
Privacy Guaranteeing Execution Containers: One time use
of personal data by location based services

Peter Langendoerfer
IHP microelectronics

Im Technologiepark 25
15236 Frankfurt(Oder), Germany

+49-335-5625350

langendoerfer@ihp-
microelectronics.com

 Michael Maaser
IHP microelectronics

Im Technologiepark 25
15236 Frankfurt(Oder), Germany

+49-335-5625

maaser@ihp-
microelectronics.com

ABSTRACT

Privacy issues are becoming more and more important especially

since the cyber and the real world are converging up to certain

extent when using mobile devices. Means that really protect

privacy are still missing. The problem is, as soon as a user

provides data to a service provider the user looses control over her

data. The simple solution is not to provide any data but then a lot

of useful services e.g. navigation applications cannot be used. In

order to remedy this problem we propose privacy guaranteeing

execution containers (PGEC). Basically the concept is that the

application gets access to the user data in a specially protected and

certified environment, the PGEC. PGECs enable applications to

access private user data locally and guarantee that the user data is

deleted as soon as the service is quit. Thus, the PGEC guarantees

a “one time use” of the provided private data. The PGECs also

restrict the communication between the application and the

service provider to what is explicitly allowed by the service user.

In order to highlight the security provided by the PGEC, we

discuss potential attacks such as modified execution environments

as well as appropriate countermeasures.

Categories and Subject Descriptors

D.3.4 [Processors]: Run-time environments D.4.6 [Security and

Protection]: Access control, information flow controls

General Terms

Algorithms, Management, Design, Economics, Reliability,

Security, Human Factors,

Keywords

privacy enhancing techniques; P3P; location based services.

1. INTRODUCTION
The Internet provides us with access to latest news and

shopping facilities 24 hours a day, 7 days a week. This is really

amazing since it simplifies our everyday lives. Third generation

mobile devices even add a new dimension, i.e. now we cannot

only access all these services at any time but also at any place. In

addition this allows tailoring certain services to the users’ current

contexts, i.e. their current position can be taken into account when

searching for restaurants etc. But this all is a serious risk for users’

privacy. Especially the integration of mobile devices in those

service architectures allows to link real world and cyber world

behavior, so that detailed profiles can be gathered.

From our point of view the fundamental problem is that

anyone who receives data for whichever purpose has the

capability to copy, store and distribute these data. In order to

tackle this problem we introduce the concept of privacy

guaranteeing execution containers (PGEC). The basic idea is that

personal data is not directly exposed to the service provider but

accessible inside the container. PGECs allow to combine sensitive

user data e.g. current position with sensitive service provider data

e.g. navigation algorithms in a secure way. In very simple words

the PGEC guarantees a ”one time use” of user and service

provider data as well as of service providers algorithms. The key

components of our privacy guaranteeing execution containers as

well as appropriate protection means are prototypically

implemented.

The rest of this article is structured as follows. We start with

an overview of existing privacy protection approaches. Section 3

provides the description of the container concept. As part of this

section we discuss the requirements that result from different

kinds of applications. Implementation issues are investigated in

section 4. The paper concludes with a summary and an outlook on

further research steps.

2. RELATED WORK

2.1 Standards
Technically P3P [1] defines an XML dialect for the

description of privacy policies. So service providers can state

which data they are gathering for which purpose. APPEL [2] can

be used to express what a user expects to find in a privacy policy.

P3P and APPEL merely provide a mechanism to describe the

intentions of both sides rather than means to protect user data

after agreeing to use the service.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Mobilware '08, February 12-15, 2008, Innsbruck, Austria. Copyright ©

2008 ACM 978-1-59593-984-5/08/02... $5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2845

IETFs GeoPriv working group is developing an architecture

for handling location information in a privacy aware manner [3].

One of the benefits of this architecture is that the privacy rules,

are stored as part of the location object [3]. Thus nobody can

claim that she did not know, that access to the location

information was restricted. But misuse is still possible and it is

still not hindered somehow by technical means.

2.2 Location-aware Platforms
There are several approaches that try to protect privacy in

location aware middleware platforms [4],[5],[6],[7],[8]. In

[4],[5],[6] means are discussed that enable the user to declare how

much information she is willing to reveal. [7] discusses a

middleware that uses user defined rules, which describe who may

access the user’s position information and under which

circumstances. The approach investigated in [8] intentionally

reduces the accuracy of the position information in order to

protect privacy. This helps to protect privacy to certain extent, but

it cannot be used in systems that need an accurate position to

work properly, e.g. navigation services. In all these approaches

means to enforce privacy are missing.

2.3 Protection Means
There is a lot of work done in the area of digital rights

management to protect content [9],[10] as well as code from

misuse [11]. Those approaches rely on specialized hardware such

as Smartcards, or are vulnerable to data extraction [12]. Those

systems do not provide means to execute any code to be freely

defined as it was needed for services. They merely protect media

content, which could be considered as the service provider’s data.

But, despite the protection of user data is in principle an

equivalent problem these approaches do not provide a solution for

protecting service users’ data.

To the best of our knowledge there are only two approaches

[18],[19] that try to make sensitive data available to a third party

while ensuring secrecy of that data. [19] proposes an architecture

that ensures secure data processing by exploiting the java sandbox

model as execution environment for data processing code and by

limiting the feedback from the data processing code to the out side

world. In order to allow correct interpretation of data processing

results as well as development of appropriate algorithms a part of

the data has to be publicly accessible. In addition sensitive data is

always kept at its owner’s site. The prerequisites of this concept

render it impractical for implementation of location based or

context sensitive services, although it is well suited for privacy

preserving data mining.

 The approach presented in [18],[13] tries to avoid that user

data is accessible outside a specially secured execution

environment. User data is enclosed in an agent and securely

transferred into an isolated closed-door one-way platform

provided by a trusted third party. The service agents proceed

analogous with their own data. Those entire agents interoperate

within that trusted environment and agree on a certain result. The

result is forwarded by all involved agents independently to the

closed-door platform which posts the result to the agents’ origins

if the forwarded results are equal. This ensures that no private

data is transmitted to the opposite party if the agent did not agree

to. All the agents together with their enclosed data are deleted

after service completion in order to ensure the privacy of the user

and to protect the services data. In contrast to this approach PGEC

does not rely on a trusted third party that provides processing

capabilities such as a server plus a specific agent platform.

Encapsulation of sensitive data and its deletion after service

completion are provided by the PGEC by design. Thus it allows

for bilateral cooperation between service users and service

providers. User and service provider data do not need to be

transferred a priori, but only when really needed or may even be

used without being transferred via the network. This is especially

helpful if location based services are realized inside the container

since they may need a huge amount of data such as a catalog of all

restaurants in New York City. This feature is ensured by the

concept of a distributed PGEC which consists of at least 2

instances at either participant side, and which transparently

represents virtually one single PGEC.

2.4 Regular Firewalls
A number of firewall systems exist in the market. Those are

either software solutions so called personal firewalls such as the

MS Windows Firewall or hardware solutions built into routers,

i.e. using Linux’ iptables. Mostly those are used to prevent

unwanted access from the outside of the firewalled hosts.

Firewalls can further be used to block certain protocols or several

ports. As far as it is known there is no way of a firewall to prevent

certain data items to be sent to not blocked addresses. Even

though there is some packet inspection there is no chance to

recognize the content of encrypted packets. Firewalls have no

control over the data once it passed the firewall. Hence, a firewall

may only assure that no data leaves the machine at all. This is

similar to unplugging the network cable which renders all internet

services unusable.

In opposite to the firewalls the PGEC is supposed to transfer

sensitive data securely over the network into other PGEC

instances only. While regular firewalls do not prevent local

applications to write onto local hard drives or similar persistent

storage devices - even printers, the PGEC does. That way all data

transferred within PGEC instances remain within those. This is

true for private data of service users as well as data and service

code of the providers. Within the container instances both can be

brought together and the service can usefully be completed. Since

data can only be used within PGEC instances this principle may

be compared to DRM systems where the protected content can

only be decrypted and played within certified DRM enabled

systems, which comply with the requirement not to persistently

store the decrypted data.

3. CONTAINER CONCEPT
In order to provide useful context aware services a lot of

different information has to be taken into account. The range

spans from personal profile of the service user over related data

from a third party to the algorithms used and developed by the

service provider. The major problem to solve when it comes to

privacy issues is how to guarantee that the service provider does

not retrieve data of the service user. This task has to be tackled in

such a way that the solution can adapt to different contexts, i.e.

the data which may be exposed or protected can vary from

application to application as well as from user to user even for the

same application. In addition, service providers must be protected

from malicious service users, i.e. it has to be ensured that the

service user cannot get hold of the algorithms provided by the

service provider.

In order to provide mutual protection between service user

and service provider we introduce the concept of privacy

guaranteeing execution containers. These are containers, which

are independent of the service provider as well as independent of

the service user. They ensure the following properties:

1. All data may be stored in volatile memory only and will be

deleted after completion of service use; this has to hold true

for service provider as well as for service user data.

2. The communication between the code executed in the

container as well as the communication between the

container and any third party is to be restricted to what is

agreed between the service provider and the service user.

This agreement is denoted as privacy contract throughout

the rest of this paper.

3. The local exchange of messages and implicit

communication e.g. via shared memory is prohibited.

If property (1) is fulfilled the container may be executed on

any location (server or mobile) due to the fact that there is no way

to get low level access to the data of the other side. The benefit is

that load balancing becomes feasible. Computational expensive

services do not have to be executed on the mobile device.

If property (2) is fulfilled there is no chance to steal data

during the service use. The problem here is to define a set of

allowed messages. On one hand it has to be sufficiently large to

allow service fulfillment. On the other hand it has to be as

restrictive as possible in order to ensure that it cannot be misused

to steal data, and to enable the container to verify the content of

the allowed messages.

If property (3) is fulfilled a service running in a container

simultaneously with other services cannot share its knowledge

about gained private data with other services that are concurrently

executed within the PGEC. Hence it is not possible to extract

private data via an additional service and a faked user with a very

loose privacy policy.

The concrete behavior of the PGEC depends on the privacy

preferences of the service user. The latter is negotiated between

the service user and the service provider. The resulting document

is called a privacy contract and defines which information may be

accessed through the PGEC and which messages may be sent

through the PGEC to which communication endpoints. In

addition the restrictions that can be defined in the privacy

contracts depend on the application/service which is run inside the

container.

In order to make sure that the service user as well as the

service provider will trust the PGEC, it has to be implemented by

a trustworthy third party, and it has to be signed by that party

using a PKI certificate e.g. from VeriSign.

3.1 Privacy Contracts and Their Dependency

of Service Types
The communication between the code, which is executed

inside the container and the service provider outside, is restricted

by a privacy contract. The privacy contract has to be negotiated

between the service provider and the service user. Appropriate

means to do so have been proposed in [17]. Both parties have to

sign that contract. It defines which kind of messages may be sent

by the code providing the service and to which communication

endpoints they may be sent. The rules that have to be defined

inside the privacy contract depend on the kind of service. Up to

now we identified three classes of services.

1) Logically delivering services

2) Logically controlling services

3) Physically delivering services

Logically delivering services do not need to communicate

with the service provider side. A navigation service is a

representative of this class. In order to provide its functionality, it

only needs to read local service data such as a map and the current

position of the mobile device. No communication with the service

provider is needed, except in case these services are charging a

small amount of money. Especially in this class we have to

address the presentation of the service results. Presentation is

usually considered as a display with a GUI or similar, and this can

be misused to retrieve private data from inside the container via

an allowed means. A virtual graphical device can actually write

the information to disk as a straight forward attack. Services are

most likely not presenting own secret data to the service users.

The party that does not have actual control over what is displayed

is the user. Hence, we need to differentiate between a container

running at service provider’s side suspected to fraudulently obtain

private data and a container on the user’s side who requires the

private data to be protected. Thus we may allow services running

in the container on the user’s device to display any result or

information and to prevent any audio or video generation on the

service providers machine. The output device might be stated in

the contract as well and could be authenticated by knowledge of

the private key that was used to generate the contract signature.

The logically controlling services do not provide any benefit

without a chance to send messages back to the service provider.

Representatives of these logically controlling services are remote

control services for cameras in scenic environments. These for

example essentially need to send messages back home, such as

move right, left, up and down. The privacy contract has to define

a vocabulary for this class of services, which on one hand is rich

enough to provide a comfortable handling and is on the other

hand sparse enough to make sure that malicious code cannot use

this vocabulary to encode privacy relevant information and send it

back using the allowed messages. In addition the vocabulary has

to be defined in a way that enables the communication interface of

the container to check whether or not a certain message is

allowed. We propose that the vocabulary consists of kinds of

literals, i.e. the code can only send predefined messages. In this

case the communication interface can use a simple string compare

operation to verify whether the messages are allowed or not.

The last class we identified is the class of physically

delivering services. Online-shops or print services are members of

that class. Those require actually disseminating private data such

as shipping addresses respectively content of pages to print. They

require weakening of the privacy guarantee. Consider a shopping

service that needs at least the shipping address given to the

delivery service as well as information for clearing to be given to

the bank. In case such information disclosure is agreed to in the

privacy contract, the service requests the container to send the

information to the appropriate party. Thus it is made sure that

only pristine information is given and to those parties only that

the information was supposed for. This approach involves

multiple service transactions, which are not described in detail in

this paper. But note, from the moment this privacy relevant

information leaves the container there is no control over it

anymore.

3.2 Components of the Container
Figure 1 shows the components of the privacy guaranteeing

execution container, i.e. the execution environment, the

communication interface, the privacy contract and covert channel

attack protection means. The first three are discussed in the

following subsections, whereas the latter is omitted due to space

limitations and since it is not needed to realize the core

functionality of the container.

3.2.1 Communication Interface
The task of the communication interface is to restrict access

to data as well as the message exchange to what is agreed between

the service provider and the service user.

3.2.1.1 Restricting Network Communications
The privacy contract states which messages may be sent to

which communication endpoints, which data is to be retrieved

from the user through the container and contains other privacy

relevant information. The decisions taken by the communication

interface are based on this privacy contract. In principle the

communication interface is a kind of rule engine for which the

rules are defined in the privacy contracts. In case the executed

service in the container definitely needs to communicate with the

outside of the container at its origin or any other party, this

communication must be limited in a way that it prevents

transmission of privacy relevant data. The communication must

not be established by the service itself but merely by the

container. An API to send messages is provided by the

communication interface. The service has now the capability of

initiating the sending of predefined messages by communicating

via the communication interface of the container only. That way it

can be ensured that the service does not send privacy relevant data

to somewhere else. The destinations of the messages as well as the

possible messages themselves are defined during the negotiation

process of the privacy contract. The container checks the

messages given through the API up on compliance with the

privacy contract and sends the actual message to the specified

communication endpoint or dismisses it.

Even if the vocabulary of the predefined messages is well

defined, i.e. if it prohibits easy sending of sensitive data, it can be

used for this purpose if an unrestricted number of messages may

be sent. Hence, the container may also limit the frequency of such

messages or it could deliver orthogonal messages in unspecified

order. This decreases the chance of encoding information other

than the control information to be transmitted by the message.

Exemplary for such service, remote control services for electronic

devices shall be named. E.g. an air conditioner does not need to

know the privacy relevant information of someone’s preferred

room temperature, but only needs to be adjusted warmer or cooler

until the measured temperature fits the personal preferences.

A service may need to receive additional information from its

origin at the outside of the container. In this case the

communication interface provides an API to request such

information by response of a function call or by providing of

predefined data streams. The container has the power to suppress

messages from the services origin to the executed service. This

prevents from guessing information and acknowledging by the

predefined messages.

If a service tries to send data not agreed to in the privacy

contract or to communication endpoints not agreed to a privacy

exception is generated. Such privacy exceptions could also be

logged. This log may help to prove fraudulent behavior during the

negotiation process or to prove claims of reimbursement of

unjustified service charges, if the service is not functional due to

the lack of particular information.

3.2.1.2 Restricting Data Access
The second task is to control data access. Here again the

privacy contract describes what is allowed and anything else is to

be prohibited. In addition write operations to persistent storage

have to be blocked by the communication interface.

Since the data needed is application/service dependent there

has to be a specified way in which the container gains access to

the data potentially passed to the services inside it. We identified

two approaches.

The first approach is to specify an API to push information

from the outside into the container. This enforces every

application using the container to execute services to adapt to that

API. The bigger problem comes with changing privacy relevant

data that may be needed by services but not as often as they

change. Thus, a data push approach would result in a never-

ending push thread that takes up computational power, probably

without any positive effect on the services in the container. If the

data is pushed into the container the container itself has hold of

these data and the garbage collector cannot take care of the

demanded data deletion upon service completion.

The second approach is to give the container accessibility to

the data at install-time or even at run-time. To accomplish that, we

propose a data access component in the container as displayed in

Figure 1, which grants read access only, and which uses the

privacy contract to check which data may be read. The latter is not

an essentially critical task since no data can leave the execution

environment, if it is not allowed in the privacy contract, i.e. the

Exclusive

memory

User data
Age

Nationality

Position Code

User data
Device class

Interests
Code

Exclusive

memory

Privacy contract
Literals: which, rate

Communication end points

Accessible private data

Persistent

Storage

Observation of

Network-Communication

Random

Ressource Usage

Memory

Processor

Communication interface

Execution environment

Literals

PGEC

Observation of

Data-access

Covert Channel

Counter Measures

Exclusive

memory

User data
Age

Nationality

Position Code

User data
Age

Nationality

Position CodeCode

User data
Device class

Interests
Code

User data
Device class

Interests
Code

Exclusive

memory

Privacy contract
Literals: which, rate

Communication end points

Accessible private data

Persistent

Storage

Observation of

Network-Communication

Random

Ressource Usage

Memory

Processor

Communication interface

Execution environment

Literals

PGEC

Observation of

Data-access

Covert Channel

Counter Measures

Figure 1: Components of the PGEC

communication interface will filter all messages and other

communication means are restricted as well.

3.2.2 Execution Environment
The execution environment is merely a logical construct that

has to ensure that programs within can access the container

interfaces but have no access to data or code in other execution

environments. It provides the necessary infrastructure to services

executed inside the container, e.g. access to the processor, volatile

memory etc. It is also responsible for the cleanup operations that

have to be done when a service is no longer used, i.e. it has to

make sure that all data is really deleted. If different services

running within the same execution environment on the same

machine, it is the task of the execution environment to ensure that

these services do not have any communication with each other.

This means, even the use of a shared memory segment has to be

avoided by the execution environment.

4. IMPLEMENTATION ISSUES
PGECs have to fulfill mainly three tasks. They have to

provide an execution environment, to ensure proper clean up of

data and code when the service is no longer used and to restrict

the information exchange via all possible channels to what is

allowed in the privacy contract. This functionality can be

inherited by using runtime environments that ensure secure code

execution such as Java runtime environment, .NET or even the

Macromedia Shockwave Interpreter. All of the mentioned

approaches provide some kind of a sandbox model which limits

the access of foreign code to local resources such as file system

and network. Since our PGEC needs to protect itself against the

runtime environment additional conditions need to be fulfilled to

guarantee correct behavior the PGEC.

4.1 PGEC and its Host Run Time

Environment
The code is executed in a runtime environment and thus may

only access system resources through that runtime environment.

This circumstance allows limiting the access to resources by

security managers. These security managers obey certain security

policies. The code inside the sandbox may only access those

resources that are explicitly granted. The limitation of the service

permissions should go that far that they are only able to

communicate with their execution environment. Thus the service

is not able to send any information anywhere else but to the

container. There is no need for a service to directly access any

local resource. Everything the service is authorized to by the

privacy contract can be accessed through the container. While the

service providers may start a container component themselves

they are actually enabled to set the security policies on their own.

In order to still guarantee proper functionality of the PGEC the

security policy that applies to the services in the container’s

execution environment must not be adjustable by the executor of

the container. Thus, the according security policy must be fixed

and an appropriate security manager must be running to obey this

policy. We propose to let the container be this security manager

including the constricted policy for the services inside. Our

container is constructed such, that it does not instantiate if

1. it is not the first component at all started in the JVM,

2. there is already another security manager installed or

3. the JVM has been tampered with.

Condition (1) is used to ensure that no components are

started prior to the PGEC. Otherwise it was possible for those

components to open and keep a network or file handle without

control of the container. Such might be used to circumvent the

container access restrictions.

Condition (2) is needed to ensure that only the trusted and

certified security manager of the PGEC is running. If there was

another security manager installed beforehand it may not be

possible to install the containers own security manager and the

other manager cannot be trusted by the container, which results in

a security and privacy leak.

Condition (3) ensures that the security features provided by

the JVM are not circumvented by a malicious JVM implemented

by an attacker. Such a JVM probably does not implement any of

the security concepts built-in into Java. By that private data may

be released even if the security manager of the PGEC is enabled.

Hence the container has to check, whether the JVM it is running

in is a well-known one. We are going to tackle this by hash

checking of the components of the currently running JVM. This

can ensure that the privacy container respectively its native

components are running besides an approved JVM. Those native

components may further hash check their callers from within the

JVM to prevent Man-in-the-Middle approaches using an

approved JVM. Code attestation approaches for similar purpose

are also proposed by [14] and [15]. The secure hash checking also

ensures that those classes accessing external resources are the

ones that actually do the call for access checking at the security

manager.

These three conditions ensure that no private data can be

disseminated without user consent. They ensure that the PGEC

runs only in a proper and secure environment and thus data is

secured by PGEC means. Otherwise they prohibit container

instantiation and by that data access since services may access

privacy relevant data only inside the container.

4.2 Isolating Execution Spaces Inside the

PGEC
Security permission checking is only done for external

resources like files, sockets and native library linking but not for

object access in memory. Thus, data exchange between services

executed in different execution spaces by some shared memory -

provided by static fields or methods in the services - must be

prevented by means of the PGEC itself. Hence, we have to ensure

that classes from one execution space may neither access objects

nor classes of another execution space. This is accomplished by

using different class loaders for different execution spaces, which

ensures that objects in different execution spaces do not have

handles on instances from other spaces. Only the container or

classes within just that other execution space know those handles.

The container will not give those handles to the objects

instantiated in another execution space. To access static fields or

methods of a class the accessing object must have hold of that

class with static fields. If it is loaded by a particular class loader

instance it will not get hold of the classes loaded by a different

class loader instance but load an own copy of a class that name.

Thus, no static changes in instances of that class are visible to

objects instantiated by the other class loader. Thus there is no

shared memory available.

5. CONCLUSIONS
In this paper we have introduced the concept of privacy

guaranteeing execution containers. The major benefit of this

concept is that private data is not exposed to service providers.

Thus, the user keeps full control over her data. This is achieved by

providing an execution environment, i.e. the PGEC that is

independent of the service user as well as independent of the

service provider. The PGEC may access user data and also run

code from the service provider. The PGEC has to be certified so

that it is proven from a third party that the user data as well as the

application code is deleted whenever the service is quit. Thus, for

user data as well as for service provider code a kind of “one time

use” is guaranteed. In addition the PGEC restricts communication

to what is explicitly allowed by the service user. So there is no

chance for malicious code to first copy user data and then sent it

back home.

In order to illustrate the level of security that the PGEC

concept provides we have discussed how modified execution

environments can be detected. A properly implemented container

can render those attacks useless, or at least it forces potential

attackers to spend considerable effort to gain access to private

data. So PGECs might become an economically one hundred

percent secure solution.

The following key components of the PGEC are already

implemented:

1. class loader for isolated execution spaces

2. security manager ensuring appropriate access from the

container but not directly from the execution environments

3. hash checking of the runtime environment to detect

tampering with the run time environment.

Our next research steps are the combination of the PGEC

concept with our privacy negotiation approach as well as the

extension of the latter. Up to now it does not reflect the need to

define allowed messages and communication endpoints. A

prototypically implementation of the complete PGEC is also

planned for the next months. In addition we will investigate covert

channel attacks and appropriate counter measures in order to

further improve the security of our PGEC.

6. REFERENCES
[1] W3C: Platform for Privacy Preferences (P3P) Project, see

http://www.w3.org/P3P/

[2] W3C: A P3P Preference Exchange Language 1.0

(APPEL1.0), W3C Working Draft 15 April 2002,

http://www.w3.org/TR/P3P-preferences/

[3] J. Cuellar et. Al.: Geopriv Requirements, RFC3693,

available at http://www.faqs.org/ftp/rfc/pdf/rfc3693.txt.pdf,

last viewed May 2005

[4] P. Langendörfer, R. Kraemer: Towards User Defined Privacy

in location-aware Platforms. Proceeding of the 3rd

international Conference on Internet computing, USA.

CSREA Press, 2002.

[5] M. Bennicke,P. Langendörfer: Towards Automatic

Negotiation of Privacy Contracts for Internet Services.

Proceeding of the 11th IEEE Conference on Networks

(ICON 2003),. IEEE Society Press, 2003.

[6] W. Wagealla, S. Terzis, C. English: Trust-based Model for

Privacy Control in Context-aware Systems, 2nd Workshop

on Security in Ubiquitous Computing, Ubicomp, 2003

[7] K. Synnes, J. Nord, P. Parnes: Location Privacy in the Alipes

platform. In Proceedings of the Hawai'i International

Conference on System Sciences (HICSS-36), Big Island,

Hawai´i, USA, January 2003.

[8] M. Gruteser, D. Grunwald: Anonymous Usage of Location-

Based Services Through Spatial and Temporal Cloaking,

ACM/USENIX International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2003

[9] J. Lopez et al: Access control Infrastructure for Digital

Objects, International Conference on Information and

Communications Security (ICICS'02), pp.399-410, LNCS

2513, Springer-Verlag, Singapore, December 2002.

[10] Cryptolope in Ricardo Haragutchi: IBM Redbook Building

the Infrastructure for the Internet

http://www.redbooks.ibm.com/redbooks/pdfs/sg244824.pdf

[11] Antonio Maña, Javier Lopez, Juan J. Ortega, Ernesto

Pimentel, Jose M. Troya A Framework for Secure Execution

of Software, International Journal of Information Security,

Volume 2, Issue 4, pp.99-112, Springer, November 2004.

[12] H. Garcia-Molina, S. Ketchpel; N. Shivakumar:

Safeguarding and Charging for Content on the Internet,

Proceedings of Int. Conf. On Data Engineering, 1998

[13] S. Yamada, E. Kamioka: Access Control for Security and

Privacy in Ubiquitous Computing Environments, IEICE

TRANS. COMMUN., VOL.E88-B, No.3 March 2005

[14] A. Seshandri, A. Perrig, L. van Doorn: Using Software-based

Attestation for Verifying Embedded Systems in Cars,

Embedded Security in Cars Workshop (escar), November

2004

[15] http://www.trustedcomputinggroup.org

[16] Handbook for the Computer Security Certification of Trusted

Systems, Chapter 8, NRL Technical Memorandum

5540:062A, 12 Feb 1996

[17] M. Maaser, P. Langendörfer: Automated Negotiation of

Privacy Contracts, Proceedings of the 29th Annual

International Computer Software and Applications

Conference (COMPSAC), IEEE Society Press, 2005

[18] Huda, N., Yamada, S., Kamioka, E., Privacy Protection in

Mobile Agent based Service Domain, Proceedings of the

Third International Conference on Information Technology

and Applications (ICITA’05), Sydney, July 4th- 7th 2005

[19] A. Yannopoulos, Y. Stavroulas, N. Papadakis, D. Halkos, T.

Varvarigou, A method which enables the assessment of

private data by an untrusted party using arbitrary algorithms

but prevents disclosure of their content, In P. Langendoerfer,

V. Tsaoussidis (eds.), Proceedings of the 3rd International

Conference on Internet Computing, CSREA Press, 2002

