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ABSTRACT
This paper proposes recoverable class loaders to enable a
fast start-up and recovery of Java applications. In contrast
to traditional snapshot approaches that create full system
images, our approach creates partial snapshots that contain
a static part of the execution state of a Java application.
It is the state of the class loaders and their associated class
objects, which are recovered and used for restart.

This is especially useful in the context of mobile devices
and mobile services. In the first case it allows to shutdown
applications for power-management reasons as their restart
takes less time, so power management does not disturb users.
In the second case services can be much faster rebooted to
cure software faults such as memory leaks. Thus, users will
notice a substantially reduced downtime.

We implemented recoverable class loaders inside the
JamVM and the OSGi middleware Oscar. For both cases
of use — Java application restart and service recovery — we
provide experimental evaluations that show a substantially
reduced start-up time from up to 74%.

1. INTRODUCTION
Mobile devices such as cellular phones and handhelds face

a multitude of requirements to be useful in every day life.
They should support resource-intensive applications such as
video streaming, web browsing and provide mobile office
support. This demands for a powerful CPU, plenty of RAM
and persistent memory, a bright display and a fast network
connection. These requirements are contradicted by the lim-
ited available energy due to the small weight and form-factor
these devices should have.

The consequence is the need for a rigorous power manage-
ment. Current, mobile device hardware and software pro-
vide already special power saving features (e.g. CPU fre-
quency scaling) to slow down or even stop all services that
are not essentially needed. In the ideal case the user should
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not experience a change if power-management is applied or
not. Taking into consideration this fact, the present work
targets at the fast restart of complex Java applications.

On mobile devices Java is often used to provide extended
applications such as a Web-browser, office applications or
navigation support. These applications should be shut down
if not needed by the user to enable a more efficient use of
available power (e.g. to switch off unused memory units).
However, a user is not willing to wait for long time if he or
she needs to access such an application. Thus, support for
a fast application start-up is necessary.

Another use case of a fast restart of Java applications
is the quick system recovery of mobile services after soft-
ware faults. All software including complex services in the
context of mobile environments suffer from faults. If soft-
ware reaches a mature state these faults are more complex
and often harder to detect and consequently to fix. Thus,
software faults will occur even in well-tested environments.
One instant way to overcome such faults when they happen
is to restart the affected system. Many problems such as
memory leaks or race conditions can be temporarily cured
in this way. However, restarts take time and services are
not available in the meantime. Consequently, extended sup-
port for a fast system restart is desirable to provide highly
available services. This is especially the case in mobile en-
vironments where services are usually instantly needed (e.g.
to request an alternative route from an navigation system
to drive round a traffic jam).

This paper proposes recoverable class loaders as a means
to support the fast start-up of Java-based applications on
mobile devices and a fast recovery of Java-based services
in mobile environments. This is achieved by a tight integra-
tion of virtual machine support for snapshooting the runtime
state of a Java application, and by middleware support for
recoverable class loaders running on top of the virtual ma-
chine. Complex Java-based software in context of embedded
and mobile devices is often implemented using the OSGi [12]
component middleware. OSGi enables the fine-grained up-
date and exchange of components regarding functionality
and code thereby making heavy use of Java class loaders.
Originally, OSGi targeted the provision of services on top
of gateway and wireless routers. Meanwhile, the scope of
OSGi has widened and it is applied to structure and modu-
larise numerous complex applications such as IDEs (e.g. the
Eclipse project) on desktop computers or for infotainment
software in mobile vehicles.
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In a first step we investigated the start-up behaviour of
OSGi based applications and encountered long times until
such applications are up and operational. A common ap-
proach to solve such issues is the use of snapshots that cap-
ture the execution state of an application which is stored
on disk and put back into memory on demand. However,
this approach is not really suitable as it captures the whole
application execution state including antecedent faults (e.g.
memory leaks). Thus, full-fledged snapshots are not useful
for a fast recovery to cure software faults. In our initial
investigations we traced system start-up and detected the
loading and initialisation of classes as one of the major bot-
tlenecks. In fact it consumed up to ∼25% of the start-up
time of a demo application consisting of 30 OSGi bundles,
not including the time to load the Java system classes. A
bundle is building the deployment unit of OSGi. As conse-
quence we modified a virtual machine to capture the loaded
and linked class objects and provided an integration of this
feature into the OSGi framework to enable the recovering
of class loaders. This reduces the start-up time in the best
case by factor of ∼5. Unlike traditional snapshot techniques,
not the whole application state is recovered and used for a
restart but only a static part of the application execution
state that is not subject to changes. Consequently, problems
like memory leaks and inconsistent states that usually take
effect after a long runtime are not an issue. Thus, the pre-
sented approach is not only suitable to speed-up the restart
of an application but also to support the fast recovery from
software faults.
The paper is structured as follows: First, we outline the

basic concept of recoverable class loaders. Then we give a
brief introduction of the JamVM that builds the foundation
of our prototype implementation. In Section 4 we specify
our prototype. Afterwards in Section 5, we present an ex-
perimental evaluation. First, we investigate a scenario where
the start of an application should be improved. Second, we
give an example of fast service recovery. Finally, we specify
related approaches and draw conclusions.

2. BASIC IDEA OF RECOVERABLE
CLASS LOADERS

Figure 1 explains the basic priniciple of our recoverable
class loader approach. The top part shows a simplified in-
ternal memory layout of a Java virtual machine (JVM). The
Java-heap region stores objects and class blocks; it is the
part of the memory that is subject to garbage collection,
hence it is also called GC-heap. The object blocks con-
tain the private data of Java object instances. Each object
block is linked with a certain class block, which is the cen-
tral definition unit of the Java class it instantiates. Class
blocks in turn denote structures which store administrative
data of Java classes; this is, for example, the class name, a
class signature, access flags, class state and also references to
various method-area blocks. The method-area data usually
do not reside on the GC-heap; each JVM manages a com-
mon method-area region where e.g. the constant pools, the
methods-, fields- and interface-blocks, and also bytecodes of
the defined and linked Java classes are settled. In order to
enable fast application reboots, we investigated a facility to
preserve a variety of already initialised static information on
the Java-heap across system shutdown and consequently to
reuse it on demand during recent JVM restarts. As already

mentioned, we do not aim to recover the complete applica-
tion state; that would be the total quantity of objects, class
blocks, method-area and runtime data residing in JMV’s
memory. In contrast, only a desired set of the already exist-
ing class loader objects and respectively their loaded system
and application classes shall be reused. Thus, we allow re-
configurations during fast application reboots which, how-
ever, are still able to remedy software faults and inconsistent
states.
Generally, in Java a class loader is the instance of pro-

viding the necessary interfaces to the class loading routines
of the underlying Java virtual machine to any user applica-
tion running on the top, thus allowing dynamic extension of
the application’s code and semantics. In this regard class
loaders are central units for organising already loaded Java
classes, their code and meta data. They also provide code
isolation between application components, for example in
a J2EE [11] server environment and similarly in the OSGi
middleware layer. From a programmatic point of view, class
loaders are java.lang.ClassLoader object instances resid-
ing on the garbage collected JVM heap besides various ad-
ditional objects and class blocks.
One straightforward solution to recover existing class

loader objects and the entire pool of their loaded classes
information within an initialised JVM is to create a per-
sistent image of the whole GC-heap area, as indicated in
the bottom part of Figure 1. We denote this procedure
as heap-snapshooting. Consequently, all already initialised
class blocks and objects (including the Java class loaders)
are persistently saved across JVM restarts. During recent re-
boots, the pre-initialised GC-heap snapshot can be mapped
directly into the JVM process memory. Hence, class loader
objects and class definitions required by the JVM and a Java
application can be reused instantly during each bootstrap
process. This procedure is also depicted in Figure 1 and
further referred to as snapshot-injection. At this point we
assume that all memory-mapped information on the heap,
which is not further needed, is discarded during the first
garbage collection after a system restart.

Figure 1: A simple JVM memory layout

A typical use case for this technique could be for exam-



ple a checkpoint during program execution, at which the
snapshooting of the actual JVM-internal heap state is ini-
tiated by a privileged user or even by a Java application
itself. On later JVM invocations the automatically gener-
ated persistent heap image can be reused by specifying a
snapshot-injection option. In this paper we essentially want
to demonstrate, how after short re-initialisation of an em-
bedded heap snapshot all class loading procedures within
a rebooting JVM and Java application can be completely
skipped. Of course, this is feasible until program execution
reaches again the checkpoint state where the heap snapshot
was previously taken. Instead of recently parsing system and
application class-files and thereby generating appropriate
internal class blocks on each start-up, the already initialised
data which is provided by the embedded heap image shall be
reused. In this manner, the instruction path, which a JVM
has to work off during its bootstrap process, is shortened
extensively. In consequence, the start-up procedure of the
JVM and also of the hosted Java application is accelerated
enormously. Thus, the usability and availability of a Java
system can be improved, as well as the latency until user-
interaction is feasible during a system reboot is potentially
decreased.

The Java Virtual Machine Specification [8] is rather gen-
eral and offers little insight about how the memory manage-
ment as well as the structuring of the loaded classes infor-
mation and meta data could be realised in fact. Into how
many regions the heap of a JVM is divided, and in which
manner a garbage collection mechanism operates on them is
implementation-dependent. In addition, the way how class
loaders are organising and referencing already loaded classes
is not standardised. For that reason we had to focus on one
certain JVM implementation in our case the JamVM [9] .

3. JAMVM
The JamVM is a relatively new, open-source JVM that is

extremely small (150∼200 Kbyte), but implements the com-
plete Java Virtual Machine Specification Version 2. Thus, it
supports user-defined class loading, object finalisation and
class unloading. As standard Java Class Library the JamVM
comes with the prevalent and likewise open-source GNU
Classpath, and additionally offers dynamic loading and ex-
ecution of native code through its own low-overhead JNI
(Java Native Interface) implementation. The JamVM oper-
ates exclusively in interpreter mode (direct/indirect) and has
no native- or JIT-compiler, which substantially facilitates
our extensions, as well as the measurements of the actual
performance gain obtained thereby. By default the JamVM
manages internally one global Java-heap area, where all ob-
jects and loaded classes structures are organised and scanned
by a mark-sweep garbage collector. A similar memory man-
agement outline as that implemented by the JamVM is also
briefly depicted by the top part of Figure 1. If free mem-
ory dissipation heavily accrues because of fragmentation, the
heap area is compacted as well by another mark-compact
collector, which relies on the efficient Jonkers compaction
algorithm. Since JamVM implements a kernel-based thread-
ing model on the top of the POSIX threads OS interface, it
is already ported for miscellaneous POSIX-aware platforms
and tested with various processors like PowerPC/G3/G4/64,
AMD/64, MIPS, ARM and iPAQ, with Linux and MAC OS
X. Thus, the JamVM addresses desktop and mobile devices.
Summarising, the extreme compactness and full JVM V2

compatibility were the decisive points for the choice of this
JVM for our implementations and measurements.

4. PROVIDING RECOVERABLE CLASS
LOADERS AND JAVA CLASSES

In order to automatically provide a persistent image of the
garbage collected heap allocated within the JVM process, we
utilised the common memory-mapped [6] services in Linux.
Those services are supported nowadays by the most POSIX
compliant operating systems. Therewith, we succeeded to
redirect entirely all memory operations within a pre-reserved
memory-mapped heap area of a modified JamVM to the
local file system. Thus, an outright persistent image of the
Java-heap can be easily generated.

For this purpose the virtual memory manager of the op-
erating system is requested by means of the mmap() sys-
tem call, to mirror all write operations 1:1 in a background
file. When objects and class structures are settled and ini-
tialised on the heap, they are automatically replicated within
the same address-offsets into the background file. In the
normal case, this replication is not adherent to any per-
formance overhead during runtime, since we implemented
our JamVM prototype to operate on a private copy of the
memory-mapped file in its process memory. Thus, all write
operations are cached until synchronisation is forced. Theo-
retically, the synchronisation between process memory and
the background file can be initiated automatically by the
operating system, e.g. when the total amount of virtual
memory in the system runs low. In fact, the affected vir-
tual memory pages due to modifications are written back to
the file system, when the Java-heap area is unmapped or a
synchronisation is explicitelly forced via the msync() system
call. The latter is used for example on snapshot generation,
where afterwards the up-to-date background file can be sim-
ply copied under a certain snapshot name in the file system.

Similarly, during a restart of our modified JamVM ver-
sion an already existing snapshot file can be easily hooked
into the process as a pre-initialised heap area likewise us-
ing mmap(). On read accesses within the mapped area, the
memory manager is in turn responsible for swapping the af-
fected partitions page by page from the background file into
the process. We meassured the swapping overhead intro-
duced on read operations during runtime. Since an accessed
page is read only once from disk the effective costs for these
opreations are negligible.

JamVM does not use object handles to reference objects
on the garbage-collected heap. Instead, it uses direct point-
ers to the object’s physical address in memory, a strategy
which improves the general runtime performance. Because
of that, we are forced to guarantee, that objects can be found
after restart on the expected and respectively referred posi-
tions in process memory, even in an embedded heap snap-
shot. A simple possibility to fulfil this requirement is offered
likewise by the memory-mapped services. It is additionally
possible via mmap() to map a snapshot file again at a certain
fixed address in the process memory.

In addition it should be mentioned, that since each JVM
process operates on a private read-only copy, theoretically
a persistent snapshot can be shared concurrently between
several JamVM instances. However, this scenario is not tar-
geted by our approach because multiple snapshot replication
would very likely exhaust rapidly the system’s virtual mem-



ory and lower drastically the overall system performance.

4.1 Memory-Management Extensions
Class blocks and object instances are usually placed on

the garbage-collected heap area, so that their validity can
be automatically managed by the JVM and especially the
garbage collector. As already explained, they can be reused
across system restarts by injecting a pre-initialised image
of the Java-heap (a snapshot) into the private memory of
a newly starting JVM-instance. Though, on system shut-
down all method-area data referenced by the class blocks
are irrecoverably lost. The reason for it is, that only the in-
formation on the memory-mapped GC-heap is captured just
at that moment within a heap snapshot.
In the JamVM the entire memory for method-area blocks

is allocated via usual malloc() on the machine’s process-
heap, beyond the garbage-collected heap area. In Figure
1 we have indicated accordingly a method-area region in
the JVM’s process memory, wherein method-area blocks are
placed arbitrarily. Furthermore, during the process of ini-
tialisation and class-linking the JamVM generates a multi-
tude of further machine-level metadata e.g. methods, inter-
face and exception tables used for faster method invocations,
as well as various internal runtime data like administrative
hashtables, entries for loaded DLLs, Thread entries, and
UTF-8 strings. All those constructs’ memory is similarly
reserved within the JVM’s address-space via malloc() and
likewise lost in the normal case on system shutdown.
However, in order to be able to reuse a snapshot after

a system restart, the entire method-area data blocks, all
UTF8-strings and several internal system-hashtables must
be forthcoming again at their former positions in the JVM
address space, as they are still referenced and in use by
the recovered class blocks, objects and the runtime sys-
tem. Even all DLL entries must be stored persistently across
shutdown and recovered afterwards, as we will explain later.
Fortunatelly, the JVM specification indicates no guidelines
where and in which way method-area and runtime data
structures are to be internally organised by a JVM. In order
to overcome this issue we identified two different approaches.

4.1.1 All-In-GC-Heap Approach
The first approach arranges all required method-area and

runtime data likewise on the GC-heap of the JamVM be-
sides class definitions and object instances, as depicted in
Figure 2. Thus, all necessary data structures for the reuse
of class loader objects and their class definitions after a sys-
tem restart are entirely contained in one and the same heap-
snapshot. In this manner, we further refer to that approach
as All-In-GC-Heap (AIGH). In order to attain a particular
treatment of accessory non-object data on the GC-heap and
also to protect it against the garbage collector and further
heap-scans, we comprised appropriate markings in all the
concerned memory chunks. With the help of special “non-
object” flags in the chunk-headers, we are incessantly en-
abled to differ between objects, class blocks and the pure
non-object memory-allocations on the heap, and to per-
form different operations on the latter. In that manner we
also adapted and extended accordingly the allocation- and
garbage-collector-routines of the JamVM. However, mea-
surements and benchmarks of our JamVM-AIGH prototype
pinpointed, that the additional complexity which we intro-
duced for the garbage collector enormously extends the du-

rations of the collections and decreases the overall runtime
performance of the JVM. Similarly the total number of the
GC runs has doubled, since now nearly twice as much data
resides on the garbage collected heap of the machine. De-
spite the faster start-up achieved by the snapshooting and
the reuse of class definitions, our JamVM-AIGH prototype
is inconceivable for application under real circumstances.

Figure 2: JamVM memory layout with AIGH

4.1.2 Method-Area-Heap Approach
Within the scope of our second solution we extended the

JamVM with an additional managed memory-mapped heap,
the Method-Area-Heap (MAH), as depicted in Figure 3. We
equipped that area with own allocation-routines, as well as
with an own memory management. Method-area data and
required runtime-structures like UTF-8 strings, hashtables
and DLL entries can be positioned now via mallocMAH() on
a separate cross-restart cache, which also can be mapped
directly into memory and likewise reused after a restart of
the JVM. In this way the garbage-collected heap is not over-
loaded and the number of the collections does not increase.
Furthermore, no own garbage-collection mechanism is neces-
sary for the MAH at all, since the structures settled therein
can be released directly by our freeMAH() function. In order
to countervail the emerging fragmentation of the MAH, our
freeMAH() function was implemented in a way, that adjacent
free memory chunks are merged together into bigger free
blocks. Our measurements prove that the overall runtime
performance of our JamVM-MAH version is not consider-
ably lower than the runtime performance of the unmodified
JamVM. The sole marginal performance-leaks we were able
to determine pertain to allocations of runtime and method-
area data, since those are reserved and released now not
by means of malloc() and free(), but with the less effi-
cient versions of the MAH memory-management functions.
This performance loss is however negligible in relation to the
start-up acceleration won by the applied JVM snapshooting.

4.2 Recoverable Class Loaders Extension
Class loader objects have to organise in some way a ref-

erence to each already loaded and defined Java class. In or-
der to allow quick class-queries during the class loading and
instantiation process, the JamVM, as well as many other
JVMs, makes use of hashtables. Each class loader encapsu-
lates in its instance-data a reference to a certain hashtable
object, and that hashtable in turn manages references to the
definition structures of all Java types, which were already
loaded and defined by the class loader. Since in the JamVM
class-blocks and object instances (including class loaders) re-
side by default on the GC-heap, we only bypassed the default
hashtables generation on the process heap via malloc() and
repositioned them in a similar way on a snapshotable heap



Figure 3: JamVM memory layout with MAH

area — that is either the GC-heap (with JamVM-AIGH),
or the extended MA-heap (with JamVM-MAH). From that
point on all class loader objects and their loaded classes
information are entirely reconstructable from a persistent
snapshot. In order to facilitate the class loader extension for
user applications, we realised the necessity for a technique to
uniquely identify and restore a certain class loader instance
within the heap snapshot during an application restart. An
application needs to be able to register newly instantiated
class loader objects as “recoverable” in the JVM and thus
to query and reuse them during its initialisation process on
later restarts. For that purpose we extended the JamVM
with an additional Recoverable Class Loader Module (RC-
module), which facilitates appropriate registration, query
and deregistration functions for class loaders under certain
unique IDs. We then bypassed the interfaces of that RC-
module through the JamVM’s internal JNI-tables over the
GNU-Classpath up to the user-application level. We imple-
mented an extended version of the java.lang.ClassLoader
system class, which now provides new public (native) inter-
faces registerClassLoader() and restoreClassLoader()

and offers therewith any arbitrary Java program the oppor-
tunity to access it’s own stock of previously loaded classes,
even after a reboot of the JVM. Class loader objects which
in turn were not registered as “recoverable” are garbage col-
lected by default together with all their loaded classes infor-
mation and hashtables on the heaps.

4.3 Reinitialisation
After restarting the JVM with an embedded heap snap-

shot accomplishing some preparations and reinitialisations is
mandatory, before the data contained therein can be reused.
As previously mentioned the JamVM implements its own
low-overhead JNI-interface. First of all, it should be consid-
ered that already invoked native methods of the Java classes
residing on the reconstructed heap most likely refer to ranges
in process memory, where after a JVM restart with a very
large probability no valid native function-code is available.
The reason for this is the dynamic linkage of native methods.
Usually the implementation code of native methods is con-

tained in pre-compiled native libraries (DLLs) which are
bound dynamically into the JVM’s address-space. On load
the therein contained native functions are resolved as native
symbols in the process memory. The actual address-offsets
of those symbols differ each time a library is bound into the
JVM process. When the native method of a Java class is

invoked, and it is not implemented directly in the JVM, the
pertinent native symbol of the implementing function has
to be resolved in any of the merged libraries; otherwise an
UnresolvedLinkError exception is thrown by the JVM. On
success the JamVM stores a direct reference to the located
native function in the appropriate method block, in order to
avoid further unnecessary recent resolutions. In that man-
ner a new invocation of a native method, which has been
already resolved during the last execution of the JVM, will
cause offhand an unpredictable behaviour of the machine or
at least a segmentation fault. Because of that certain pre-
cautions have to be taken while restarting the JVM with an
embedded heap snapshot.
Initially, all previously loaded DLLs must be bound again

into the JVM’s address-space. For determining which DLLs
exactly are to be reloaded, we store and respectively re-
construct the internal administrative structures of the DLL
subsystem of the JamVM (the DLL-Entries) likewise from
the embedded snapshot. Since the addresses of the native
symbols will very improbably match again, all already de-
fined Java classes contained in the heap snapshot must be
scanned for native methods and any already existing native
binding must be cancelled. Thus, on a subsequent invoca-
tion of a native method its native binding must be resolved
again dynamically. In some cases where class level locks
are hold during snapshot generation, deadlock problems are
possible when that snapshot is reused later. For that reason,
besides the existing JNI bindings we also have to cleanup the
lock field of every encountered class object during snapshot
initialisation.
Furthermore the static constructors (<clinit>) of certain

Java classes are to be invoked over again. Therein many
classes initialise static variables and parameters, or call ad-
ditional native initialisation routines. We specified a set of
classes experimentally, which are to be reinitialised after a
restart. In that manner, during the reboot procedure we
only have to traverse over the hashtables of all class loaders
already registered in our RC-module and to invoke manu-
ally the static constructors of all detected classes that are
matching in the predefined set. However, a sophisticated im-
plementation could adapt this quantity dynamically at the
actual needs of the executed Java program.

4.4 Start-up Scenarios
During the start-up of the JamVM we differentiate in

principle between two runtime modes: an initial start in
”normal-mode” and a restart with an embedded heap snap-
shot in the so-called ”heap-injection-mode”.
In general, the initial start-up in normal-mode is intended

for generating valid snapshots of the JamVM heap areas
and likewise class loader objects can be registered as ”re-
coverable” in the RC-Module. In normal-mode the JamVM
starts up and initialises all its subsystems as usual. At the
meantime all memory operations on the heap areas are mir-
rored in the memory-mapped background files, as already
explained. The snapshots of the heap areas can be pro-
vided either by the Java program at runtime or automati-
cally on shutdown of the machine. Thereby all operations
on the heaps are frozen (stop-the-world) and after synchro-
nisation with the memory-mapped background files copies
of the heap areas are stored under specified names in the file
system. We implemented this technology similarly for both
JamVM prototypes (AIGH and MAH).



In order that snapshot files can be properly merged again
as appropriate heap areas into the JamVM, certain informa-
tion such as start address, current logical and physical di-
mension, or start-positions of free-lists etc. is necessary for
each individual area. Additionally, the positions of certain
runtime structures and data used by the individual JamVM
subsystems must be indicated in the snapshot, so that these
can be re-initialised correctly (from the snapshot). This in-
formation is collected automatically on snapshot generation
and exported in a separate ”injection-values” structure in
the file system. During the restart in injection-mode the
JamVM queries automatically for the injection-values file
and initialises the appropriate snapshot files with the help of
the values indicated there as heap areas in its process mem-
ory. In inject mode, subsystems like the Class, UTF-8 and
DLL modules of the JamVM are not initialised from scratch,
but with the already initialised runtime data and the admin-
istrative hashtables provided by the snapshot. This is also
the case for the RC-module containing references to the class
loader objects marked as ”recoverable”. After all necessary
re-initialisations as described in Section 4.3 are done, the
class loader objects needed for the further reboot procedure
of the JVM and the Java application can be queried within
the snapshot with the help of the RC-module and they can
be directly reused together with all their loaded classes.

Currently, the presented prototypes do not support class
updates while they are operating in injection mode. Conse-
quently, if newer versions of the classes provided by a snap-
shot shall be applied, the complete snapshot must be regen-
erated. However, in case of OSGi, updates of private bundle
classes are managed automatically by the OSGi Framework.
Consequently, a bundle is provided with an accessory class
loader, when its code has been altered. Thus, snapshot re-
generation is essential only if middleware or system classes
are out-of-date.

As a last point, RC-aware Java programs running on the
top also need to be informed about in which mode the
JamVM underneath currently operates. Thus, the Java pro-
gram should adapt its behavior accordingly. In this man-
ner a system like the Oscar OSGi for example should be
able to decide whether certain bundle class loader are to be
instantiated normally and probably then registered in the
JamVM (in normal-mode), or whether in case of injection-
mode those can be reconstructed on the basis of their bundle
ID directly from the snapshot. For this purpose our modi-
fied JamVM implementation defines automatically a system
variable ”vm.heap.inject=yes” in injection-mode, which can
be queried by a Java program. Thus, class loaders of all
installed bundles can be reconstructed from the snapshot.

5. EXPERIMENTAL EVALUATION
To verify the claim of an improved start-up performance

using recoverable class loaders two scenarios were evaluated.
In a second experiment we proved the usability of recover-
able class loaders for a fast recovery from software faults.
Finally, we measured if the necessary modifications of the
JamVM have an impact on the overall runtime performance.
Throughout the experimental evaluation we used three dif-
ferent devices: a standard PC, a small embedded system and
a typical handheld device (see Table 1 for hardware details).
For all experiments we compared the standard JamVM 1.4.4
with our extended version supporting the MAH approach.
The general performance drawbacks of the AIGH approach,

which were already explained in Section 4.1.1, foreclose an
effective application of the corresponding JamVM-AIGH
prototype. Hence, in our measurements we focused on the
JamVM-MAH implementation, since we consider this one
as an improved successor.

5.1 Restart Example
For the first evaluation we conducted two separate exper-

iments. First, we evaluated the start-up time of a very sim-
ple Java application, basically consisting of a main() func-
tion. Thus, only the system class loader was recovered and
used for a fast restart. We measured the start-up time for
the unmodified JamVM, the initial start-up time for the
JamVM-MAH, taking a snapshot, and the start-up time for
the modified version, using a snapshot gained from a previ-
ous run. The results are shown in Figure 4. Each value is an
average value of 100 runs. The initial start-up of the modi-
fied JamVM takes slightly longer than the original JamVM
when a snapshot is taken. If a snapshot is used and the class
loader can be recovered, starts take significant less time. In
fact the start-up could be decrease by 74% for the handheld
device. The reason for the longer initial start-up time of the
modified JamVM can be found in the slightly more complex
mallocMAH() operation that is necessary to place elements
on the separate heaps.

Figure 4: Start-up time for a simple Java application

In a second scenario, we measured the start-up of a com-
plex OSGi configuration of 13 bundles taken from the Oscar
Bundle Repository (OBR). A bundle resembles a compo-
nent that is loaded via an own dedicated class loader. As a
default all these class loaders are recovered. Again we mea-
sured the time for a start-up using the unmodified JamVM,
the initial start of the JamVM-MAH, and a restart of the
JamVM-MAH, using a previously taken snapshot. The re-
sults are depicted in Figure 5. In all case using a snapshot
could significantly decrease the start-up time. Regarding
both Figures 4 and 5 there is a major difference between
the embedded system and the handheld device. While in
Figure 4 both devices deliver equal start up times, in Fig-
ure 5 the handheld needs twice as long time to boot. This is
due to the fact that the handheld operates with much fewer
RAM than the embedded system. Thus, since the second
scenario is more complex, the handheld has to swap virtual
pages within its flash memory more frequently. This turned
out to be a major bottleneck for the handheld device.



Device CPU Memory Disk

Standard PC Pentium 4 2,40 GHz 512 MB 7200 RPM
Embedded System Strong ARM 233 MHz 256MB 5400 RPM

Handheld (HP Jornada) Strong ARM 200 MHz 32 MB Flash memory 2 GB (SanDisk Ultra II)

Table 1: Hardware used for experimental evaluation

Figure 5: Start-up time for a complex OSGi appli-
cation

5.2 Recovery Example
For the recovery example we chose a small OSGi configu-

ration, covering the default bundles of Oscar, and two addi-
tional ones that provide a HTTP server and a small set of
Web pages. Furthermore, we implemented a client program
that connected the HTTP server and recorded the time to
establish a successful connection. For the test we rebooted
the service periodically and measured the time to success-
fully reconnect the service after a reboot. Figure 6 shows the
average time of 100 reboots. Again using recoverable class
loaders substantially reduces the start-up and consequently
the time to recover the service.

Figure 6: Recovery time for a OSGi HTTP service

5.3 Performance Evaluation
To evaluate if our prototype implementation, supporting

recoverable class loaders, and the necessary modification of

the JamVM have an impact on the runtime performance, we
measured the original JamVM and our modified version with
the SPEC JVM98 [3] benchmarks. The results are shown
in Figure 7. All benchmarks provide similar values for the
original and the modified JamVM. Thus, our approach has
almost no impact on the runtime performance of the virtual
machine.

Figure 7: Performance evaluation using the SPEC
JVM98 benchmark

6. RELATED WORK
Sharing data among multiple JVM instances has been ex-

ploited by various research projects. Czajkowski et al. ex-
plored the sharing of byte code and compiled code [5]. Along
these lines Class Data Sharing (CDS) [10], as supported
by the current J2SE 5.0, shares the virtual machine inter-
nal representation of system classes among multiple virtual
machine instances. This saves start-up time and decreases
memory consumption as the effected system classes are no
longer replicated in each JVM instance. However, CDS is
limited to system classes whereas our approach explicitly
targets the fine-grained selection of application code that
should be used for a fast recovery. The IBM SDK 5 and the
upcoming version 6 provide more sophisticated class sharing
concepts, named class caches, that even enable the sharing of
application classes among multiple JVM instances [4]. Thus,
this approach can be directly compared to the the proposed
recoverable class loaders, but it is restricted to static parts
of the JVM internal representation of classes, whereas the
presented approach restores all data related to a class loader,
which should lead to a better start-up performance.

Microreboots [2] are a technique for fast recovery from
software faults by rebooting the transitive closure of depen-
dent software modules. The key idea is to have components
that can be recovered independently of the execution infras-
tructure and other components. This enables a fine-grained
and fast cure for certain software faults using reboots. How-



ever, this approach is limited to software faults of compo-
nents and misses support for faults at the middleware and
infrastructure level. This problem is attacked by the pre-
sented recoverable class loaders that enable a fast reboot of
the whole virtual machine.

The MERPATI [13] system enables persistent serialisation
of the current execution state of a running JVM, including
all actually active Java threads therein. In this manner a
migration of an initialised JVM instance and the currently
executed Java program on top is intended. At a certain pre-
emption point all running Java threads are suspended. How-
ever, the entire Java stacks of the threads, affected objects
and necessary type information are then serialised within a
persistent snapshot. Thus, after migration, the persistent
execution state is reconstructed in a new host JVM, using
the snapshot. Although MERPATI stores the entire JVM
state persistently, it is not intended for a speed-up of the
JVM bootstrap process, but for application migration. The
applied snapshooting techniques premise a completely ini-
tialised JVM instance even on host side. The reuse of the
entire objects pool and threads neither allows software re-
configuration, nor remedy actual software faults.

Additionally IBM Hursley propose a design approach for
a Persistent Reusable JVM (PRJVM). In [1] they assume,
that serial execution of transactions in the same JVM in-
stance, e.g. method invocations of an EJB component, lack
on isolation. However, an initialisation of a completely new
JVM instance from scratch for each transaction is not ac-
ceptable because of performance reasons. The PRJVM fea-
tures a sophisticated memory partitioning, with a system,
middleware and a transient heap. Each heap area is pro-
vided with separate garbage collection and memory man-
agement, adjusted to its own GC and allocation rates. Af-
ter each transaction execution the JVM is reseted, whereas
the middleware and the transient heap are cleaned-up and
reinitialised. On heavy-weight errors, or static information
alteration, the PRJVM is considered as dirty and has to be
destroyed and rebooted. The PRJVM approach also does
not improve the startup performance of a total reboot; there-
fore those are delayed as long as possible. Only lightweight
faults are cured by reinitialisation of the affected system part
and heaps.

Finally, we want to mention the Clonable JVM [7], de-
veloped by the IBM Tokyo Research Laboratory. The pre-
sented concept targets at transaction isolation, failure recov-
ery and checkpointing of Java applications. For that pur-
pose, a running JVM instance is cloned by means of the
fork() UNIX system call. Thereby, a full-fledged copy of
the JVM memory is created and, if required, also persis-
tently stored. After short initialisation, the generated clone
can be continued immediately, or can be invoked later on
demand. Thus, this approach captures the whole execution
state of a Java application, including all OS ressources e.g.
running threads, mutexes and even file management struc-
tures. However, as already explained, full-fledged snapshots
are not useful for a fast recovery to remedy software faults,
as targeted by our recoverable class loaders concept.

7. CONCLUSION
The presented approach for recoverable class loaders en-

ables a fast restart and recovery of Java applications. Both
these claims have been verified by our prototype applica-
tion and by the experimental evaluation. Particularly, Java

systems that utilise a sophisticated class loading infrastruc-
ture, e.g. OSGi, can benefit from recoverable class loaders
and enhance their start up performance enormously. How-
ever, even for the case of traditional non-component based
Java applications our modified JVM exhibits a much bet-
ter boot-performance and a constant overall-performance.
Moreover our prototype system executes also standard non-
RC-aware Java programs and is fully operational under real
circumstances.

In spite of these results there is a minor issue — the han-
dling of static class constructors. So far, we have been han-
dling this issue manually in our implementation, but pro-
viding automated support seems also possible in the near
future.
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