
Analysis of Application Partitioning for Massively
Multiplayer Mobile Gaming

Madan Kumar M. M,

Amit Thawani*, Sridhar V.
Applied Research Group, Satyam Computer Service

Ltd, 3
rd
 floor SID Block, IISc Campus,

Bangalore, INDIA 560012

{Madan_MM, Amit_Thawani,
Sridhar}@satyam.com

Prof. Y. N. Srikant

Department of Computer Science and Automation,
IISc Campus,

Bangalore, INDIA 560012

srikant@csa.iisc.ernet.in

ABSTRACT
Mobile devices offer the opportunity to play games anywhere

anytime. Moreover, networked games allow individual players

to interact with other people and to participate in a larger

gaming world. Improved network and upgraded software’s

available on mobiles have given enough scope for massively

multiplayer mobile games. An inherent problem is efficient

utilization of resources when a numbers of people are playing

games in real time. Gaming infrastructure mostly involves

gaming servers and it is likely for a gaming server to run short

of resources under peak load conditions resulting in degradation

of game play. Under this situation possible solutions would be to

replicate server to handle more load, increasing the bandwidth,

or to maintain different connections with other servers. Since

load on server is not likely to happen often, replicating of server

infrastructure prove to be costly. To handle such situation

possible solution is to partition the game application and off load

some of the processing onto either client/server depending on

the availability of resources provided the other has sufficient

processing bandwidth available. In this paper we address the

problem of providing a good gaming experience on mobile

devices when server is short of resources. Our approach

considers the game which follows client server model and is

based on partitioning the game application. We model the game

and represent the game as a graph and partitioning game

application problem reduces to graph partitioning approach.

General Terms

Algorithms, Management, Measurement, Documentation,

Performance, Design, Economics, Reliability, Experimentation

Keywords

Mobile Gaming, Scalability, Application Partitioning

1. INTRODUCTION
Game developers, providers and players get more and more

interested in games that can be played everywhere. Multiplayer

games allow more people to play together or against each other

in the same game. Common examples of multiplayer games are

Quake, Doom, and Ever Quest adventures. Massively

Multiplayer Game (MMG) is a computer game which is capable

of supporting hundreds or thousands of players simultaneously.

Typically, this type of game is played in a giant persistent world.

MMGs can enable players to compete with and against each

other on a grand scale, and sometimes to interact meaningfully

with people around the world.

Quake is a popular multiplayer game run by a single server [1],

[2]. It can be divided into a server part and a client part. The

client part is in charge of graphics and the user controls

(Keyboard, mouse, game pad, etc.). The server updates the

world states and feeds this information back to the client for it to

redraw the graphics accordingly. All network communications

are over User Datagram Protocol (UDP). All game logic and

physics are carried out on the server and on client it is

essentially a graphics-rendering and client-input engine. The

client continuously sends packets to the server with the state of

the user key presses and mouse position. The server keeps all

game state information and sends clients updated positions and

appearances of entities in the game world 10 times per second,

or every 100 ms to make motion appear smooth. In moments of

unusually high latency, the client also attempts to predict the

contents of the next sever update, but this is error-prone and

considered a last resort.

1.1 Introduction to Gaming on Mobile

Device
Recent innovation in mobile games includes distributed 3D

graphics applications [3]. Mobile devices offer the opportunity

to play games nearly everywhere. Currently mobile devices are

designed to support multimedia capabilities. Yet, in order to

support games on mobile devices some challenges, which are

due to the nature of wireless networks, have to be overcome.

Multiplayer mobile game functionality is achieved, through:

Infrared, Bluetooth, GPRS, 3G and WiFi. These networks are

designed to deliver broadband multimedia and real-time data.

The main restrictions a mobile device imposes on graphics and

artistic freedom are the available memory size, the processor

capacity and most obviously, the limited display size and

resolution. Additionally, because of the mobility of devices,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Mobilware '08, February 12-15, 2008, Innsbruck, Austria.

Copyright © 2008 ACM 978-1-59593-984-5/08/02... $5.00

create-net
Typewritten Text

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2875

locations can change frequently and introduce several problems

due to which game might run slow or device freezes, which is

not a good gaming experience. Today technology is heading

towards devices which provide good memory, processor

capacity and more space for display with better resolution [4].

Challenges for this would be to create concepts and software’s

that will handle mobile network latency, and to choose right

multiplayer platform which must be open enough for future

improvements without imposing any restrictions. Game plays

should be well balanced for synchronous and asynchronous

multiplayer games.

Major challenges with massively multiplayer mobile gaming

are:

Latency - The foremost and most critical problem for a real-time

game is the network's latency, the time between sending a

request and receiving a response. The amount of time it takes to

get data from one machine to another and to receive a response

is an issue with which all connected games struggle. The

available bandwidth in mobile networks is usually lower than in

fixed networks. The available bandwidth in wireless networks is

dependent on network technology, radio conditions, and

subscriber Quality-of-Service (QoS) profiles.

Mobility – Frequent movement of the device form one place to

other might change the network unpredictably resulting in

broken links and stale routes.

Congestion – In massively multiplayer game, frequent updates

does populate the network. To have better gaming experience

real-time traffic must arrive in-time even if the network is highly

loaded.

Wireless Signal - The mobile signal suffers from fading and

interference which gives rise to gray zones and frequent

retransmissions. Issues here include the adjustment of the user

experience when bandwidth drops or a wireless connection

experiences interference and is temporarily out of service. This

causes delayed arrival of game updates resulting in loss of game

state and game synchronization problem.

Connectivity - Refers to issues related to the connection of the

device to a network and other peripherals. These can be wired or

wireless connections. The mobile devices are expected to have

high degree of perception to maintain the game state updated on

time.

Power - The use of batteries or power outlets, which modifies

the user experience based on the current power usage of the

system. In massive gaming environment the need for non

exhaustible power supply is important.

Memory - Mobile devices impose major restriction on

applications due to limited memory size and display available.

For a massively multiplayer gaming environment, need for good

memory and processing speed is perquisite. Recent mobile

devices from Sony, Nokia have decent internal memory of

64MB and processing speed up to 500MHz. Even though under

massive gaming environment the chances for game to run slow

or freezing of device is very much possible.

Providing massively multiplayer games on mobile device is

mainly dependent on the above mentioned parameters. Improved

network and upgraded software’s available on mobiles have

given enough scope for massively multiplayer mobile games.

An inherent problem is efficient utilization of resources when

‘n’ numbers of people are playing games in real time. In a

multiplayer game which follows client server model, a situation

where either client or server is running short of resources is a

possible scenario.

Having capable mobile device which would support a massively

multiplayer game typically having client-server architecture

requires a robust and scalable gaming server. A gaming server

must be capable enough to handle varying number of players.

Having a fixed amount of resources, it is likely for a gaming

server to run short of resources under peak load conditions

resulting in degradation of game play. Under this situation

possible solutions would be to replicate server to handle more

load, increasing the bandwidth, to maintain different

connections with other servers, etc. Since load on server is not

likely to happen often, replicating of server infrastructure proves

to be costly. To handle such situation, possible solution is to

partition the game application and off load some of the

processing onto either client/server depending on the availability

of resources provided the other has sufficient processing

bandwidth available. For example for the scenario of server

running short of resources partitioning will result in off loading

some of the processing to connected capable client devices.

Partitioning server application to balance load on server by

partitioning functions specific to clients such as player collision,

player move, etc, would give better performance. To perform

partition, important thing to be considered is the availability of

bandwidth so that minimal latency is experienced without

hampering the game performance.

In this paper we address the problem of providing a good

gaming experience on mobile devices when server is short of

resources. Our approach considers the game which follows

client server model and is based on partitioning the game

application. We model the game and represent the game as a

graph and partitioning game application problem reduces to

graph partitioning approach. We use KL algorithm for graph

partitioning to determine client/server specific game logic to be

off loaded past partitioning for cases when either of them are

short of resources.

2. Related Work
In past, the process of application partitioning is the problem of

dividing sections of application code among a set of processors

for execution in parallel taking into account the communication

overhead between the processors. Application code partitioning

of large amounts of code onto numerous processors requires

variations to the classical partitioning algorithms, in part due to

the memory and time requirements to partition a large set of

data, but also due to the nature of the target machine and

multiple constraints imposed by its architectural features.

Partitioning code for massively parallel machines by Sun

System gives an overview of partitioning. Applications which

are component based require components to be identified for

partitioning [5]. Partitioning such an application with minimum

distributed communication is important. The usage of coign,

which automatically distributes applications conforming to

Microsoft Corporation's Component Object Model (COM), is

well discussed in Automatic Distribution Partition of

Component Based Application which explains importance of

automatically partitioning and distributing component based

applications [6].

Several application partitioning problems haves been analyzed

as an instance of the graph partitioning problem. Many heuristic

based graph partitioning algorithms are used for partitioning

purpose. Among those Kernighan-Lin heuristic based algorithm

is heuristic method for partitioning arbitrary graphs which is

both effective in finding optimal partitions and fast enough to be

practical in solving large problems [7]. Similarly Min-Max cut

greedy partitioning algorithm is also used to produce an initial

bisection; it starts from two seeds and growing their own regions

by adding candidate vertices in turn [8]. Fiduccia-Mattheyses

(FM) heuristic for bi partitioning circuit hyper-graphs is an

iterative improvement algorithm [9]. Well known parallelization

of graph partitioning algorithm METIS is used for graph

partitioning which has three main stages: (a) Coarsening takes a

large graph, with vertices |V| and edges |E|, and creates

successively smaller graphs that are good representations of the

original graph; (b) Partitions the small graph and (c) Projects

and refines the partition of the smaller graph onto the original

graph [10]. Improvement factor over graph partitioning was

introduced by Davidson algorithm [11].

3. Application Partitioning Approach for

Massively Multiplayer Game.
Multiplayer game can be characterized based on entities and

events. Entities and events can be specific to client, server or

common to both. Examples of client entities are console,

avatars, walls, weapons, etc. while examples of server entities

are monster, war ship, tank, weapons, etc. Examples of client

events are mainly graphics rendering, input handler, actions of

avatars, shooting, and running, etc. while examples for server

events are client update, connection management, game state

update, coordinates computation and other mathematical

functionalities. Similarly examples for common events are

network connection management, sound, system utilities,

display management, etc. A game, which follows client server

model, has client logic and server logic sharing some common

game logic. To partition such as application requires certain

factors to be considered. Major factors to be considered for

application partitioning are: (a) Availability of memory; (b)

Processing speed on both client and server and; (c) Bandwidth

for the amount of data that can be transferred over the network

with minimum latency. Apart from above mentioned factors one

need to consider others factors specific to application being

partitioned such as: (a) Client and server tasks specific of a

particular event; (b) Dependencies between the tasks across

client server; and (c) Number functional of calls on tasks for a

particular event.

In our approach we model the game application, which follows

client server model. We consider client/server processing speed,

memory availability and set of game logic represented in the

form of set of events as shown in figure 1. Each event comprises

of certain tasks and each task having some game logic executed

on client or server with dependencies between the tasks and

functional calls between tasks across client server. The

performance of game is measured in terms of total execution

time. We compute the total execution time taken by each of the

events under varying resource constraints on both client and

server, assuming network bandwidth is good with negligible

constant latency. To address the problem of partitioning we

represent our application in terms of a weighted graph and

partitioning problem reduces to graph partitioning problem. To

perform graph partitioning, each of the tasks is represented as

node and dependencies/functional calls between each of the task

are represented as weighted edges. We assign edge weight

considering the number of dependencies between the tasks. We

use Kernighan-Lin Heuristic Based Algorithm for partitioning

our application represented in graph [7].

Figure 2. Modeling Game Design as Weighted Graph

This algorithm is an iterative algorithm, starting from a load

balanced initial bisection. The initial bisection is generated

based on the task dependencies. The algorithm first calculates,

for each vertex, the gain in the reduction of edge-cut that may

result if that vertex is moved from one partition of the graph to

the other. It mainly has two iterations, inner and outer

respectively. At each inner iteration, it moves the vertex, which

is unlocked (vertices which are not swapped) having the highest

gain, from the partition in surplus (that is, the partition with

more vertices) to the partition in deficit. This vertex is then

locked and the gains updated. The procedure is repeated even if

the highest gain may be negative, until all of the vertices are

locked. The last few moves that had negative gains are then

undone and the bisection is reverted to the one with the smallest

edge-cut so far in this iteration. This completes one outer

iteration of the K-L algorithm and the iterative procedure is

restarted. When an outer iteration fails to result in any

reductions in the edge-cut or load imbalance, the algorithm is

terminated. The K-L algorithm is a local optimization algorithm,

with a limited capability for getting out of local minima by way

of allowing moves with negative gain. Figure 2 shows weighted

graph of our model before partitioning and after partitioning

using KL algorithm. Figure 4 shows an instance of partitioning

our game design. On partitioning the application is observed for

each client’s total execution time for each event. Thus obtained

result is compared against the values obtained before

partitioning.

4. Experimental Setup
We perform application partitioning on our modeled game

design, having certain tasks on client and server. We set up a

server with 5 tasks and with 20 client instances with each client

having 2 tasks respectively. We construct weighted graph

considering client and server tasks and number of

dependencies/functional-calls as our attributes for graph.

Application partitioning is achieved using KL-algorithm as

described in section III. After partitioning certain tasks moved

from server to client which results remote functional call

affecting the network latency. We set up our application on two

different machines on LAN with client having processing speed

of 2.4 GHz and memory of 512Mb RAM and server with

processing speed of 2.4 GHz and memory of 1 GB RAM. To

vary the memory and CPU utilization, we run dummy

applications to occupy memory and CPU utilization accordingly.

Figure 3. Experimental Setup of Game Model

We measure the total execution time taken by each of the client

before and after partitioning under various conditions and infer

the usefulness of our approach.

4.1 Results and Discussion

We perform application partitioning for typical four conditions

as shown in table 1. We set up a server having 5 tasks and with

20 clients instance each having 2 tasks on two machines

connected over LAN. To estimate the impact of partitioning, we

perform the experiment by: (a) Moving one task from server to

client; (b) Moving 2 tasks from server to client; and (c) Moving

3 tasks from server to client. We measure total execution time

taken by each client before and after partitioning.

4.1.1 Scenarios:

4.1.1.1 Scenario 1: Both client and server resource
utilization is low.
This is achieved since the only application running on these

machines is the game application (with no other dummy

applications utilizing the resources). Fig 5, 6 and 7 shows the

difference in execution time taken by each client under

aforementioned conditions. From the results obtained, we

observe that there is a difference of 3.8% in total execution time

after partitioning.

From the above observation, we conclude that application

partitioning does not result in significant improvement over

performance when both client-servers resources utilization is

low.

4.1.2 Scenario 2: Both client and server resource
utilization is high.
This is achieved by executing other dummy applications on both

server and client machines along with the game application

resulting in maximum resource utilization. Fig 8, 9 and 10

shows the difference in execution time taken by each client

under aforementioned conditions. From the results obtained, we

observe that there is a difference of 6.6% in total execution time

after partitioning. From the above observation, we concluded

that application partitioning is useful when both client and

server have higher resources utilization leading to better

performance.

4.1.3 Scenario 3: Server resource utilization is
more than client.
This is achieved by executing other dummy applications on

server machine along with the game application resulting in

maximum resource utilization (with no other dummy

applications utilizing client resources). Fig 11, 12 and 13 shows

the difference in execution time taken by each client under

aforementioned conditions. From the results obtained, we

observe that there is a difference of 51.3% in total execution

time after partitioning. From the above observation, we conclude

that application partitioning results in significant improvement

over performance, when server resource utilization is high.

4.1.4 Scenario 4: Client resource utilization is more
than server.
This is achieved by executing other dummy applications on

client machine along with the game application resulting in

maximum resource utilization (with no other dummy

applications utilizing server resources). Fig 14, 15 and 16 shows

the difference in execution time taken by each client under

aforementioned conditions. From the results obtained, we

observe that there is an increase of 1.1% in total execution time

after partitioning. From the above observation, we conclude that

application partitioning on server is not useful, when client

resources utilization is high.

5. Conclusion
In this paper we have addressed the scalability issues for gaming

server on peak load conditions for massively multiplayer mobile

gaming. Our approach is based on: (a) Modeling game

application as graph; (b) Using graph partitioning to identify

partition of gaming application for offloading; (c) Comparing

application performance in terms of latency (before and after

partitioning). We have instantiated our approach by modeling a

gaming application and performing graph partitioning, using KL

graph partitioning algorithm. Our experimental results have

demonstrated that application partitioning is useful under: (a)

Server resource utilization is more than client; (b) Both client

and server resource utilization is high. Under following

conditions application partitioning does not result in significant

improvement on performance: (a) Both client and server

resource utilization is low; (b) Client resource utilization is more

than server. We plan to extend our approach by considering

finer attributes of game design such as: Heterogeneity of client

resources; (b) Variability of network latency; (c) Latency of

switching after partitioning etc.

6. REFERENCES
[1] C. Brown, P. Barnum, D. Costello, G. Ferguson, B. Hu, and

M. Van Wie, “Quake II as a Robotic and Multi-Agent

Platform,” The University of Rochester, Computer Science

Department, Rochester, New York 14627, Technical

Report 853, Nov. 2004.

[2] G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. Thomas,

and J. H. Kaufman, “Running Quake II on a grid,” IBM

Systems Journal, VOL 45, NO 1, 2006.

[3] B. Grüter, A. Mielke, and M. Oks, “Mobile Gaming -

Experience Design,” 3rd International Conference on
Pervasive Computing – Pervasive, Munich, Germany, 2005

- 8-13 May, 2005.

[4] “Multiplayer Mobile Games: Business Challenges and

Opportunities,” Forum Nokia, Version 1.0, April 16, 2004.

[5] M. Ball, C. Cifuentes, and D Bairagi, “Partitioning of Code

for a Massively Parallel Machine,” Sun Microsystems

Laboratories, Menlo Park CA, Nov. 2004.

[6] G. C. Hunt, “Automatic Distributed Partitioning of

Component-Based Applications,” The University of

Rochester, New York, 1998.

[7] W. B. Kernighan and S. Lin, “An efficient heuristic

procedure for partitioning graphs,” Bell System Technical

Journal, 1970.

[8] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A min-max

cut algorithm for graph partitioning and data clustering,”

Proc. IEEE Int’l Conf. Data Mining, 2001, pp.107-114.

[9] C. M. Fiduccia and R. M. Mattheyses, “A linear time

heuristic for improving network partitions,” 19th Design
Automation Conference, 1982, pp. 175-181.

[10] Z. Kasheff, “Theory of Parallel Systems, Partial

Parallelization of Graph Partitioning Algorithm METIS,”

Term project, Métis Graph partitioning software.

[11] M. Holzrichter and S. Oliveira, “A graph based Davidson

algorithm for the graph partitioning problem,”

International Journal of Foundations of Computer Science,

1999.

Table 1. Application Partitioning Performed under Four

Typical Conditions.

Scenario

CPU Usage

Memory Usage

Client

Server

Client

Server

Both client and

server resources

utilization are

low.

10-50%

10-50%

20-50%

20-50%

Both client and

server resources

utilization are

high.

95-

100%

95-100%

70-90%

70-90%

Server resource

utilization is

more than

client.

10-50%

95-100%

20-50%

70-90%

Client resource

utilization is

more than

server.

95-

100%

10-50%

70-90%

20-50%

Figure 4. Instance of KL Algorithm for our Game Model

Clients and Server resource utilization is low

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
il

li
o

n
s

Client

T
o

ta
l

E
x
e
c

u
ti

o
n

 t
im

e
(n

s
)

Before Partition
with Four Tasks on Server after Partition
with Three Tasks on Server after Partition
with Two Tasks on Server after Partition

Figure 5. For Scenario 1

Server resource utilization is more than clients

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
il

li
o

n
s

Client

T
o

ta
l

E
x
e

c
u

ti
o

n
 t

im
e
(n

s
)

Before Partition
with Four Tasks on Server after Partition
with Three Tasks on Server after Partition
with Two Tasks on Server after Partition

Figure 7. For Scenario 3

Clients and Server resource utilization is high

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
il
li

o
n

s

Client

T
o

ta
l

E
x
e
c

u
ti

o
n

 t
im

e
(n

s
)

Before Partition

with Four Tasks on Server after Partition

with Three Tasks on Server after Partition

with Two Tasks on Server after Partition

Figure 6. For Scenario 2

Clients resource utilization is more than server

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

M
il
li

o
n

s

Client

T
o

ta
l

E
x
e
c

u
ti

o
n

 t
im

e
(n

s
)

Before Partition
with Four Tasks on Server after Partition
with Three Tasks on Server after Partition
with Two Tasks on Server after Partition

Figure 8. For Scenario 4

