, Italia
+39 051 - 209 45 03

{cpalazzi, roccetti}@cs.unibo.it

ABSTRACT
The popularity of Video on Demand (VoD) services has recently
grown to unprecedented levels. Even if UDP is often considered
the standard transport protocol for video streaming, TCP is often
used for VoD since its reliability, congestion control, and
resilience to the presence of firewalls/NATs on the link.
Unfortunately, poor video quality, frequent playback pauses, and
delays due to slow frame buffering are still annoying users
engaged in long RTT connections, both wired and wireless, with
the server. This is due to the ack-based mechanism that increases
the TCP’s congestion window, which leads to RTT-unfairness. As
a practical consequence, if a VoD user is experiencing long RTTs
while sharing the channel with another VoD user whose
connection has small RTTs, the former will see a very slow
progression of its video until the latter is done. In this paper, we
propose the use of TCP Libra on VoD servers to resolve this
RTT-unfairness issue, thus providing an efficient VoD service to
any user, regardless of her/his RTTs.

Keywords
Video on Demand, TCP, RTT-fairness.

1. INTRODUCTION
The popularity of Video on Demand (VoD) services, such as
Google Video and YouTube, has recently reached unprecedented
levels with a growing trend whose end is still not in sight.
Needless to say, their domain also extended on the wireless realm,
thus having VoD services enjoyed also on portable devices (e.g.,
PDAs, cellphones). Indeed, with the wide diffusion of handheld
devices able to connect to the Internet and to show multimedia
contents, it is easy to foresee an immediate future where mobile
users will represent the large majority of VoD consumers.

In this context, although UDP is often considered the standard
transport protocol for video streaming services, commercial VoD
services and personal video sharing on the web generally exploit
TCP. This preference is generally due to TCP’s reliability,
congestion control mechanism, and resilience to the presence of
firewalls/NATs between client and server.

Unfortunately, a well known (negative) property of TCP is
represented by its RTT-unfairness [1]. Simply stated, the sending
rate (i.e., the congestion window) of a TCP session increases upon
receiving acks of sent packets. Therefore, the shortest the path
between the server and the client is, the more acks per time unit
will be received and the faster the sending rate will increase. As a
consequence, TCP sessions with small RTTs will open their
congestion windows faster than those with large RTTs, thus
capturing most of the available bandwidth.

From a VoD point of view, this has practical implications both in
case of downloading a video and streaming it. In the first
scenario, users experiencing large RTTs on their connections are
forced to wait endlessly to have their video downloaded (at a
snail's pace), while users closer to the VoD server occupy the
whole bandwidth available, downloading one or more high
quality videos. With the second scenario, users on long RTT links
will be able to receive only very low quality streams as most of
the bandwidth is already utilized by very high quality streams on
small RTT sessions.

Needless to say, this problem affects both wired and wireless
connections; however, in the latter case, its negative effects are
exacerbated by the combination with other wireless issues such as
error losses, channel capture effects, and mobility [2] [3].

As an empirical demonstration, Fig. 1 sheds light on the entity of
the RTT-unfairness problem for VoD services utilized by generic
mobile users. Specifically, we have set two simultaneous
downloads of a file video of 26MB. Both connections shared the
same wireless bottleneck link of 1Mbps, a value comparable with
domestic DSL connectivity. One of the download was from Los
Angeles, US, to the same city; whereas the other one was between
Los Angeles and Taipei, Taiwan. In both cases, the last hop was a
standard IEEE 802.11b wireless link. The unfair bandwidth
utilization of the two simultaneous video downloads is evident in
Fig. 1. Indeed, even if sharing the same bottleneck, the two
downloading sessions achieve very different link utilizations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobimedia’07, Month 8, 2007, Nafpaktos, Aitolokarnania, Greece.
Copyright 2007 ICST 978-963-06-2670-5

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBIMEDIA 2007, August 27-29, Nafpaktos, Greece
Copyright © 2007 ICST 978-963-06-2670-5
DOI 10.4108/ICST.MOBIMEDIA2007.1760

Los Angeles
74%

Taiwan
6%

unutilized
20%

Figure 1. Unfair utilization of the available wireless

bandwidth due to different RTTs.

This unfairness among users, whether they are paying or not for
the VoD service, is clearly not acceptable. First, because users
would be very disappointed by the service and refrain from using
it again, and second, because VoD service provided would be
forced to renounce to possible market places, or to deploy servers
all around the world instead of having them located at their own
convenience.

To solve this problem we addressed the real cause at its base: the
TCP’s RTT-unfairness. We have hence designed TCP Libra
which employs a different congestion avoidance scheme to ensure
RTT-fairness, while still guaranteeing bandwidth efficiency and
friendliness to other TCP flows. Therefore, TCP Libra could be
used on VoD servers, bringing RTT-fairness to users connected to
that service, without affecting any other TCP session in the
Internet. Moreover, TCP Libra requires modifications only at
sender side (i.e., the server); this feature makes it very easy to be
deployed as only VoD service providers would need to implement
it and they will be willing to do it in order to provide a better
service to their customers. Instead, VoD service users will just
utilize their standard devices (e.g., laptop, PDA, smart cellphone)
with standard communication capabilities/protocols and enjoy the
RTT-fair service.

The rest of the paper is organized as follows. Section 2 reviews
the scientific literature that embodies the background for our
work. In Section 3 and Section 4 we present TCP Libra through
its high level design and detailed algorithm, respectively. The
experimental environment is described in Section 5, whereas
results are discussed in Section 6. Finally, Section 7 concludes the
paper.

2. TCP FOR VOD
The general belief that TCP were unsuitable for applications such
as VoD has been proven wrong both by real services actually
available through the Internet and by several scientific papers on
this topic. For instance, [4] elaborates on how to exploit client-
side buffering in multimedia streaming applications to address
TCP’s retransmission delays and throughput variance due to
congestion control.

As an example of work in this area, a practical approach to have
TCP transmitting packets in a CBR-like fashion is presented in
[5]; yet, this solution unfeasibly requires feedback from routers.

Recently, [6] proposed modifications to the congestion avoidance
scheme on the server aimed at stabilizing the TCP throughput
around a target rate. However, the authors assumed to deal with
metropolitan VoD services with very small RTTs for all the flows
in their experiments, without addressing the RTT-unfairness
problem.

To the best of our knowledge, [7] is the only work that considered
the RTT-unfairness problem in the context of providing VoD
services. The authors designed a receiver-based bandwidth
sharing system for allocating the capacity of the last mile
bottleneck among TCP-supported video flows according to user’s
preferences. Yet, the proposed mechanism is run at the receiver
side thus requiring to be mounted on all the clients exploiting a
certain bottleneck in order to work.

Instead, our approach is designed to run server-side. This way,
any VoD provider could adopt it on its servers to enable a more
fair and efficient service for all of its customers, that can hence
employ the regular TCP available on their operating systems.

3. TCP LIBRA’S COMPONENTS
TCP Libra has been designed with the goal of being independent
from RTT. It hence represents an excellent candidate to support
VoD services over heterogeneous delay scenarios. Yet, any new
transport protocol that will be utilized over the Internet has to take
into account a lot of issues including the availability of new high
speed links, the compatibility with the existing architecture and
protocols, and the general end-to-end philosophy that have served
so well till our days. To this aim, any proposal for modifying TCP
cannot be focused on addressing just a single issue; rather, it has
to follow a holistic approach that considers the performance that
the new protocol will achieve within the complex Internet
scenario and how the protocol will interact with existing
standards.

Coherently, not only we designed TCP Libra to achieve our initial
goal of RTT-unfairness, but we also added components to
improve efficiency and preserve friendliness with legacy
protocols. Interested readers may refer to [8] for a detailed
description and analysis of TCP Libra’s components. Here, for the
sake of conciseness, we limit our description to the basics of the
algorithm.

The main components of TCP Libra are:

1. Fairness control. The fairness control is the core
component of TCP Libra and implements its fairness
functionality by equalizing the throughput of heterogeneous
RTT flows. This component takes inspiration from
Floyd and Jacobson’s seminal work [1]. We extend that
work by adding a component that lowers the throughput
variance.

2. Capacity estimator. This component is in charge of
estimating the capacity of the bottleneck link at the beginning
of a new session. The capacity of the bottleneck can be
determined through an off line tool, such as CapProbe or Path
Rate [9] [10], or through a mechanism that is embedded in the

TCP protocol itself, such as TCP Probe does [11]. Extensive
simulation and testbed experiments of all the above schemes
have shown an accuracy well within 10% in a fraction of a
second. This is perfectly adequate for our purposes as,
generally, the capacity is something that our algorithm needs
to calculate only at the beginning of a VoD stream or
download.

3. Scalability control. The scalability control receives in
input the capacity of the bottleneck link from the capacity
estimator and sets the slope of the window increase
proportional to this value. We can intuitively justify this
choice by observing that a larger capacity of the bottleneck
link requires a greater speed to converge to the fair share; this
is a choice that enables TCP Libra to scale on links of any
magnitude.

4. Stability control. The stability control makes sure that,
taking as an input the share of buffer occupancy, the protocol
operates in its stability region, i.e., that interval where the
expected characteristics of the protocol hold and the
throughput average behaves as in the linear model [8]. This
control acts as a gauge on the scalability control, which may
be too aggressive in scenarios where a great number of flows
share the same bottleneck link.

5. Burstiness control. This component determines when
packets are factually sent, making sure that the network is not
injected with a heavy burst of traffic all at once, especially
when trying to scale at high bandwidth speed. Previous
studies demonstrated how pacing has a de-synchronizing
effect that leads to higher efficiency in steady state [12]. In
TCP Libra we have implemented a randomized pacing
strategy on the packet transmission functionality in order to
prevent synchronized losses and multiple reductions of the
TCP’s window among concurrent flows [8].

In the following section we present the TCP Libra algorithm,
highlighting the various components we just named and the
rationale behind their functioning.

4. TCP LIBRA ALGORITHM
To permit a factual deployment of TCP Libra, we have designed
it to be as compatible as possible with the de facto standard in the
Internet architecture. To this aim, we have forced ourselves to
limit the modifications required to implement it only at the TCP’s
sender side of a connection (i.e., VoD servers). Moreover, only
TCP’s congestion control algorithm is modified and in such a way
that it still falls into the class of the AIMD algorithms, thus
preserving fairness and friendliness properties towards other
simultaneous TCP flows [13]. However, TCP Libra modifies both
the way the window is increased after successfully receiving an
ack and the window reduction in case of a packet loss (by using a
variable multiplicative factor).
More in detail, the pseudocode fort TCP Libra’s algorithm for the
congestion control phase is reported in Fig. 2; regular TCP’s
congestion control algorithm can be found in [14].
In Fig. 2, windowt and RTTt are, respectively, the congestion
window size and the RTT, at time t. Instead, A and B are fixed
parameters, whereas αt is defined by (1) and (2).

 teCt
βα ⋅Υ−⋅⋅Χ= (1)

minmax

min

RTTRTT
RTTRTT t

t −
−

=β (2)

In (1) and (2), X and Y are fixed parameters, C is the total capacity
of the bottleneck link, RTTmax and RTTmin are the maximum and
the minimum RTTs experienced during the connection up to
time t.

Figure 2. TCP Libra’s congestion control.

4.1 The Rationale of the Algorithm
We can now map TCP Libra’s architectural components discussed
in Section 3 at an algorithmic level. However, as it is out of the
scope of this paper to provide a detailed explanation of the setting
of TCP Libra parameters (i.e., A, B, X, Y), for the sake of
conciseness we just provide fundamental information to
understand the functioning of the protocol and its suitability for
the considered scenario of a VoD service over wired/wireless
links with heterogeneous delays. However, interested readers can
find a comprehensive discussion of TCP Libra design and
configuration details for its general use in [8].

1. Fairness control. The fairness control component is the
core of our algorithm and is implemented through the terms

)(2 Α+tt RTTRTT and)(Α+tRTTB of the algorithm. The
former is utilized during the increase of the congestion
window, when an ack has been successfully received by the
sender. A similar term was already conjectured by Floyd and
Jacobson in [1] to be able to provide RTT-fairness. Through
analytical investigation we extended that work by adding a
component that lowers the throughput variance [8]. The aim is
that of penalizing those flows whose RTT exceeds a certain

 if (an ack is successfully received) then

Α+

⋅
⋅+←+

t

tt

t
tt RTT

RTT
window

windowwindow
2

1
1 α

 else if (three dupacks are received) then

)(21 Α+⋅

Β⋅
−←+

t

t
tt RTT

windowwindowwindow

11 ++ ← tt windowssthresh

 else if (timeout expires) then

21

t
t

windowssthresh ←+

 11 ←+twindow

 end if

threshold as they are surely experiencing severe congestion
problems on the path. Indeed, in those cases where

Α<<tRTT then
Α

≅
Α+

22
t

t

t RTT
RTT

RTT whereas when

Α≈tRTT then
2

2
t

t

t RTT
RTT

RTT
≅

Α+
. Instead, the term

)(Α+tRTTB gives us control over the range of RTTs for
which we are interested in equalizing the throughput.

2. Capacity estimator. As already discussed, the capacity of
the bottleneck can be precisely and quickly determined
through an off line tool or an embedded mechanism within the
protocol [9] [10] [11]. In our simulation experiments, the
capacity was known in advance, of course. Work is now in
progress to incorporate the capacity probing feature (using
packet pair techniques) directly into TCP Libra. Clearly, this
requires TCP packets to be sent in group of two, one
immediately after the other.

3. Scalability control. The scalability control is embodied by
the term X·C in (1). Thanks to it, TCP Libra is able to scale its
window increase rate proportionally to the bottleneck
capacity: the slope of the window increase is set
proportionally to the capacity value in Mbps. The parameter X
is fixed and must be set taking into account the algorithm’s
requirement for responsiveness, as well as its necessity to
operate in its stability region. Simply stated, a higher value of
X makes the algorithm more aggressive.

4. Stability control. The stability control component is
represented by te β⋅Υ− . This control function ensures that the
window increase rate slows down when the utilized links
become congested. Indeed, the exponent tβ may be
interpreted as the utilized share of the buffer: the more its
value approaches unity, the slower the increase rate of the
congestion window becomes. The parameter Y is a constant
that sets the responsiveness to queue build up. To a greater
value of Y corresponds a larger stability region for TCP Libra
and a more efficient utilization of its share of the available
bandwidth, but also a higher throughput loss when competing
against regular TCP flows.

5. Burstiness control. This component cannot be seen in
Fig. 2 since it is not part of the window update algorithm, yet,
it is an essential element of TCP Libra as it determines the
dispersion of sent packets. In particular, the burstiness control
has been designed with the objective of avoiding two specific
problems: synchronization of loss events and failure to collect
significant RTT samples. We have implemented a cyclic
pacing scheme that also include randomness. Specifically,
packet pairs (to enable capacity estimation) are randomly sent
within a round-trip time, in such a way that they result
statistically uniformly distributed. To this aim, the RTT is
divided into as many intervals as half of the size in packets of
the TCP’s window and packets (in pairs) are sent at a time
that is randomly chosen within each interval. This behaviour
smoothens possible side effects related to the scalability
control component by making sure that the network is not
injected with a heavy burst of traffic all at once.

5. EXPERIMENTAL ASSESSMENT
We evaluated the ability of TCP Libra in providing a RTT-fair,
efficient, and (legacy) TCP-friendly support to VoD service
through the well known NS-2 simulation platform [15]. We
generated the scenario depicted in Fig. 3 where short, medium,
and long RTT flows are simultaneously present and where regular
TCP (i.e., TCP New Reno) and TCP Libra can be utilized as the
only transport protocol in the system, or together. Provided results
represents average values obtained from 30 simulation runs for
each configuration. Furthermore, as VoD downloading/streaming
generally lasts for several minutes we have run each of our
experiments for 1000s.

Figure 3. Simulative Scenario.

More in detail, a series of bottleneck links of 100Mbps is shared
by two long-RTT (180ms, blue arrow in Fig. 3) and two medium-
RTT (90ms, yellow arrow in Fig. 3) flows in parallel, plus other
four short-RTT (30ms, red arrows in Fig. 3) flows, which do not
share any links among each other. Buffers on routers along the
path have been set alternatively as the pipe size corresponding to
a single bottleneck link (83 packets) or to the longest overall
connection (1500 packets). The actual value on commercial
routers is generally something in between these two values.

Finally, parameters mentioned in Section 4 are set as follows:
A = 1, B = 1, X = 2, Y = 2; interested readers may refer to [8] for
a wider discussion about parameter setting.

6. MEASURED PERFORMANCE
The most widely adopted metric to evaluate fairness is Jain’s
index [16]; we have hence adopted this index to test the RTT-
fairness of our protocol. The more this index approaches to 1, the
more the evaluated protocol is considered to be fair. To this aim
Fig. 4 and Fig. 5 show the Jain’s index values achieved by regular
TCP New Reno (TCP) and TCP Libra (Libra). In particular the
Fig. 4 considers only medium and long RTT flows among those
shown in Fig. 3, whereas Fig. 5 calculates the index by including
all flows, also the small RTT ones. Moreover, in each of the
charts, results are shown both for the case where buffers were set
with a size in packets equal to the pipe size of a single bottleneck
link (Bottl Pipe) or of the longest overall connection (Tot Pipe).
As it is evident, TCP Libra outperforms regular TCP in achieving
fairness, regardless of the RTT variety. Moreover, when
excluding flows that have a huge difference of RTT from the
others, i.e., those with 30ms of RTT, the Jain’s index of TCP
Libra is almost optimal.

VoD
Server

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 Bottl Pipe Tot Pipe

Buffer Size

Ja
in

's
 In

de
x

TCP
LIBRA

Figure 4. Jain’s fairness index calculated only on medium and

long RTT flows.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Bottl Pipe Tot Pipe
Buffer Size

Ja
in

's
 In

de
x

TCP
LIBRA

Figure 5. Jain’s fairness index calculated on all flows.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

of Crossing Flows

Ja
in

's
 In

de
x

Bottl Pipe
Tot Pipe

Figure 6. Jain’s fairness index for TCP Libra with different

cross traffic scenarios.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bottl Pipe Tot Pipe
Buffer Size

B
ot

tle
ne

ck
 U

til
iz

at
io

n

TCP
LIBRA

Figure 7. Measured efficiency.

TCP's Throughput when Competing against...

0

2000000

4000000

6000000

8000000

10000000

12000000

…against TCP …against LIBRA

G
oo

dp
ut

 (p
kt

s)

180ms
90ms
30ms
ALL

Figure 8. Friendliness study: packets sent by regular TCP

flows when competing against other TCP flows (left columns)
or against Libra flows (right columns).

For a deeper analysis of these results Fig. 6 presents values of the
Jain’s index as achieved by TCP Libra when the medium and long
RTT flows are competing with 0, 1, 2, 3, or all 4 small RTT flows
in the considered simulative scenario. Clearly, the more complex
the scenario is, the harder it becomes for TCP Libra to achieve an
optimal fairness. Still, results are encouraging and definitely
better than those achievable by employing regular TCP; for a
comparison, consider that values for the case with 4 competing
small RTT flows in Fig. 6 corresponds to TCP Libra’s values in
Fig. 5.

Needless to say, if TCP Libra were able to provide RTT-fairness
at the cost of reducing the total throughput achieved, that could
not be fully considered a positive result. Conversely, as it is
demonstrated by Fig. 7, TCP Libra’s utilization of the available
bandwidth results comparable with that of regular TCP with both
buffer size configurations. Therefore, TCP Libra achieves RTT-
fairness through rebalancing bandwidth resources among the
various flows.

Finally, as the VoD service is deployed over the Internet and we
want TCP Libra to support it, then it is crucial for TCP Libra to be
able to coexist with the de facto standard of Internet protocols. To
this aim, Fig. 8 assesses TCP Libra’s friendliness toward regular
TCP. It is very important to notice that Fig. 8 does not represent a
fairness study; rather, it just is a study on the friendliness of TCP
Libra toward regular TCP.

Specifically, we have divided flows depicted in Fig. 3 into two
groups. Then we consider two cases; however, in both cases,
values in Fig. 8 represents the goodput achieved by the first group
of flows, which always employs regular TCP, in terms of total
number of packets delivered to destination for each class of flow
(small, medium, and long RTT) plus the sum of them (ALL in
Fig. 8).

In the first case, we have regular TCP implemented in all flows of
both groups and we measure the average goodput experienced by
the various flows; results grouped by RTT are reported in the left
columns of Fig. 8 (TCP). In the second case, one group of flows
utilizes regular TCP whereas flows of the other group use
TCP Libra. Even in this case, we measured the average goodput
only of regular TCP flows so as to see how much their goodput
was affected by the simultaneous presence of TCP Libra’s flows.
Results reported on the right columns (Libra) of Fig. 8 show that
the goodput achieved by regular TCP’s flows is not significantly
affected by sharing the link with TCP Libra’s flows. We can
hence claim that not only is TCP Libra RTT-fair, but it also is
friendly toward legacy TCP.

As it is evident, the utilization of TCP Libra in place of regular
TCP on half of the flows does not significantly impact on the
goodput achieved by the other half of flows that employs regular
TCP. This clearly demonstrates TCP Libra’s friendliness toward
regular TCP. The network configuration utilized in Fig. 8
employed buffer sizes equal to the pipe size of one bottleneck
link. However, analogous results were obtained even with larger
buffer sizes.

7. CONCLUSION
We discussed the RTT-unfairness problem that arises when trying
to provide VoD services through TCP. This problem exists for
both wired and wireless connections, however, in the latter case
its negative effects are worsened by the simultaneous presence of
typical wireless issues such as error losses, channel capture, and
mobility To this aim, we designed TCP Libra, a RTT-fair
transport protocol that is also efficient in utilizing the available
bandwidth and friendly toward legacy TCP.

Extensive simulation results demonstrated the ability of our
protocol in being RTT-fair and efficient, while still being friendly
toward simultaneous legacy TCP flows. Through it, VoD services
can be hence more efficiently provided, regardless of the distance
between client and server.

8. ACKNOWLEDGMENTS
Partial financial support for this work is provided by: the Italian
MIUR (ICTP/E-Grid, MOMA, DAMASCO) and Ministero Affari
Esteri (Laboratorio Congiunto); NSF (Grant No. 0520332); and
STMicroelectronics (UC-Micro Grant MICRO 04-05).

9. REFERENCES
[1] S. Floyd, V. Jacobson. On Traffic Phase Effects in Packet-

switched Gateways. ACM SIGCOMM Computer
Communication Review, 21(2):26-42, 1991.

[2] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, R. H. Katz.
A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links. IEEE/ACM Transactions
on Networking, 5(6):756 – 769, 1997.

[3] K. Xu, M. Gerla, L. Qi, Y. Shu. Enhancing TCP fairness in
ad hoc wireless networks using neighborhood RED. In Proc.
of MOBICOM’03, San Diego, California, USA, pp. 16-28.

[4] Charles Krasic, Kang Li, Jonathan Wapole. The Case for
Streaming Multimedia with TCP. In Proc. of 8th
International Workshop on Interactive Distributed
Multimedia Systems (IDMS 2001), Lancaster, UK, 2001.

[5] P.-H. Hsiao, H.T. Kung, K.-S. Tan. Video over TCP with
Receiver-based Delay Control. In Proc. of ACM NOSSDAV
2001, Port Jefferson, NY, USA, 2001, pp. 199-208.

[6] H. Shimonishi, T. Hama, T. Murase. TCP Congestion
Control Enhancements for Streaming Media. In Proc. of
IEEE CCNC 2007, Las Vegas, NV, USA, 2007.

[7] P. Mehra, C. De Vleeschouwer, A. Zakhor. Receiver-Driven
Bandwidth Sharing for TCP and its Application to Video
Streaming. IEEE Trans. on Multimedia, 7(4):740-752, 2005.

[8] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Y. Sanadidi,
M. Roccetti. TCP Libra: Exploring RTT-fairness for TCP.
Technical Report UCLA-CSD TR-050037, UCLA,
Computer Science Dept., Los Angeles, CA, 2005.

[9] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, M. Y. Sanadidi.
Capprobe: a Simple and Accurate Capacity Estimation
Technique. In Proc. of SIGCOMM ’04, New York, NY,
USA, 2004, pp. 67-78.

[10] C. Dovrolis, P. Ramanathan, D. Moore. Packet Dispersion
Techniques and Capacity Estimation. IEEE/ACM
Transactions of Networking, 12(6):963-977, 2005.

[11] C. Marcondes, A. Persson, L.-J. Chen, M. Y. Sanadidi,
M. Gerla. TCP Probe: a TCP with Built-in Path Capacity
Estimation. In Proc. of the 8th IEEE Global Internet
Symposium, Miami, FL, USA, 2005.

[12] A. Aggarwal, S. Savage, T. Anderson. Understanding the
Performance of TCP Pacing. In Proc. of INFOCOM 2000,
Tel Aviv, Israel, 2000, pp. 1157-1165.

[13] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y.
Sanadidi, Ren Wang. TCP Westwood: Bandwidth Estimation
for Enhanced Transport over Wireless Links. In Proc. of
ACM SIGMOBILE 2001, Rome, Italy, 2001, pp. 287-297.

[14] W. R. Stevens. TCP/IP Illustrated, vol. 1. Addison Wesley,
Reading, MA, USA, 1994.

[15] The Network Simulator – ns-2. http://www.isi.edu/nsnam/ns/
[16] R. Jain, D. Chiu, W. Hawe. A Quantitative Measure of

Fairness and Discrimination for Resource Allocation in
Shared Computer Systems. Technical Report TR-301, DEC
Research Labs, 1984.

