
Name-based Location Service for Mobile Agents in
Wireless Sensor Networks

Shunichiro Suenaga
The Graduate University
for Advanced Studies,

Nihon Unisys Ltd.
suenaga@nii.ac.jp

Shinichi Honiden
National Institute

of Informatics,
The University of Tokyo

honiden@nii.ac.jp

ABSTRACT
Mobile agent technologies are effective ways of deploying
applications in wireless sensor networks (WSN). There are
currently several different approaches for enabling commu-
nication between agents operating on a WSN, but none of
them allows for dynamic agent location determination. This
introduces some restrictions which severely limit the useful-
ness of mobile agents on WSNs. In this paper, we propose
a name-based location service for mobile agents in a WSN.
The approach is largely implemented through the regular
placement of landmark nodes across the WSN. We show
that our approach can enable communication with the near-
est target agent and maintains a constant level of commu-
nication among mobile agents over the whole WSN.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Design, Performance, Experimentation

Keywords
sensor networks, mobile agent, location service, middleware

1. INTRODUCTION
Wireless sensor networks (WSN) are progressing towards

technical maturity, and their widespread utilization will soon
be a reality. Object tracking and monitoring of the natu-
ral environment are expected applications where WSNs will
be particularly useful[10]. For an application to run on a
WSN, software must be installed on each node, and the
nodes must exist in a particular physical location. More-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobilware’08, February 12-15, 2008, Innsbruck, Austria.
Copyright 2008 ACM 978-1-59593-984-5/08/02 ...$5.00.

over, WSN-based applications are just like any other ap-
plication in that they require maintenance, e.g., software
patches. Given that the application software is installed
on each individual node, it is largely infeasible to conduct
such updates manually. Two general solutions currently ex-
ist: network reprogramming(Deluge[8] and MNP[14]) and
mobile agent technology (SensorWare[2], ActorNet[11] and
Agilla[4]). Reprogramming updates applications all at once
on all nodes and mobile agent technology updates software
gradually. Mobile agent technology is more suitable than re-
programming for adding and changing applications because
it allows existing applications to continue to execute.

However, explorations into inter-agent communication in
the domain of WSNs are still young. Currently, several ap-
proaches to establish communication between mobile agents
in WSNs do exist, yet none of them manages the agents’ lo-
cations. This means that communication is either achieved
through hard-coding the location of a shared tuple space or
through broadcasting. These restrictions are detrimental to
the real-world application of mobile agent WSN systems be-
cause mobile agents can move and WSN nodes have limited
resources.

This paper introduces a communication-enabling location
service for mobile agents across an entire WSN. The method
enables agents to communicate with the nearest target agent
on demand without hard-coding a node location, broadcast-
ing or periodic polling. The approach has been implemented
in middleware and it divides a WSN into multiple clusters,
generating a landmark node in each cluster. The landmark
nodes keep track of local agent locations and respond to dy-
namic requests for such information. When an agent needs
to communicate with another agent, it sends a request to
the landmark for the type of agent it needs and obtains the
nearest target agent’s location.

Section 2 discusses related work and current problems,
while Sections 3 and 4 describe our approach and how it
is implemented. Section 5 shows an evaluation of our ap-
proach. In Sections 6 and 7 we enter into some discussion
of the limitations and implications of our method and finish
off with a discussion of possible directions for future work.

2. RELATED WORK
SensorWare[2] enables mobile agent migration between

nodes in WSNs, the mobile agents are written as Tcl scripts.
Agents are able to communicate, but the specific node to

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2802

Figure 1: Problem of decoupled communication

communicate with must be specified by the programmer.
This approach does not allow for the migration of agents
between nodes, because programmers must always be able
to know and specify the physical location of the agents.

ActorNet[11] is an agent platform for WSN in which mo-
bile agents are written in Scheme. ActorNet supports mes-
sage passing via broadcasting. Any single broadcast in a
large WSN requires a large number of messages to complete
and repetitive broadcasting, as would be the case when two
agents are communicating, is largely infeasible given the lim-
ited resources of WSN nodes.

In Agilla[4], communication between agents is performed
through a shared tuple space. Using a shared tuple space
is more suitable than the previous two approaches because
agents can communicate without knowing the location of
other agents. However, there are still two drawbacks. The
first is that the location of the shared tuple space (i.e. a
node) must be specified by the programmer. This leads
to the second drawback, which is that agents often need
to poll distant shared tuple spaces in order to check for
new data. These restrictions can cause situations where
two agents are polling a specific tuple space across network
when they could talk directly with significantly less cost,
as shown in Figure 1. Furthermore, communicating across
network in a lossy environment means that the success rate
of communications deteriorates the further agents get from
their message’s destination (i.e. the specified shared tuple
space). Figure 2 shows the success rate of a notification
event between two agents through a shared tuple space in a
simulated lossy environment (TOSSIM[12]1). It shows that
maintaining reliable communications between mobile agents
across an entire WSN requires a lot more resends the more
hops there are between the message originator and destina-
tion. In this paper, we refer to shared tuple space commu-
nications as “decoupled communication” because there is a
middle-man sandwiched between the sender and receiver.

There are several approaches proposed in wired environ-
ments and MANET, which are not suitable for WSNs. Feng
et al. [3] propose an approach which establishes communi-
cation between mobile agents by using a moving mailbox in
wired environments. Although this approach is reliable and
effective, each node must keep track of the address of mobile
agents. When applying this approach to WSNs, maintaining
the consistency of address information on each node becomes
a problem due to packet loss and messaging costs.

1TOSSIM’s “lossy model” makes it possible to carry out a
simulation of the asymmetrical link between nodes and the
packet loss in WSN. We use 12-foot grid lossy model in this
paper

Figure 2: Success rate of event notification using
decoupled communication

ZRP[6] and LANMAR[13] are routing protocols related to
MANET. They propose a method to maintain routing infor-
mation within groups and zones, enabling proactive message
delivery within those same groups and zones. This research
focuses on the routing behaviour below the application layer,
and does not focus on the utilization of application specific
knowledge such as the type of agent or its location.

3. APPROACH
Given the problems stated in Section 2, we set out to

create a solution that meets the following requirements.

1. The agent can obtain the location of the closest target
agent dynamically in order to send messages directly
to the target agent without hard-coding, broadcasting
or polling.

2. There is a guaranteed worst-case level of communica-
tion reliability that does not depend on the size of the
network.

The middleware we propose enables an agent to find the
closest target agent among the ones who provide the de-
sired service, and it also enables communication between
agents by using the local shared tuple space on the node
that the agent is located. Moreover, clusters are formed in
order to keep the quality of communication between agents
in the whole WSN constant. That is, each cluster can be
considered its own mini-WSN and if a guaranteed level of
communication reliability is maintained in all clusters, then
the overall level of communication reliability for the WSN
is equal to that of any individual cluster.

We choose to shy away from centralized search services
and instead have implemented a spatially distributed search
service, since communication quality and distance between
nodes are more closely related in a WSN than they are in
a wired network. In our method, the names of the agents
that together form an application are defined according to
their function or type. Clusters which divide up the WSN
geographically are formed and landmark nodes are intro-
duced to the center of each cluster in order to manage the
types and locations of all agents local to the cluster. Agents
registered in the middleware will have their type and loca-
tion stored at the nearest landmark. When an agent needs
to communicate with a specific type of agent, it sends a
request to the landmark. The landmark replies with the

Figure 3: Communication protocol

location of a nearby suitable target agent. After the origi-
nating agent knows the location of its target agent, it can
start communicating with the target agent directly.

Although the locations and types of agents are registered
in the landmark, the programmer does not need to specify
a static location when writing the program. Locations are
dynamically determined and obtained via the middleware.

There is one important assumption made in our approach
that requires clarification up front: all clusters always have
at least one instance of each possible “target agent”. This is
necessary to maintain the “mini-WSN” status of each cluster
as well as to ensure that a landmark will be able to reply
to any request (barring physical malfunction).

3.1 Landmark
The initialization, discovery and communication protocols

of a landmark are shown in Figure 3.
In the RegistrationProtocol, the landmark broadcasts

a message advertising that it is a landmark2 to the sur-
rounding nodes, and the middleware uses these messages to
determine its landmark node. When an agent migrates to
the node, the middleware transmits a registration message
to the landmark,which registers the type and location of
the agent. When the agent moves, the node makes sure to
notify the landmark as well. In the DiscoveryProtocol, an
agent specifies the type of the target agent in a request and
sends it to the landmark. The landmark responds with the
location, and communication between agents can be per-
formed via the local tuple space. Thus, the landmark is
out of the communicative loop once the agents enter the
DirectCommunicationProtocol.

3.2 Boundary Solution
When an agent is deployed near the boundary of a cluster

as shown in Figure 4, it is not always possible for a landmark
to provide the nearest target agent. The agent searches for
and finds a target agent deployed within its cluster at a dis-
tant position. In this example, Agent − A (A1) does not
communicate with the nearest agent, Agent − B (B2), and
instead communicates with B1. To avoid this, the loca-

2landmarks are initialized by flooding messages with the
relevant topological information. Each node uses this in-
formation and its location to determine if it is a landmark.
Changes to this algorithm allow us to adapt to other physi-
cal topologies.

Figure 4: Registration to multiple landmarks

tions and names of agents can be registered at two or more
landmarks by the middleware. B2 deployed in the cluster
of L4 can register at neighboring landmarks (L1, L2, L3)
based on the position of the sub-cluster. The registration
to the nearest landmark (in this case L4) is always carried
out.

Sub-clustering is conducted by calculating locations using
the information from the nearest landmark. For instance,
when the B2’s node receives the advertisement message from
L4, the node knows that L4 is the nearest landmark and
the size of the cluster is 4x4. The node also knows that it
belongs to the upper-left sub-cluster of L4, and thus it can
register with L1, L2, and L3. This means that the actual
coverage of L1 is larger than the 4x4 cluster size as shown
in Figure 4. In this way, landmarks are able to provide the
agent with the location of the nearest target agent.

4. IMPLEMENTATION
The functions described in Section 3 were implemented as

an extension of Agilla as shown in Figure 5. An agent co-
operates with this middleware through the Instructionset.
The InstructionSet has many functions, for example, search-
ing for a target agent and moving agents to other nodes. The
InstructionSetHandler interprets this InstructionSet and
performs processing which distributes the extended func-
tions of this approach, and the functions offered by Agilla.

The functions of the landmark and clustering are imple-
mented in the LandmarkEngine and ClusterManager, re-
spectively. The LandmarkEngine handles landmark ini-
tialization and agent type registration, communication be-
tween landmarks, and finding target agents. The program-
mer merely has to register the agent type and the middle-
ware will handle low-level communications such as those be-
tween nodes and the landmark. The characteristic func-
tionalities of clusters (sub-clustering, initialization, etc.) are
implemented in the ClusterManager.

The MappingTable is used to store the locations and
names of agents when the node is a landmark and it is used
as a cache table when the node is not a landmark. In addi-
tion, the amount of information storable in the MappingTable
can be specified in a configuration file.

Figure 5: Architecture

5. EVALUATION

5.1 Evaluated Example and Desired Value
In this paper, we present an “Intruder Detection” example

for performance evaluation. This application consists of two
kinds of agents: one that detects the intruder and another
that tracks the intruder. The former is called a Detector
and the latter is called a Tracker. The Detector notifies the
Tracker when it detects an intruder. The Tracker moves
to the node in which the Detector exists and starts tracking
the intruder. We evaluate the delay and accuracy of the in-
truder detection and tracking application implemented with
the landmark middleware. We define “the duration from
when the Detector detects an intruder to when the Tracker
moves to the node in which the Detector exists and starts
tracking” as the “tracking latency”, and the success rate of
this process as the “tracking reliability”.

We aim to guarantee 80% reliability to start tracking
within 10 seconds of receiving a notification from Detectors,
therefore we set 0.8 as the desired average tracking reliability
and 10 seconds3 as the average tracking latency.

5.2 Simulation Environment
We assume a sensor[1] that can scan 5 m in diameter and

can be equipped on MICAz. To cover the space with the
scan field of the sensor, we need to arrange the nodes with
sensors at intervals of 3.5 m4. In addition, the node knows
its own location on a two-dimensional grid network.

We simulated this environment in TOSSIM[12], the eval-
uation used the lossy model (12-foot) with sensor nodes
placed at intervals of 3.5 m. Communication between nodes
was performed by simple greedy forwarding[9] using geo-
graphic routing as the routing protocol. Moreover, only ad-
joining nodes and nodes adjoining each other by diagonal
lines can communicate with each other.

Note that all specific numerical values in this evaluation
are determined by the application, and should not be taken
as a limitation of our method.

5.3 Tracking latency and reliability
3Human intruders, such as thieves, are said to be able to
gain entry in 10 - 30 seconds
4The diagonal lines between nodes on a grid are 5 m, the
grid interval is approximately 3.5 m, 3.5 m corresponds to
12 feet

Figure 6: Tracking latency and reliability (TOSSIM,
12-foot, lossy)

To achieve the desired values described in Section 5.1, av-
erage tracking latency and average tracking reliability were
measured for every distance between agents in a 10x10 WSN.
Figure 6 shows the tracking reliability and tracking latency
of “decoupled communication” and “direct communication”
when the Detector and Tracker are deployed at distances
of 1 to 9 hops in a diagonal line 5. Direct communication is
the communication style proposed in this paper. Figure 6
shows the average tracking reliability and latency (measured
15 times for each hop distance). The tracking reliability for
more than seven hops in our approach was 10% or less, and
tracking latency was 120 seconds or more. Therefore, Fig-
ure 6 only shows the evaluation from one to six hops for our
approach. The tracking reliability and latency are 80% and
28.9 s in our approach at 4 hops, and 53% and 29.29 s in
“decoupled communication” at 6 hops. This result means
our approach using 5x5 clustering can assure better tracking
reliability and latency compared with “decoupled communi-
cation” when the WSN is 6x6 or larger. Also, as WSN sizes
increase, the effectiveness of our approach also increases,
because we can increase the number of clusters and still
maintain the quality of communication within each cluster.
Comparatively, the expected quality of “decoupled commu-
nication” only decreases as the network gets larger.

Figure 6 shows the result for agents deployed on a di-
agonal line. In this case, the distance between agents and
the migration length of the Tracker are always the same.
However, agents are only assumed to be deployed in a two-
dimensional environment. We need to evaluate statistical
data in consideration of other spatial arrangements and com-
pare the performances of both approaches for the same WSN
size. Table 1 shows the average tracking latency and aver-
age tracking reliability at deployment time for the Tracker
at all the nodes three times for WSN sizes of 4x4, 5x5, 6x6

5The landmark of the proposal and the tuple space of the
“decoupled communication” are located in the middle of
the initial nodes where the Detector and Tracker were de-
ployed. When the distance between agents is one hop, the
Tracker is deployed to the same node as the landmark or
another specified node.

Table 1: Spatial average of tracking latency and re-
liability (TOSSIM, 12-foot, lossy)

Evaluated Item 4x4 5x5 6x6 8x8

direct tracking
latency

7.61 s 9.52 s 13.23 s N/A

direct tracking
reliability

0.90 0.83 0.77 N/A

decoupled track-
ing latency

7.27 s 8.86 s 12.24 s 16.17 s

decoupled track-
ing reliability

0.96 0.88 0.81 0.61

and 8x8 nodes. The Detector is always fixed at the corner
of the WSN. Table 1 shows that the desired value (average
tracking reliability: 80%, average tracking latency: 10 sec-
onds) can be achieved for 4x4 and 5x5 clusters. In addition,
we can achieve the same quality in an 8x8 WSN by divid-
ing it into four 4x4 clusters. Thus, our approach not only
keeps the communication quality constant in a large-scale
WSN by creating multiple clusters, but also maintains the
same quality as “decoupled communication” in a small-scale
WSN.

5.4 Evaluation of Boundary Solution
We allow registration and deletion at two or more landmarks

as discussed in Section 3.2. In this case, the success rate of
registration and deletion was evaluated since the reliabil-
ity of the information stored in the landmark is important.
The relation between the distance to a landmark node and
the success rate of registration is shown in Figure 7. Data
shows the average value for 15 measurements. Given 4x4
clusters, the maximum number of hops for registration is
four, and the average success rate is 87%. However, given
5x5 clusters, the average success rate rapidly falls to 65% in
our simulated environment.

6. DISCUSSION

6.1 Programmability and Scalability
The proposed approach provides agents with a dynamic

search mechanism for locating the closest target agent, there-
fore the programmer does not need to understand exactly
where the agents will be at any given point in time. In ad-
dition, agents can obtain the location information of other
similarly-typed agents from landmarks, enabling individual
agents to autonomously limit their numbers in any partic-
ular area of a WSN. These primitives make it easy for pro-
grammers to control the spatial deployment of agents and
to establish communication between them.

Although communication between landmarks is imple-
mented in this middleware communication between landmarks
is not used for communication between agents. When a
large-scale WSN is composed of multiple clusters, creating
the clusters does not become a restriction on the quality
of communication between agents. In other words, as long
as all kinds of agents are deployed within the coverage of
each individual landmark, our proposal guarantees a con-

Figure 7: Success rate of registration (TOSSIM, 12-
foot, lossy)

stant level of communication quality between agents in the
whole WSN. For example, consider a 30x30 WSN. From the
results in Table 1, a 83% tracking reliability and a 9.52 sec-
onds tracking latency can be guaranteed in the whole WSN
by creating 36 5x5 clusters. On the other hand, we can not
expect effective tracking if we use “decoupled communica-
tion”.

6.2 Limitations of our proposal
Our proposal is not suitable for the following conditions.

1. Agents that move regularly with a short cycle.

2. Applications that cannot work within the coverage of
a landmark.

In the first case, an agent needs to delete its name from
landmarks before migration, and register its name again af-
ter migration. Figure 8 shows the duration and success rate
between deletion and registration when the agent migrates.
“Hop Count” is the distance between a landmark and an
agent and the result displays the case when the agent moves
to a different node with the same hop count. Figure 8 shows
that agents need about 10 seconds to migrate between nodes
given 5x5 clusters. This implies that if the target agents
move every 10 seconds between nodes, the probability to es-
tablish communication may be 50%. Our middleware does
generate an exception, allowing for the message to be resent,
but the process causes some unignorable delays. We are con-
sidering message forwarding as a method to overcome this
problem.

In the case of 2, our proposal can not enable communi-
cation between agents because it assumes the agents com-
posing the applications always exist within the coverage of
a landmark. For example, consider a warehouse in which
nodes are attached to all the stock, and the WSN is consti-
tuted of multiple clusters and it manages the total inventory.
In this case, the total inventory cannot be counted within
the coverage of one landmark.

6.3 Target Application
We assume that applications consist of several agents whose

relations can be defined by some events and communica-
tion between agents is only conducted when these events
are detected. In addition, the agents migrate and behave
autonomously before receiving these events. These assump-
tions fit event-based applications like “intruder detection”

Figure 8: Registration and deletion overhead to a
landmark (TOSSIM, 12-foot, lossy)

and “object tracking”. On the other hand, our approach is
not suitable for applications which require frequent commu-
nication between agents that are almost constantly moving.

6.4 Future Work
In our approach, since a landmark needs to communi-

cate frequently, the battery of the node which performs the
landmark function will generally be drained before the bat-
teries of other nodes. Therefore, there appears to be room
for dynamically changing the landmark node based on re-
maining battery power. GRA[5] defined the relation be-
tween the node’s role and its attributes (battery, network
connection, a sensing function, etc.), and has proposed a
technique of rotating roles according to the nodes’ variable
attributes. LEACH[7] is an algorithm which rotates clus-
ter heads to save the node’s battery energy. We believe that
landmarks can be rotated by using similar techniques. How-
ever, landmark rotation causes problem of optimal cluster
formation. If a node at the edge of the cluster is chosen as
a landmark, the quality of location service within the clus-
ters can be variable (the cluster and surrounding clusters
may need to be formed again). Optimal cluster formation
is one of the future works. In addition, landmark cooper-
ation might become necessary to provide redundancy and
robustness when another landmark fails.

7. CONCLUSION
We proposed a middleware which provides a name-based

location service for mobile agents in a WSN and divides a
WSN into multiple clusters. By using our approach, the pro-
grammer needs not specify and care about the locations of
mobile agents and nodes to enable communications between
mobile agents. Our approach can also assure constant-quality
communications over the whole large-scale WSN. Landmark
cooperation and rotation of landmarks, optimal cluster for-
mation are future work.

8. REFERENCES
[1] Panasonic motion sensor. http://pewa.panasonic.

com/pcsd/product/sens/select motion.html.

[2] A. Boulis, C.-C. Han, and M. B. Srivastava. Design
and implementation of a framework for efficient and
programmable sensor networks. In MobiSys ’03:
Proceedings of the 1st international conference on
Mobile systems, applications and services, pages
187–200, New York, NY, USA, 2003. ACM Press.

[3] X. Feng, J. Cao, J. Lü, and H. Chan. An efficient
mailbox-based algorithm for message delivery in
mobile agent systems. In MA ’01: Proceedings of the
5th International Conference on Mobile Agents, pages
135–151, London, UK, 2002. Springer-Verlag.

[4] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid
development and flexible deployment of adaptive
wireless sensor network applications. In ICDCS ’05:
Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems
(ICDCS’05), pages 653–662, Washington, DC, USA,
2005. IEEE Computer Society.

[5] C. Frank and K. Römer. Algorithms for generic role
assignment in wireless sensor networks. In SenSys ’05:
Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 230–242,
New York, NY, USA, 2005. ACM Press.

[6] Z. Haas and M. Perlman. The zone routing protocol
(zrp) for ad hoc networks. In Internet draft, Mobile
Ad-Hoc Network (MANET) Working Group. IETF,
1998.

[7] W. R. Heinzelman, A. Chandrakasan, and
H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In HICSS,
2000.

[8] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, pages 81–94, New York, NY, USA,
2004. ACM Press.

[9] B. Karp and H. T. Kung. GPSR: greedy perimeter
stateless routing for wireless networks. In Mobile
Computing and Networking, pages 243–254, 2000.

[10] M. Kuorilehto, M. Hannikainen, and T. D.
Hamalainen. A survey of application distribution in
wireless sensor networks. EURASIP J. Wirel.
Commun. Netw., 5(5):774–788, 2005.

[11] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha.
Actornet: an actor platform for wireless sensor
networks. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems, pages 1297–1300, New York,
NY, USA, 2006. ACM Press.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 126–137, New York, NY, USA,
2003. ACM Press.

[13] G. Pei, M. Gerla, and X. Hong. Lanmar: landmark
routing for large scale wireless ad hoc networks with
group mobility. In MobiHoc, pages 11–18, 2000.

[14] L. Wang. Mnp: multihop network reprogramming
service for sensor networks. In SenSys ’04: Proceedings
of the 2nd international conference on Embedded
networked sensor systems, pages 285–286, New York,
NY, USA, 2004. ACM Press.

