
Requirements for an Extendible IMS Client Framework
Andreas Bachmann

Fraunhofer Institute for Open
Communication Systems (FOKUS)

Kaiserin-Augusta-Alle 31
10589 Berlin, Germany

+49 30 3463 7128
bachmann@fokus.fraunhofer.de

Alice Motanga
Fraunhofer Institute for Open

Communication Systems (FOKUS)
Kaiserin-Augusta-Alle 31
10589 Berlin, Germany

+49 30 3463 7335
motanga @fokus.fraunhofer.de

Thomas Magedanz
Technische Universität Berlin /

FOKUS
Kaiserin-Augusta-Alle 31
10589 Berlin, Germany

+49 30 3463 7229
magedanz@fokus.fraunhofer.de

ABSTRACT
As IMS matures, the industry and research institutes are steadily
adopting IP Multimedia Subsystem (IMS) by building internal
IMS playgrounds for prototyping and validation. From all the
IMS components, the IMS User Equipment (UE) is a critical
entity for the overall success in the IMS value chain. This is
because, the UE is the only component that demonstrates IMS
services found on the network, and the presentation of these
services to the end-user will determine the return on investments
on IMS. Early IMS service demonstrations are standalone
solutions or support a limited set of basic services such as Voice
over IP (VoIP), Presence and Messaging with little or no room for
extensibility or reusability. The objective of this paper is to
analyze and report our activities to develop an IMS client
framework that provides intrinsic IMS functionalities and
supports reusability, service composition/aggregation for seamless
user experience, extensibility and dynamic service provisioning.

Index Terms — IP Multimedia Subsystem, IMS Client,
Framework architecture

1. INTRODUCTION
IMS deployment is an integral part of the Next Generation
Networks in Europe and other parts of the world. In the past few
years, there has been an uptake of IMS test-beds and playgrounds,
demonstrating the capability set of IMS. However, more focus
until now has been predominantly laid on platform architecture
and service design from the back end and service integration
perspective. Currently available number of IMS client and client
framework indicate that the IMS standardization efforts in UE
have led to lack of available IMS compliant and island solutions
leading to interoperability problems. This, is due to three main
reasons; incomplete or missing specification of IMS standards in
client development, the limitation of IMS services to VoIP
together with presence and messaging, limitation in solutions
leveraging a large scale of end devices. Current IMS client
solutions limit the understanding of IMS services to offering

network controlled multimedia services by combining voice and
data in a packet switched network, but ignore to see beyond that,
for example the use of IMS to develop a service environment to
leverage innovation of Web 2.0 and social networking of user
generated content. The market potential focuses mostly on mobile
operators, leaving out IMS services for fixed line consumers or
cable operators. This results in a poor availability of IMS clients
and interoperability problems on different IMS networks. A more
efficient approach would be an open specification for an IMS
client framework, on which to develop IMS and non IMS-based
services with a uniform user experience to run on different
networks and on a large scale of end devices (desktops, PCs,
mobile devices, set-top boxes, home gateways etc.).

This paper analyses the current works in standardizing IMS client
architecture and presents our activities in developing and
validation of our Open IMS Client framework. The framework
provides development of applications in a fixed-mobile
convergent environment, interoperability with open standard IMS
networks, extensible for future applications and easy update
management to existing components. Figure 1 depicts the
components of FOKUS IMS playground. Our IMS playground
comprises of the following elements;

FOKUS IMS Core: comprises of the Call State Control Functions
(Proxy/Interrogating/Service CSCF) and the Home Subscriber
Server (HSS). The CSCFs provide a set of IMS compliant
intrinsic components specified in 3rd Generation Partnership
Project (3GPP) release 6 [1] for routing, service discovery,
charging amongst others. The HSS is a database to store user
profile and service data.

SIP Servlet Execution Environment (SIPSEE): is FOKUS
development of a SIP application server based on SIP servlet
technology. SIPSEE provides multimedia session control
capabilities to converged (IMS and HTTP-based) multimedia
services.

Open Communication Server for Parlay X (OCS-X): is a
FOKUS implementation of a Parlay X web service specification
for telecommunication networks. OCS-X provides a network
abstraction API for 3rd party service provider application docking
unto the IMS network.

XML Data Management Server: is a data server to store service
centric, user centric and device centric configuration data. The
data on the server can be managed from the client or other
network entities, using XML Configuration Access Protocol
(XCAP) [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware'08, February 12-15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBILWARE 2008, February 13-15, Innsbruck, Austria
Copyright © 2008 ICST 978-1-59593-984-5
DOI 10.4108/ICST.MOBILWARE2008.2885

Figure 1. FOKUS IMS Playground

Presence Server: is a FOKUS implementation of an IETF-
Session Initiation Protocol for Instant Messaging and Presence
Leveraging Extensions (SIMPLE) compliant server for managing
user’s Presence Information (PI) document. Applications can use
the PI not only to see when friends or contacts are online, but also
to enhance multimedia services with context information that can
be used to develop rich user experience
Media server: is an open standard industry partner solution that
provides media announcements and media conferencing
functionalities.
Signaling and Media Gateways: are open standard industrial
gateway solutions for interoperability with legacy networks (e.g.
GSM, PSTN).
Open IMS Client (OpenIC): is FOKUS implementation of an
IMS UE based on our IMS Client framework to prototype the
multimedia services existing on the FOKUS IMS Playground.
The client runs on multiple device platforms (pocket PCs, PCs,
laptops) and on multiple runtime environments (Windows Mobile,
Windows XP/Vista and Linux).

This paper addresses the research activities of IMS Client
architecture specifications. It describes the design and vision of an
open IMS Client framework that provides intrinsic IMS
application enabler functionalities for developers to build IMS
and non-IMS based services. The framework hides the complexity
of the IMS technology, allowing the developer to worry only
about developing applications for the IMS network. It also offers
service reusability as well as service composition to build rich
applications. We envision the framework also to provide
management tools, which makes it possible for remote update of
components, dynamic deployments of new services and
personalization of available services. This way, operators can
deploy IMS client solutions and have the possibility of updating
new releases of service components. The paper also describes the
development of a prototype application as proof of concept to
validate the framework.

2. RELATED WORKS
The development of our IMS Client framework solution is not
intended to specify competing standards to already existing
standards, but to use and refer to available standards where
needed. There already has been work done in specifying service
enabler architectures for IMS services, which include the
following;

3GPP Release 5 [6], which specifies the IP Multimedia
Subsystem (IMS) and Release 6 [1], which specifies the second
phase of IMS, define some multimedia broadcast and multicast
services applicable to UMTS and GSM networks, which was later
adopted by 3GPP2 and TISPAN. Global Certification Forum
(GCF) and PCS Type Certification Review Board (PTCRB) base
their interoperability testing on these specifications. The aim of
3GPP specifications concentrate on the IMS as the signaling
platform rather than a service delivery platform above IMS.
However, the specifications help in defining the scope of services
applicable, subsequently acting as a guideline in defining IMS
services and developing IMS clients.

Open Mobile Alliance (OMA) [11] is an organization that
specifies mobile data services by specifying market driven service
enablers on top of IMS. Their specifications ensure service
interoperability across open standard implementations clients,
service providers, and operators as well as IMS networks.
Extensive work has already been specified for various service
enablers with the OMA service environment that specifies client
and service behavior for service implementations, which can to
some extent be applied in client development. The works from
OMA lays the ground requirements for identifying functionalities
for the different application enablers on our client framework.

The Java Specification Requests (JSR) 281 [7] define mobile
device specific platform IMS client framework on which
operators and third party service providers can develop and
provide new IMS services. JSR 281 specification exposes IMS
functionality through high-level APIs that hides IMS
implementation details through abstraction of the underlying
technology. This approach secures conformance to IMS related
standards and at the same time gives developers possibility to
focus on the functionality of the services and not on the IMS
technology implementation details. JSR 281 specifies a high-level
definition of the client architecture and service enabler.
Nevertheless, no reference architecture as proof-of-concept has
been deployed. In addition, JSR 281 framework specifications
concentrated solely on mobile end devices for mobile operators,
ignoring fixed and cable operators, who can also enhance IMS to
provide innovative multimedia services to their subscribers.

However, as mentioned at the beginning of this section, our
activities on developing an IMS Client framework is not intended
to specify competing standards to already existing standards or
approaches, rather to use and refer to them where applicable.

3. CLIENT APPLICATION PRINCIPLES
Same as any architecture, the client architecture for IMS consists
of a set of layered and structured modules, with each module
comprising of well-defined functionalities. Figure 2 illustrates a
high-level architecture description of the framework. The
framework comprises of the application layer and the service
layer.

The application layer comprises all the IMS and non-IMS
applications hosted on the client. The service enabler layer
comprises of service enablers responsible for providing service
intrinsic functionalities. Intrinsic functions are those functions,
which are essential in fulfilling the intended task of the specified
service enabler. A service enabler implementation is an
implementation of a related set of functions that perform useful
work, enabling one or more services. Other service enablers
within the framework can as well use these enablers.

Figure 2. IMS Client Architecture

The following sub sections describe the key principles of the IMS
Client framework.

3.1 Intrinsic functionality
As mentioned above, intrinsic functions are functions that are
essential in fulfilling the intended task of the specified enabler.
For example, Authentication is intrinsic to Registration, just like
Registration is intrinsic to publishing Presence Information. Non-
Intrinsic functions are those functions that are not essential in
fulfilling the intended task of a specified enabler. For example,
publishing Presence Information is a non-intrinsic function to
establishing an audio session with a peer.

Any requirements or features that are not intrinsic to an enabler
should not be specified within that enabler’s specification. An
enabler’s specification should only specify the intrinsic
functionalities required to fulfill its actual function. Therefore, the
client framework should classify intrinsic and non-intrinsic
functions for enablers relative to other service enablers.

3.2 Delegation and reuse of enablers
Service enabler specification should make use of already existing
specifications where possible. For example, the reuse of presence
and group list enablers for conference calls. In order to reuse
functionalities from other service enablers, enabler specifications
have to specify interfaces between service interfaces on how to
use cross functionalities. This also enables a general horizontal,
rather than a vertical architecture, that acts as a docking station
for applications. A service enabler implementation can invoke

existing standard functions, such as authentication or group
management that it needs to satisfy its intrinsic functions defined
in its specification.

3.3 Extensibility
Within an IMS Client framework, specifications of service
enablers expose standard interfaces for IMS applications and that
other service enablers can use as well. These service enabler
interfaces, connect to actual service enabler implementations
within the framework. Through this abstraction, it is possible to
add or modify the underlying implementations without affecting
the interfaces exposed by the enabler specification. This way, the
framework allows introduction of new functionalities.

3.4 Management
Management refers to the process of managing framework
settings and applications resident on the framework. This feature
is applicable in various scenarios. For example, remote service
provisioning gives operators the possibility of querying device
capabilities, updating, deploying and maintaining IMS client
applications and framework components. The user can also use
the management tools to personalize the framework with a set of
available applications, or manage the different application
preference settings for the available services.

4. OPEN IMS CLIENT FRAMEWORK
To reach the goal of creating an open, extensible framework, we
separated the functionality into different components. Each of
these components implements a specific part of the framework
stack. The framework enables application developers to develop
IMS and non-based IMS applications, making use of underlying
IMS intrinsic functionalities for defined services. This approach
secures conformance to IMS related standards and at the same
time gives developers possibility to focus on the functionality of
the services and not on the IMS technology implementation
details. In addition, developers can use existing modules, to build
rich applications, by aggregating services from multiple modules.
For example, an IPTV application can integrate watching TV or
Video-on-Demand functionality together with the call, presence
and contact list service modules to receive notifications, when a
friend logs online or for incoming calls. The module-based
approach also enables features like;

• automatic update for parts of the framework or the
resulting applications

• implementing different functionality for specific
devices

• co-location of multiple IMS Services
• encapsulation of internal protocols

To keep the framework maintainable we made the modules self-
describing. Each module contains a name, a small description, a
version and declares its dependencies to other modules. This will
allow the framework to load dependent modules automatically
and avoids circular references during development. For rapid
application prototyping, it is important to reduce the amount of
code, which the developers must write for application
development. We decided to create several layers of abstraction
by grouping different modules with similar functionalities and

grouping intrinsic functionalities used by other modules, such as
registration.

The framework is divided into four different layers namely the
device abstraction layer, the network layer, the application
enabler layer, and the application layer. Developers will have the
choice on which layer they start to build the application.
Developing on a lower layer increases the effort for building new
applications but means more control. The following sections
define the different framework layers.

Figure 3. Client Service Creation Environment

4.1 Device abstraction layer
The heading of subsections should be in Times New Roman 12-
point bold with only the initial letters capitalized. (Note: For
subsections and subsubsections, a word like the or a is not
capitalized unless it is the first word of the header.)

4.2 Network layer
The network protocol layer provides access to the different
protocol stack APIs used for IMS and multimedia services. There
are components for SIP, RTP/RTCP, HTTP, XCAP and MSRP.
The framework uses the SIP stack to develop IMS compliant SIP
applications that are compliant with IETF, 3GPP and TISPAN
IMS standards. It provides a low level API for full control over
SIP communication between the client and IMS network. The
RTP/RTCP module provides the protocol stack for real-time
audio/video communication, encoding and decoding
functionalities for different codec and media control. The
framework uses the HTTP stack to establish HTTP connection
sockets to the Internet. The XCAP module also uses it, in order to
establish connection to XDM servers. The Message Session Relay
Protocol (MSRP) implements the stack for transmitting near real-
time, peer-to-peer exchanges of binary content. MSRP uses a
rendezvous protocol such as SIP for signaling

4.3 Application enabler layer
The application enabler layer combines the protocol components
and the device layer components to form the core of the
framework that enables plug-in or development of different
applications. This layer hides the complex signaling of IMS. It is
the toolkit used by all applications (IMS and non-IMS) to provide

defined services. The application enablers comprise the following
modules:

4.3.1 Registration
Before accessing any services on the IMS network, the UE first
needs to register and bind its address on the network, which the
network uses in routing messages to the UE. This enabler
provides registration and authentication functionalities to the
above applications. The enabler implementation includes two
HTTP Digest authentication algorithms; Authentication and Key
Agreement and Digest Access authentication scheme using MD5.
In addition to the authentication algorithms, this enabler
implementation also includes SIP “path” extension header field
for registering adjacent contacts and uses the SIP extension
header in the registration response from the server for service
route discovery.

4.3.2 Event management
This enabler implements an extensible event framework where
applications can request notifications from remote peers or IMS
entities, indicating that certain events have occurred. This event
framework enabler provides SUBSCRIBE and NOTIFY methods
to different event packages. The supported event packages include
“refer”, “reg”, “presence”, “winfo” , “ua-profile”, “conference”.

4.3.3 Messaging
This enabler provides pager-mode based, as well as session-mode
based advanced messaging sessions. Application can use this
enabler to send instant messages, start a chat session with a
remote peer, or send binary files to a remote peer.

4.3.4 Session
The session enabler provides applications with an abstract point-
to-point multimedia communication with a remote peer. The
communication comprises a set of media connections types
(audio, video and message). It uses the Session Description
Protocol (SDP) to describe and negotiate the connection details
for the different media types. After the session is established, it
offers also the possibility of modifying the session. For example,
to add or remove media types to /from the communication. This
enabler also provides the possibility of transferring the session to
a different device (also known as Explicit Communication
Transfer).

4.3.5 XML data management (XDM):
The XDM enabler provides applications with a document
framework for managing and manipulating XML documents as
specified by OMA [4]. The XDM module offers XML object
serialization functionalities to parse documents to objects. The
enabler also provide applications the possibility to create XCAP
connections to the XDMS on the network, to store, configure and
manage service data on the network.

4.4 Application layer
The application layer is where developers can develop and
include basic and innovation applications that use the application
enabler framework. The applications contain views for user
interaction. Views are presentation specific implementations of

user interaction objects. They are located in own modules and are
specific to the device the client is running on.
The next sections describes some of the prototype applications we
have developed using the Open IMS framework as proof-of-
concept solutions.

5. PROTOTYPE APPLICATION
As proof-of-concept for our work in developing the Open IMS
Client Framework, we implemented prototype applications
ranging from simple basic IMS application, to innovative service
composition applications, which demonstrate reusability of
service components and their composition to form new
applications. Figure 6 illustrates the different applications
currently resident on the framework. Our solutions run on Pocket
PC as well as desktop/laptop PCs. In this section, we shall
concentrate on the details of one application from the set of
capabilities. The rest of this section describes the location-based
service.

Figure 4. Application prototypes on OpenIC framework

Location services are services based on Location Information
(LI). Subscriber services can be enhanced with the use of LI. For
example, a subscriber’s mobile set can be provisioned on the fly
with new services, based on his/he current location (find the
nearest restaurant, petrol station etc.). LI can as well be used for
emergency applications to emergency call to the nearest police
station, hospital etc. These are a few examples how location can
be used to enhance applications. We use the same concept of GI
to create a rich application for sharing contacts geographical
information using Presence.

Next, we shall explain the technical prerequisites for such an
application. Since the application is based on GI, it requires a
source for acquiring location information. There are several
techniques available as sources for acquiring GI such as Location

beacons (using Bluetooth), subscribing to carrier information, or
manually configuring the location. However, we made use of the
Global Positioning System (GPS), because it is widely used and
widely available on today’s mobile devices. Another prerequisite
we considered for the developing the contacts geo presence
application is privacy. The user should have the possibility to
choose if he/she wants to communicate their locations for others
to see. Last but not the least, in order to display users’ information
to the subscribed user, we included a map application on the
framework, which graphically displays the exact location of any
contacts user who chooses to publish their GI for others to see.

The development of the location based contacts presence
application based on the geographical location and privacy
specification and architecture [5] [8]. The four primary entities in
Geopriv include the Location Generator, the Location Server, the
Location Recipient and the Rule Maker.

Figure 5. Geopriv entities

The Location Generator determines the geographical Location
Object (LO) of an object that describes a location and publishes
the LO to the Location server. Location server receives the
LOs and receives subscriptions from various location
recipients. In coordination with policies set be the Rule Maker,
it distributes the location information to Location Recipients.
The Location Recipient subscribes to LO on the Location
Server ant renders notified event for LOs to a user or some
receiving application The rule holder is the repository for
privacy rules filtering and distributing LOs for specific entities.
A user populates the rule holder with privacy rules

On our prototype scenario, the Presence Server and the XDMS
on the FOKUS IMS Playground played the role of the Location
Server and Rule Maker respectfully. For the Location
Generator and the Location Recipient, we used two Open IMS
Clients as UEs on Windows Mobile devices. The UEs use
registration enablers to access the IMS network and the event
framework to publish, subscribe to and receive notifications
form the Presence Server. For specifying rules for privacy on
the Rule Maker, the UEs use the XCAP handler to define rules
for the Geopriv service, which the Presence server uses to
dispatch information to subscribed recipients

Figure 6. Configure and publish own configuration
information

As Figure 8 depicts, the end user can configure their Presence
Information with basic “online” “offline” status, a personalised
message and geographical Location Information. After the user
registers on the Open IMS network, a SIP PUBLISH is sent to
the Presence Server with an extended PIDF document. The
PIDF document contains Geography Markup Language
(GML), which describes the geospatial information of the user.
The geographical coordinates are read from the device’s GPS
receiver. Addition to the SIP PUBLISH message sent after
registration, the contacts application sends a subscription
message (SIP SUBSCRIBE) to the Presence Server for
receiving presence information for contacts on the contact list.
We extended the framework with a map application, which
graphically depicts the GI of a contact on a map. The end user
can view their location information, as well as that of their
friends.

Figure 8. Map Application showing Contact’s Geographical
Location Information

From the map application, the end user communicates directly
with the remote contact by placing a VoIP call or sending a
message to the remote contact.

6. CONCLUSION
IMS adoption is slowly but steadily rolling out in internal
laboratory test-beds for service prototype developments. Most of
the attention until now was centered on the IMS network and the
Service Delivery Platform for providing commercial IMS
services. Little attention has been given to the IMS clients that
play an important role in user acceptance for IMS services. There
are no open standard specifications on developing services on
IMS clients, which has lead to poor availability of IMS clients or
interoperability problems. This paper presented an open
extensible approach for an IMS Client framework, which refers to
works from JSR 281 and client requirement on OMA service
specifications. The framework allows rapid development and
prototyping of IMS based client applications. The use of modules
was a key concept during the design and the implementation
phase. It allows the framework to be extended by third parties as
to be adapted at specific runtime environment. The framework
was implemented using Java and C#. The same concept can be
transferred to any programming language. The current version of
the framework is build in form of libraries which are linked
together to form a specific application. Future versions of our
framework is planned to be stand-alone IMS stack implemented
on the operation system layer.

7. REFERENCES
[1] 3GPP Version TSG #33, “Overview of 3GPP Release 6”,

Release 6, 2006

[2] IETF, “RFC 4825 – The Extensible Markup Language
(XML) Configuration Access Protocol (XCAP)”, May 2007.

[3] FOKUS Open IP Multimedia Subsystem Playground
http://www.fokus.fraunhofer.de/ims/

[4] OMA XDM Core, “XML Document Management (XDM)
Specification”, Approved Version 1.0 – 12 Jun 2006.

[5] IETF “RFC 4119 – A Presence-based GEOPRIV Location
Object Format”.

[6] 3GPP, “Overview of 3GPP Release 5, Summary of Release 5
Features”, Release 5, September 2003.

[7] Sun Microsystems, “JSR 281 – IP Multimedia
Subsystem (IMS) Services API”, Public Draft version
0.9, September 2007

[8] H. Tschofenig, H. Schulzrinne, A. Newton, J. Peterson, A
Mankin, The IETF Geopriv and presence architecture
focusing on location privacy, Position paper at W3C
Workshop on Languages for Privacy Policy Negotiation and
Semantics-Driven Enforcement, Ispra, Italy, 2006.

[9] O. Friedrich; A. Al-Hezmi; S. Arbanowski; T. Magedanz;
“Next Generation IPTV services for an extended IMS
architecture”; Autonomous Decentralized Systems, 2007.
ISADS '07. Eighth International Symposium on March 2007
Page(s):429 – 436, Digital Object Identifier
10.1109/ISADS.2007.52

