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ABSTRACT
Bio-inspired computing models have gained significant pop-
ularity in the engineering of distributed and autonomous
systems. Epidemics assist in the direction of collaborative
computing where groups of nodes can collectively share se-
mantic content based on the current mobile context and user
interests. Semantic information received by a node could in-
fect the node and improve the existing knowledge according
to pre-existing semantic structure. The capability of a node
to reason with semantic information results in locally in-
ferred information, which becomes a new potential epidemic.
The application of epidemiology and context - awareness on
semantically enriched information dissemination in ad-hoc
mobile networks is analyzed and assessed using simulations.

Keywords
Ad hoc network information dissemination, Autonomous Sys-
tems, Context awaremess, Epidemics

1. INTRODUCTION
Persons that move to different locations can disseminate in-
formation (e.g., multimedia content) based on the mobile
context (e.g., location and network connection). As persons
group together (e.g., in conferences), they must be of similar
interest (e.g., group of persons interested in the same presen-
tation). Collaborative context-awareness is an understand-
ing of the activities / conditions / environmental parame-
ters of others that, consequently, provides a more enhanced
context for an individual. Context-aware applications gen-
erate inferred knowledge, which is needed by the rest of the
group. Such applications have to adopt information dissem-
ination algorithms (e.g., epidemical spreading) and exploit
the ways in which users’ behavior coincides with their inter-
ests[5]. We propose a method for collaborative information
dissemination to a group of context-aware applications in a
pervasive computing environment using an epidemiological
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model. Information dissemination can cover the dissemi-
nation of multimedia content (e.g., text, image, voice and
video) and semantic content (e.g., mpeg7 files).

Disseminated information could match an epidemic in the
sense that, a mobile node carrying a piece of information
content becomes infectious; otherwise it is susceptible. In-
fectious node means that it can disseminate such content to
its neighboring nodes according to mobile context and their
interest. When a user or application removes such content
then the node becomes susceptible and can be infected later.
In this paper, the terms epidemic and semantic information
are used interchangeably. We move beyond the application
of a simple epidemiological model. Semantic multimedia
content (e.g., mpeg7 files) and user profiles (e.g., ontologies
of user preferences) could be exploited in order for a user to
obtain the multimedia content that adequately matches to
his interest.

Consider a user with a specific interest in music, e.g., a fan of
Modern Jazz music type. If the user node has been infected
with a Jazz music mp3 file then he could replace it with a
Modern Jazz music mp3 file. That is because, the latter mu-
sic type matches better to his music interest than the former
one; we assume a music ontology in which a song classified as
a Modern Jazz concept is also classified as a Jazz concept,
i.e., Modern Jazz � Jazz, where � is the is–a relation. In
this context, the user is reinfected with a stronger epidemic,
in the sense that, the latter concept (describing multimedia
metadata) represents a music interest closer to his interests.
Hence, the Modern Jazz music file is more preferable. Sim-
ilarly, consider that a node has been infected with a file
including only text and image content (e.g., a static html
file reporting the events during a soccer match). This node
can be possibly reinfected with a multimedia content if (i)
there is another neighboring node carrying the same infor-
mation in video content and (ii) the user prefers viewing
video than static content in his Personal Digital Assistant.
Consequently, several semantic relations among multimedia
metadata (semantic annotations), e.g., �, have to be taken
into consideration in information dissemination. Therefore,
a node becomes uninterested once it has recently received
a more preferable multimedia content than the incoming
one. We introduce the abstraction of a stronger epidemic
than the one, which has previously infected a given node.
Stronger epidemics improve the existing knowledge of a node
according to pre-existing semantic structure (i.e., a concep-
tual hierarchy is adopted). Moreover, our epidemiological
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abstraction of a context-aware system covers the concept of
epidemical transmutation (metallaxis in Greek). New infor-
mation that is locally inferred (through conceptual reason-
ing) becomes a potential epidemic, which also propagates
through the network.

Epidemical algorithms support the spreading of informa-
tion among nearby nodes. There has been considerable re-
search related to information dissemination in mobile, ad-
hoc networks. The architecture in [5] uses the mobility of
users for multimedia files transfer between separate net-
works thus there is no support for collaborative context-
awareness.Additionally, the architecture discussed in [3] pro-
poses an approach for collaborative context dissemination
among groups of mobile terminals. Such architecture takes
into account the reliability of contextual information in the
dissemination process. Nevertheless, the information spread-
ing does not adopt epidemiological models. Instead, a simple
flood based model is adopted. Moreover, the autonomous
gossiping algorithm in [1] refers to the selectivity attribute
of the epidemical spreading. However, such algorithm does
not consider any reasoning process, thus, nodes cannot rea-
son with semantic information and, consequently, cannot
augment the knowledge in a collaborative context-aware sys-
tem.

This paper is organized as follows: in Section 2 the charac-
teristics related to semantic information dissemination and
certain knowledge representation issues are discussed. In
Section 3 an epidemiological model based on Markov pro-
cesses is introduced, while in Section 4 analytical and simu-
lation results are presented. Finally, in Section 5 conclusions
and directions for future work are presented.

2. SEMANTIC DISSEMINATION
Semantics-based information dissemination incarnates dif-
fusion aspects for semantic information representation and
difussion. Therefore, the questions issued in collaborative
context - aware environments are (i) whether semantic infor-
mation dissemination demonstrates an epidemic-like prop-
agation pattern and (ii) whether such dissemination is af-
fected by: (1) the reasoning capability of the nodes, (2) the
network topology (e.g., homogeneous and scale-free topolo-
gies), (3) the network infrastructure (e.g., ad - hoc mobile
networks), (4) the mobility behavior of nodes (i.e., station-
ary and mobile nodes) and (5) the knowledge representation
(e.g., metadata is represented by hierarchically structured
ontological concepts). Therefore, mobile ad-hoc commu-
nication is considered more advantageous with respect to
infrastructure-based communication approaches, where (i)
no global coordination is needed, (ii) cost is reduced (no
infrastructure is needed) and (iii) the coverage of the net-
work can be extended through multi-hop communication.
However, such lack of infrastructure brings some challenges
to the development of collaborative epidemical algorithms.
The development of such algorithms requires the coopera-
tion of mobile nodes on a local basis in order to achieve a
global goal. Such requirement includes the study of infor-
mation dissemination schemes and the distributed nature of
ad-hoc networks. Moreover, nodes must autonomously take
decisions based on information provided by the neighboring
environment. The following sections describe the require-
ments and properties of semantic information dissemination.

2.1 Dissemination Characteristics
Infrastructureless Network:The requirement of cooperation
of participating nodes brings an additional limitation using
multicast in ad-hoc networks. Not all nodes participating
in a multicast tree are interested in the diffused informa-
tion. Cooperation exists only in the sense that, nodes dif-
fuse information to others that are of similar interest. The
proposed model has to be suitable for ad-hoc networks be-
cause of its self-organizing nature rather than reliance on
infrastructure or maintenance of routing information. Such
type of dissemination is resilient to sudden failures of links
or nodes[2]. Due to its stateless nature, epidemical spread-
ing is not affected by node mobility, as complex, stateful,
distributed algorithms are (e.g., routing protocols).

Network Topology Reliance:The performance of epidemical
spreading (reliability and efficiency) is strongly affected by
the connectivity patterns of the underlying network topol-
ogy. Nodes are more likely to spread information across
small world networks than across networks with many re-
dundant connections. Epidemical dissemination appears to
be reliable in homogenous network topology. On the other
hand, information spreading in scale-free topology performs
more efficiently in terms of the network load.

Semantics-based Dissemination: Semantics-based epidemi-
cal dissemination means that, if two nodes, whose hierarchi-
cally structured pieces of information are complementary,
missing or associated with generalization relations (e.g., �
relations), come in contact with each other, they probably
diffuse their knowledge. This does not imply that, nodes al-
ways get infected with the information they desire (as suc-
ceeded in Flooding). Instead, they are not spammed by
multiple and unnecessary data. Such requirement demands
dissemination schemes based on knowledge reasoning rather
than network-based communication. Moreover, the reason-
ing about semantically enriched information (i.e., a concep-
tual ontology is assumed) results in knowledge diffusion. A
more abstract concept, e.g., Blues music genre, is less us-
able than a more specific (detailed) concept, e.g., Rhythm
and Blues or Soul music genres, i.e., Soul � Rhythm and
Blues � Blues[4]. That is attributed to the fact that, the
latter concepts convey more detailed information than the
former. Evidently, the knowledge derived from the latter
concepts implies also the knowledge derived from the former.
Semantics-based dissemination is mainly based on locally
available knowledge and autonomous reasoning. If a seman-
tic annotation of a multimedia content corresponds to more
detailed concept (analogous to a stronger epidemic) then,
it tries to (re)infect as many neighboring nodes as possible
with similar interests. Consequently, each node attempts to
be infected by stronger epidemics.

Selectivity Attribute: A node can autonomously infer if the
incoming epidemic refers to a multimedia content that ad-
equately matches to his preference or not. If the incoming
information is inconsistent with his interest then, a node
avoids processing it. The reliability of the spreading process
depends on the suitability of nodes to reason about semantic
information.

Double-epidemical Dissemination: The proposed epidemical
model is, essentially, an epidemic algorithm but unlike previ-



ous usage for broadcast, the model is selective in epidemical
spreading and deals with numerous pieces of semantic infor-
mation. Each piece of information is regarded as a different
epidemic and transmuted epidemics spread in the network
simultaneously. Each epidemic autonomously infects nodes
that are susceptible to such kind of epidemic or susceptible
to the transmuted one. Hence, a double-epidemical (epi-
demic and its transmutation) propagation process is consid-
ered. In this sense, the strongest epidemic has the poten-
tial to infect a large portion of susceptible nodes, contrary
to the weakest epidemic, which infects a small portion of
the group. The novelty of the proposed model is the fact
that epidemics are semantically dependent through seman-
tic relations in conceptual hierarchies and can transmute to
stronger ones (introducing the concept of metallaxis). In
the long run, portions of the population are infected either
with epidemics or with their transmutations. Consequently,
diverse types of semantic information infect the whole net-
work, where each type of information corresponds to the
heterogeneous need of each node, as required in the collabo-
rative context-aware systems, i.e., not all nodes is interested
in the same multimedia content.

2.2 Semantic Representation
Semantic information can be represented by hierarchically
structured concepts belonging to domain ontologies. Ontol-
ogy is the conceptualisation of a world describing taxonomies
of concepts induced by generalization relations (�). There-
fore, the desired intelligence in a multimedia context-aware
applications is expected to be supported by the exploitation
of metadata of the multimedia content. Metadata is ex-
pressed by ontological concepts based on the use of knowl-
edge representation and reasoning. Such metadata corre-
sponds to the creation information of the MPEG-7 standard
(i.e., the title and the classification of the movie). MPEG-
7 is regarded as the most complete specification for mul-
timedia content annotation. Semantic annotation leads to
a more formal way that enables more advanced reasoning.
The annotation vocabulary is borrowed from relevant do-
main ontologies (e.g., music ontologies). Moreover, the user
preferences could be also represented as ontological concepts
sharing similar multimedia annotation vocabularies. The
reasoning engine of a node deduces whether a multimedia
content mateches a user interest or not.

Let O be a domain ontology that corresponds to the hier-
archy of concepts formed by � relations among them. We
refer to an epidemic p as a concept p(c) ∈ O which se-
mantically describes a multimedia content c. Let Φ(p) be
the set of all concepts that are more generic than p, that
is, Φ(p) = {q|p � q ∨ p = q}, then O refers to the set
of concepts that are associated with transitive �, that is,
O = {p � q|Φ(p) ∩ Φ(q) �= ∅}. Moreover, a user interest
is described by a concept of r ∈ O. Hence, the reasoning
engine of a node i deduces that a content c described by
an epidemic p ∈ O, p(c), matches to r iff ∃p ∈ O, (r � p).
If there is a stronger epidemic q ∈ O, i.e., q � p, then the
node i is infected with q iff (q � r ∧ q � p). We call q as a
transmutation 
 of p, i.e., q 
 p, since node i is reinfected
with q.

3. ANALYSIS

We adopt the epidemiological model Susceptible-Infected-
Susceptible (SIS) in which, infectious nodes are those that
have contracted the epidemic and can infect the remaining
susceptible ones. After a period of time, infected nodes may
recover from the epidemic and then transit to the susceptible
state. In that state, they can become infected again, thus,
in the limit, any node perpetually moves between the two
states: Susceptible – Infected. We extend such model at
the point that, an infected node can be reinfected with a
transmuted epidemic.

3.1 Notation
We use a directed graph G(V, E) to represent a double-
epidemical network, where V is the set of nodes and E is the
set of edges. In order to illustrate the concept of epidemical
transmutation, we assume that, an epidemic is transmuted
only to a stronger epidemic. Let us denote the state of node i
at time instant t by xi(t). This state assumes 3 values which
are represented by the 3-dimensional vectors p0 = [100]T ,
p1 = [010]T and p2 = [001]T . A state of value pk denotes
that the node is in infectious status of level k. A node with
susceptible status is in a state p0 whereas a node with the
most infectuous status is in a state p2. A neighborhood of
node i, denoted by Vi, is a subset of V where every node
j in this subset has an edge connecting it to node i, i.e.,
Vi = {j | (j, i) ∈ E}. Each edge (j, i) in E is associated with
βji, which is the birth rate that an infected node j can infect
a neighbor node i. For the values of a state of a node we
assume an ordering in the form of p2 
 p1 
 p0. This means
that epidemic p2 is stronger than epidemic p1 and state p1

is stronger than the susceptible state p0. A node infected by
p1 is probable to re-infected by p2 as this stronger epidemic
spreads across the network. Probabilistic double-epidemical
spreading deals with the calculation of the expected num-
ber nk(t) of infected nodes for all transmuted epidemics pk,
k = 1, 2. The concept of epidemic transmutation assumes
that an infectious node i of infection level pl, can only infect
a node j in its neighborhood, which is in state pk, if and
only if pl 
 pk, that is either node j is susceptible (p0) or it
is infected at a lower level.

An infectious node i of infection level p2 can be cured in two
ways. In the full cure transition case, node i transits in one
step to the susceptible state p0 with rate ε. In the partial
cure transition case, node i, being in state p2, transits in the
lower infectious state p1 with rate δ. Partially cure means
that, the node may be still infectious since it transits to a
state corresponding to a weaker epidemic than the previous
one. Figure 1 depicts the state transition diagram of a node.
It should be noted that the transition rates depend on the
number of neighbor infected nodes, their infection level and
the birth rate betaij . This will be further clarified in the
next subsection.
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Figure 1: State tranistion diagram of a node.



3.2 Spatio-Temporal Model
As node i can be infected only by its neighbors, the state
xi(t) is statistically dependent on the status of its neighbors
and xi(t−1). Since the status of a neighbor also depends on
its own neighbors, then, the status of all nodes is statistically
dependent in space and time. Let vector x(t) denote the
status of all nodes at time t, that is

x(t) = [x1(t), x2(t), . . . , xM (t)]T

where M is the number of nodes in the network; x(t) is a
spatiotemporal process. The infection and recovery rates
βji and δ, ε respectively, are very important in the epidemi-
ological epistemic domain. The infection rate βji denotes
the birth rate of an epidemic from node j ∈ Vi. Given the
status of the neighbors of node i at time instant t and the
fact that node i may be infectious at level k, at the next
time instant t + 1 node i will be infectious at a higher level
l with probability

Qkl = (1 −
∑
m<k

δkm) ·
⎛
⎝1 −

∏
j∈Vi

(1 − βji)
xT

j (t)·pl

⎞
⎠

∏
j∈Vi

(1 − βji)
xT

j (t)·∑m>l pm (1)

The second line in (1) expresses the probability that all the
nodes j ∈ Vi with an infection level greater than l will not
infect node i. The expression in the parenthesis in the first
line in (1) is the probability that one or more nodes will in-
fect node i at infection level l and node i will not recover. In
view of the state transition diagram of Figure 1, considering
a Markov chain of unit time transition periods, the transi-
tion probabilities that express the temporal dependence of
states of node i are Full cure case:

P{xi(t + 1) = p0 |xi(t) = p1} = δ (2)

P{xi(t + 1) = p0 |xi(t) = p2} = ε (3)

Partial cure case:

P{xi(t + 1) = p1 |xi(t) = p2} = δ (4)

Infection at a higher level k < l

P{xi(t + 1) = pl |XVi(t) = xVi(t), xi(t) = pk} = Qkl (5)

where, the random vector XVi(t) denotes the status of all
neighbors of node i, i.e., XVi(t) = [xj(t), j ∈ Vi] and xVi(t)
is a realization of XVi(t). Given the conditional probabilities
in Equations (2)-(5) we can calculate the probability that a
node i is in state pk at time instant t + 1, that is

P{xi(t + 1) = pk}
=

∑
pm

P{xi(t + 1) = pk, xi(t) = pm}

=
∑
pm

P{xi(t + 1) = pk |xi(t) = pm}P{xi(t) = pm}

=
∑
pm

∑
xVi

(t)

P{xi(t + 1) = pk, XVi(t) = xVi(t)|xi(t) = pm}

·P{xi(t) = pm}

and, finally,

P{xi(t + 1) = pk} =∑
pm

∑
xVi

(t)

P{xi(t + 1) = pk |XVi(t) = xVi(t), xi(t) = pm}

·P{XVi (t) = xVi(t) |xi(t) = pm}P{xi(t) = pm} (6)

The conditional probability

Pm(t) = P{XVi (t) = xVi(t) |xi(t) = pm} (7)

characterizes explicitly the spatial statistical dependencies
due to network topology and nodal interactions. To simplify
the analysis we adopt a spatial independence assumption.
For spatially independent nodes

Pm(t) = P{XVi(t) = xVi(t) |xi(t) = pm}
= P{XVi(t) = xVi(t)} =

∏
j∈Vi

P{xj(t)} (8)

Although the independence assumption ignores the spatial
dependence of nodes, the model maintains temporal depen-
dency and detailed topology information. Moreover, if node
i has |Vi| neighbors, the total number of states needed to de-

scribe Pm(t) is reduced form O(3|Vi|) to O(|Vi|). We now fo-
cus on the calculation of the probabilities P{xi(t+1) = p0},
P{xi(t + 1) = p1} and P{xi(t + 1) = p2}. To simplify the
analysis we assume that βji = β. Based on Equations (6)
and (8) we have

P{xi(t + 1) = p0} =∑
xVi

(t)

Q00

∏
j∈Vi

P{xj(t)} · P{xi(t) = p0}

+ δ · P{xi(t) = p1} + ε · P{xi(t) = p2} (9)

where

Q00 =
∏

j∈Vi

(1 − β)xT
j (t)(p1+p2)

Using the fact
∑

xVi
(t)

∏
j∈Vi

f(xj(t)) =
∏

j∈Vi

∑
xj(t)

f(xj(t))

Equation (9) simplifies to

P{xi(t + 1) = p0}
=

∏
j∈Vi

(1 − β + βP{xj(t) = p0}) · P{xi(t) = p0}

+δ · P{xi(t) = p1} + ε · P{xi(t) = p2} (10)

For the probability P{xi(t + 1) = p1} we have

P{xi(t + 1) = p1} =∑
xVi

(t)

Q01

∏
j∈Vi

P{xj(t)} · P{xi(t) = p0} +

∑
xVi

(t)

Q11

∏
j∈Vi

P{xj(t)} · P{xi(t) = p1} + δ · P{xi(t) = p2}

where Q01 is given by (1) and

Q11 = (1 − δ)
∏

j∈Vi

(1 − β)xT
j (t)·p2



Using the same arguments as for the calculation of P{xi(t+
1) = p0}, we obtain

P{xi(t + 1) = p1} =∏
j∈Vi

(1 − βP{xj(t) = p2}P{xi(t) = p0}

−
∏

j∈Vi

(1 − β + βP{xj(t) = p0}P{xi(t) = p0}

+(1 − δ)
∏

j∈Vi

(1 − βP{xj(t) = p2}) · P{xi(t) = p1}

+δ · P{xi(t) = p2} (11)

Finally,

P{xi(t + 1) = p2} =∑
xVi

(t)

Q02

∏
j∈Vi

P{xj(t)} · P{xi(t) = p0} +

∑
xVi

(t)

Q12

∏
j∈Vi

P{xj(t)} · P{xi(t) = p1} +

(1 − δ − ε) · P{xi(t) = p2} (12)

from which we obtain

P{xi(t + 1) = p2} =⎛
⎝1 −

∏
jinVi

(1 − βP{xj(t) = p2}
⎞
⎠ P{xi(t) = p0}

+(1 − δ) ·
⎛
⎝1 −

∏
jinVi

(1 − βP{xj(t) = p2}
⎞
⎠ P{xi(t) = p1}

+(1 − δ − ε) · P{xi(t) = p2} (13)

4. ANALYTICAL & SIMULATION RESULTS
We assess the behavior of the double-epidemical dissemina-
tion model in homogeneous and scale-free networks. As a
reference of a homogeneous network, we consider a regular
two-dimensional (2D) lattice. Nodes in a 2D lattice are only
connected with neighbors. A node in a 2D lattice is repre-
sented by its cordinates (x, y), where x, y, are integers and
1 ≤ x, y ≤ 100. Node (x, y) has four neighbors (x − 1, y),
(x+1, y), (x, y−1), (x, y +1) thus, the average node degree
〈k〉 for a 2D-lattice is 〈k〉 = 4. The nodes at the borders
have node degree less than 〈k〉. Figure 2 shows the evolu-
tion of the average number of infected nodes n1(t), n2(t)
for two epidemics p1 and p2, p2 
 p1, for the analytical
epidemiological model with M = 10, 000 nodes, β = 0.2,
δ = 0.1 and ε = 0.01. The semantic relationship among
epidemics demonstrates an interesting behavior. Evidently,
the strongest epidemic infects the largest portion of the net-
work since more specific information, which is inferred by
nodes, is closer to users’ interests. At the beginning of the
propagation process n2(t), which refers to the most specific
concept, assumes lower value than n1(t), which refers to
the most generic one. In the long run, more knowledge is
accumulated across the collaborating nodes thus n2(t) dom-
inates n1(t). This is attributed to the fact that, since nodes
reason about more specific knowledge then, they are rein-
fected with the strongest epidemic assuming that the latter
matches better to their interests. The higher the value of
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Figure 2: Double-epidemical propagation in 2D lat-
tice with β = 0.2, δ = 0.1 and ε = 0.01

β, w.r.t. δ and ε, i.e., there are more nodes with reasoning
capability, the faster the network gets infected.

Figure 3 depicts the evolution of the propagation process for
a 2D lattice with M = 10, 000 nodes for β = 0.2, δ = 0.1
and ε = 0.6. One could observe that, if the full cure rate of
the strongest epidemic, ε, is relatively larger than δ, (e.g., a
minor portion of nodes are capable of reasoning) then, the
propagation process for p2 decays. This does not necessar-
ily hold true for the propagation process of p1. Instead, p1

cannot trasmute to a stronger epidemic due to the limited
reasoning capability of the majority of nodes. However, the
existence of p2 in a network depends highly on the fact that
(i) at least one node is capable of inferring p2 from p1 or (ii)
at least a node is infected with p2 at the beginning of the
process. We also examine the behavior of double-epidemical
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Figure 3: Double-epidemical propagation in 2D lat-
tice with β = 0.2, δ = 0.1 and ε = 0.6

spreading in scale-free networks. In such networks the prob-



ability for a node i to be connected to a neighboring node
j of degree kj depends on its own degree ki. We use a
scale - free network topology of the Oregon1 routers network
type. Such network type contains 22002 connections among
9895 peers with 〈k〉 = 92.61. Figure 4 depicts an analogous
behavior of the proposed model with that in homogeneous
networks. Epidemics propagation in complex networks ap-
pears highly correlated to the existence of highly connected
nodes. Therefore, diverse epidemical thresholds can appear
in such networks based on the value of β, δ and ε, but the
study of this issue is beyond the scope of this paper. Figure
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Figure 4: Double-epidemical propagation in scale-
free network with β = 0.095, δ = 0.03 and ε = 0.02

5 shows the simulation results of the evolution of the pro-
posed model on a four-neighbor two-dimensional lattice with
10,000 nodes, β = 0.03, δ = 0.01 and ε = 0.002. The dis-
crepancies between the simulaton results and the analytical
model are attributed to the fact that, nodes at the borders
of the 2D lattice have a low value of node degree. However,
the proposed model based on the spatial independency of
nodes describes adequately the transient behavior of double-
epidemical propagation.

5. CONCLUSIONS
We propose an epidemiological model for multimedia seman-
tics information dissemination. We use ontological repre-
sentation for both modeling multimedia content metadata
and user interests. A user receives the desired multime-
dia content that matches his interests once the correspond-
ing semantic description (epidemic) propagates across the
network. Our model goes beyond a simple epidemiologi-
cal model and introduces the abstraction of a stronger and
transmuted epidemic. We extend the SIS model defining
the concept of epidemical transmutation in information dis-
semination. A probabilistic model is introduced describ-
ing a double-epidemical dissemination model and analyt-
ical and simulation results are reported. In most mod-
els, semantic information dissemination is not considered
thus, the reasoning capability is not efficient. The proposed

1http://topology.eecs.umich.edu/data/html
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Figure 5: Simulation of double-epidemical propaga-
tion in 2D lattice network with β = 0.03, δ = 0.01 and
ε = 0.002

model is novel because, the epidemic, which might be trans-
muted, can reinfect the nodes thus aggravating their condi-
tion. However, issues related to the epidemical thresholds
and the network topologies have to be examined. Moreover,
a multiple-epidemical information dissemination model, in
which an epidemic transmutes to more than one stronger
epidemic, are another interesting area we are currently work-
ing on.
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