
An Agent-Based Framework for Integrating Mobility into
Grid Services

T.E. Athanaileas
School of Electrical

and Computer
Engineering, National
Technical University of

Athens
9 Heroon

Polytechneiou Str.
15773, Zografou,
Athens, Greece

thathan@esd.ntua.gr

N.D. Tselikas
School of Electrical

and Computer
Engineering, National
Technical University of

Athens
9 Heroon

Polytechneiou Str.
15773, Zografou,
Athens, Greece

ntsel@telecom.ntua.gr

G.V. Tsoulos
Department of

Telecommunications
Science and

Technology, University
of Peloponnese

Tripolis 22100, Greece

gtsoulos@uop.gr

D.I. Kaklamani
School of Electrical

and Computer
Engineering, National
Technical University of

Athens
9 Heroon

Polytechneiou Str.
15773, Zografou,
Athens, Greece

dkaklam@mail.ntua.gr

ABSTRACT
This paper presents an approach to integrating mobility into the
originally static grid environment. The mobile agent paradigm has
been exploited in order to facilitate the migration of grid services.
The approach presented here separates each mobile grid service in
a static part and a mobile part that can dynamically migrate across
grid nodes as appropriate. In order to enable this approach, a
framework based on a novel mobile agent system is proposed. The
components of the framework consist exclusively of grid services
conforming to the Web Services Resource Framework (WSRF)
standards. The framework provides mechanisms to seamlessly
integrate mobile agents and stateful grid services.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –domain
specific architectures, patterns.

General Terms
Design

Keywords
Grid services, mobile agents, WSRF, mobile services

1. INTRODUCTION
Grid Computing is an emerging computing model targeting to
distributed processing across a parallel infrastructure and is
distinguished from conventional distributed systems by its focus
on large-scale resource sharing applications and its high
performance orientation [1]. The Grid problem is defined as the
problem of secure, flexible and coordinated resource-sharing
across multiple collections of individuals, systems or resources,

which are referred to as virtual organizations.

Two central issues in the development of such large scale systems
is the achievement of interoperability between a wide collection of
resources and components that can be extremely heterogeneous,
as well as the openness of the architecture and the protocols that
are used. Towards this direction, a service-oriented architecture
has been widely accepted as the basis for the composition of grid
infrastructures, namely the Open Grid Services Architecture -
OGSA [2]. According to OGSA, a grid is considered to be a
collection of web services, which use standardized protocols for
description, discovery and invocation. Recently, the notion of
state has been added to the originally stateless web services,
resulting in the creation of stateful web services and the Web
Services Resource Framework (WSRF [3]) has been proposed as
standardization for interaction with stateful resources.

An OGSA based grid as described above has the limitation that
the provided services can be only of a stationary nature. Mobility
is a characteristic not yet supported, although there are certain
advantages in considering services that have the ability to move
among nodes. Characteristics such as optimized resource
utilization, improved coordination between services and available
resources and overall framework flexibility can be propelled by
integrating mobility to grid services.

In order to attain mobility integration, a grid service mobility
framework based on the paradigm of mobile agents is proposed in
this paper. The purpose of the presented work is to enable the
combination of the functionality and characteristics provided by
the agent paradigm with the standardization provided for grid
services, towards creating autonomous services, richer service
models and semantic integration.

The outline of the paper is as follows: in Section 2 related work is
discussed. In Section 4, the agent system that is used as a basis for
mobility integration is concisely presented. Section 5 presents the
details of the grid service mobility framework. Finally, Section 6
concludes the paper and presents some goals for future work.

2. RELATED WORK
The work presented in this paper has been strongly influenced by
several research contributions in the area of integrating mobile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware '08, February 12-15, 2008, Innsbruck, Austria.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2800

agents, web services and grid computing. In [4] and [5], a
comparison between web services and agents has been made,
concerning the transport layer and the service discovery protocols.
Additionally, certain challenges for manipulating agents as
standard web services have been addressed to some point. In [6],
an agent-based approach to composite mobile web services has
been presented. According to this approach, web service
composition is accomplished by having an agent perform the
composition on behalf of a mobile user, while interactions
between web services are transparent to the user. In [7], an
integration infrastructure has been developed, with the twofold
goal of exporting agent functions with a web service interface and
simplifying the access to legacy web service components from any
agent system, thus promoting interoperability between the two
technologies. In [8], a framework for integrating multi agent
systems with the grid service architecture has been proposed, with
the ultimate goal of creating an autonomous semantic grid.
Recently, in [9], a middleware framework for secure mobile grid
services has been discussed. This framework makes use of the
Jade agent platform and the Globus Toolkit 4 functionality to
facilitate the creation of mobile grid services.

The motivation behind combining grid systems and the agent
computational paradigm has been discussed in [10]. Although
grid systems provide powerful mechanisms for secure and reliable
resource sharing, they can in general be considered to be rigid and
inflexible in terms of their interoperation and their interactions.
On the other side, research on agents has led to the development
of concepts, methodologies and algorithms for autonomous
entities that can be extremely flexible in dynamically varying
conditions. A thorough discussion concerning various and
different ways grids and agents can benefit from each other is
cited in [10].

In the work presented in this paper, we aim at building on some of
the concepts previously described, towards incorporating mobility
to an OGSA-based grid infrastructure. In order to achieve such a
combination between grid services and agent paradigm, the first
logical step would be to create a common run-time for the
components of the two technologies, as well as standardized
interfaces for accessing them. The work presented in the following
sections moves towards that direction.

3. THE GRID SERVICES BASED AGENT
PLATFORM
The Mobility Integration Framework is based on our proposed
Grid Services Based Agent Platform (GriSBAP). GriSBAP is an
agent framework constructed entirely as a collection of stateful
web services. It acts as a run-time environment enabling the
creation of agents and supporting agent life-cycle. Its structure
and operations partially (for the moment) conform to the FIPA
specifications [11], in order to facilitate interoperability with other
systems. GriSBAP has been implemented using Java and the
functionality provided by the Globus Toolkit 4 Java WS Core.
The Java WS Core is part of the Globus Toolkit [12], which has
been developed by the Globus Alliance [13] as a grid-enabling
middleware. The Java WS Core provides the necessary
functionality for the creation of stateful web services that conform
to WSRF standardization.

The main advantages of using a grid service based agent
framework instead of importing existing agent frameworks to the
grid environment are the minimization of overheads as well as the
homogeneity with the underlying grid environment. The following
paragraphs shortly present the structure and the functionality of
the agent framework.

3.1 Agent Platform Structure
The structure of GriSBAP is depicted in Figure 1.

Figure 1. Agent Platform Structure

As proposed by FIPA Agent Management Specification [14], the
agent platform consists of the following entities:

� The AMS Service: the AMS (Agent Management System)
represents the authority entity in the platform. The AMS
component has the ability to perform various actions on the
agents’ life-cycle (e.g. create or kill agents) and also provides
the naming service. Each agent platform necessarily contains
one single instance of the AMS component.

� The DF Service: the DF (Directory Facilitator) provides a
yellow pages directory service to agents. Any agent can
publish its functionality and its services offered by
registering to the DF, while an agent that needs to use a
specific service can query the DF in order to discover an
agent that provides this service.

� The AgentContainer Service: this component is the actual
run-time environment for an agent. The AgentContainer
provides functionality regarding agents’ life-cycle
management, which can be used from the AMS to manage
the agent system.

� The Message Transport System: it constitutes the
communication bus of the platform. The communication
between agents is achieved by exchanging ACL (Agent
Communication Language) messages. This kind of
communication is obviously a rather abstract way of
communication and the actual exchange of messages has to
be made via means of a concrete communication protocol.
The message transport system of the platform makes use of
the SOAP [15] protocol; each ACL message is encapsulated
into a SOAP message and sent over HTTP.

All platform components are implemented as stateful web services
conforming to WSRF standards. Their functionality is exposed by
standard WSDL [16] interfaces and the invocation of the exposed
operations is made by standard SOAP requests and responses.
Additionally, all components publish resource properties that are
representative of their state. The AMS Service publishes two

kinds of resources: (a) the platform name and (b) the structure of
the platform, which is a list of the URIs of the instances of the
AgentContainer Service that have registered with the specific
AMS, as well as the identifiers of the agents that reside in each
instance. The resource properties of the AgentContainer Service
are (a) the name of the AgentContainer and (b) a list of the agent
identifiers that currently reside in the AgentContainer. Finally, the
DF Service exposes as a single resource property the list of agents
that have been registered with it and a description of the services
they provide.

The monitoring functions of the framework (such as agent state
monitoring) are performed by using the WS-Notification [17]
implementation of the Globus Toolkit 4. The AgentContainer
Service implements the NotificationProducer portType of the WS-
Notification standard, while the AMS Service acts as a
notification consumer, being notified about the changes in the
AgentContainer resource properties. The DF Service also
implements the NotificationProducer portType, so that an agent
can be notified about services provided by other agents.

All platform components are implemented as stateful web services
conforming to WSRF standards. Their functionality is exposed by
standard WSDL [16] interfaces and the invocation of the exposed
operations is made by standard SOAP requests and responses.
Additionally, all components publish resource properties that are
representative to their state. The AMS Service publishes two
kinds of resources: (a) the platform name and (b) the structure of
the platform, which is a list of the URIs of the instances of the
AgentContainer Service that have registered with the specific
AMS, as well as the identifiers of the agents that live in each
instance. The resource properties of the AgentContainer Service
are (a) the name of the AgentContainer and (b) a list of the agent
identifiers that currently live in the AgentContainer. Lastly, the
DF Service exposes as a single resource property the list of agents
that have been registered with it and a description of the services
they provide.

The monitoring functions of the framework (such as agent state
monitoring) are performed by using the WS-Notification [17]
implementation of the Globus Toolkit 4. The AgentContainer
Service implements the NotificationProducer portType of the WS-
Notification standard, while the AMS Service acts as a
notification consumer, being notified about the changes in the
AgentContainer resource properties. The DF Service also
implements the NotificationProducer portType, so that an agent
can be notified about services provided by other agents.

3.2 Agent Creation and Migration
Agent classes can be dynamically loaded by using the dynamic
class loading characteristic of the Java language. A class that
implements the Agent interface can be dynamically loaded at run
time and act as a mobile agent, migrating to remote nodes, or
sending and receiving ACL messages.

Agent migration is accomplished by exploiting the Java Object
Serialization API. The Agent interface implements the
java.io.Serializable interface. An instance of the Agent interface
can be a) serialized in a sequence of bytes, b) transferred through
the network, c) deserialized at the destination AgentContainer and
d) reloaded in local memory. The form of mobility that the agent
system supports is characterized as weak mobility, since the

execution state of an agent can not be captured and retrieved, and
only state data can be migrated along with the agent code [18].
Finally, the migration process is sender-initiated. This means that
an agent that needs to migrate has to interact with the AMS
Service by calling the “migrate” operation provided by the
service.

3.3 Agent Communication
Agent communication is achieved by ACL message exchange. In
our agent system, ACL messages are instances of a Java class
containing fields that correspond to the abstract parameter
message payload identified in [19]. A future plan is to use the
XML specification for FIPA ACL message representation [20]
and transform the message format into an XML document, which
can be sent by encapsulating it in the body of a SOAP message.

The message delivery mechanism is as follows: at first, the sender
agent forwards the message to the AgentContainer he resides in. If
the receiver agent is currently living in the same AgentContainer,
the message is inserted in the local message queue of that agent.
Otherwise, the message is forwarded to the AMS Service, which
sends the message to the AgentContainer the receiver agent
currently resides in. Interacting with the AMS Service for message
delivery is a straightforward approach, since agent monitoring
information is available at the AMS. Nevertheless, using such a
centralized approach for message delivery can result in several
bottle-necks. As a future enhancement, an individual messaging
service can be inserted in the architecture, which will have to keep
track of the location of the agents and send pending messages as
appropriate.

4. THE GRID SERVICE MOBILITY
FRAMEWORK
The work presented in this paper mainly concentrates on the
development of a mobility enabling environment for grid services.
As mentioned earlier, a grid constituted entirely of stationary
services can to some extent be considered to be rigid and
inflexible. By integrating mobility into grid services, a certain
level of agility may be achieved. The goal is to provide the grid
environment with the mobility capability, while ensuring that the
standardization achieved for description, discovery and access to
stateful grid services is still valid. In this context, we build on the
agent system described in the previous section and propose an
architecture for the development of transparently mobile grid
services.

In the following paragraphs we present some issues about
mobility integration and describe the proposed framework
components and architecture, along with a potential use case
scenario.

4.1 Mobility Integration Issues
In order for a mobile grid service to be functional and effective,
certain issues have to be addressed. The first and foremost issue
that needs to be resolved is the actual manner that mobility is
achieved. This is roughly equivalent to the problem of process
migration during runtime. An important characteristic to the
service migration problem is that the application to be moved is
deployed in a service container. This means that for a service to
migrate to a remote computer node, the service must firstly be

undeployed from the container it currently resides in, its code and
state (assuming a weak mobility scheme) must be retrieved and
transferred over a network and finally the service must be
redeployed to the web service container at the destination node,
with its state initialized to the previously retrieved state.
Obviously, such an approach is not only technically challenging,
but also poses certain problems to service addressing and
discovery. This is due to the fact that a moving endpoint is
associated with the service instance, which means that special
treatment is needed in order for the discovery system to obtain
consistent information about the current address of the service and
in order for any client to access the service as well.

Alternatively to moving the whole service instance between
different containers, it is possible to separate the service interface
from the service functionality implementation, and to use
mechanisms for the migration of the functionality only. This
approach has the advantage that the deployed service instance
itself does not need to be migrated, and thus undeployment and
redeployment of the service is not necessary; nevertheless, by
enabling mobility for the functionality implementation, certain
advantages can still be deduced. For example, one may consider
the common problem of load imbalance among the nodes of a grid
system. By exploiting mobility operations, part of the load can be
moved from over-loaded nodes to under-loaded nodes, resulting
in more efficient resource utilization. Moreover, standardized
ways for interacting with the service may still be used, as the
functionality can be exposed as a grid service interface.

The approach chosen to achieve mobility integration is based on
the mobile agent paradigm. A software agent or even a more
complex agent system can be used to wrap the functionality of the
service and move between grid nodes as appropriate with the
purpose of completing its execution. One of the main advantages
of building on the mobile agent paradigm is that it offers the
potentiality to develop flexible mechanisms and complex
interactions between application components.

Another important issue that arises from the adoption of the agent
approach to service mobility is communication with the service.
Communication between agents is asynchronous, while
interaction with a web service can be either synchronous or
asynchronous. Due to the superposition of the web service layer
on top of an asynchronous communication layer, it could be
beneficial to invoke mobile service operations in an asynchronous
way, for example by using polling schemes. Otherwise,
mechanisms for ensuring that web service invocation is blocked
until asynchronous operations are completed are obviously
demanded.

4.2 Mobile Grid Service Components
The components that constitute a mobile grid service, as well as
the interactions and relations between them, are shown in Figure
2. The three main components of a mobile grid service are
namely: the Mobile Grid Service Interface, used for the
communication with the clients outside the platform, as well as
the ServiceGateWayAgent and the ServiceAgentSystem, residing
at the core part of the platform, named AgentContainer Service.

Figure 2. Mobile Grid Service Components
In the following the Mobile Grid Service Components are
described in detail:

Mobile Grid Service Interface: The Mobile Grid Service
Interface is the component that acts as an access point to the
mobile grid service for an external client. It is an ordinary stateful
web service that provides a standard WSDL interface describing
available operations and exposed resource properties and can be
accessed through standard SOAP messages. The difference from a
typical web service is that the functionality of the provided
operations is not embodied in the service implementation. Instead,
each service operation interacts with the ServiceGateWayAgent in
order to request from the ServiceAgentSystem to perform certain
computations on its behalf. Our purpose is to enable access to the
mobile grid service by exploiting all available standardization and
that is the main advantage of using a classic grid service as a front
end.
ServiceGateWayAgent: The ServiceGateWayAgent is a
stationary agent, which resides in the AgentContainer Service that
is deployed in the same grid container as the Mobile Grid Service
Interface component. It acts as a proxy between the Mobile Grid
Service Interface and the ServiceAgentSystem that implements the
actual service functionality. The main reason that the Service
Interface interacts with the ServiceGateWayAgent component is
that it can offer a single point of access to the service functionality
that is implemented at the ServiceAgentSystem component. This
is due to the fact that the ServiceAgentSystem component may be
more complicated than just a single agent and can be consisted of
several agents forming complex behaviors. The main
disadvantage of this approach is that the ServiceGateWayAgent is
potentially a single point of failure. A solution to this problem
would be the existence of multiple instances of the
ServiceGateWayAgent, though this approach would make the
architecture more complex. The necessary interactions with the
service functionality implementation can thus be hidden from the
service interface component, resulting in a more modular
architecture. The ServiceGateWayAgent receives ordinary ACL
messages from the Mobile Grid Service Interface requesting a
specific operation and accordingly translates and forwards the
request to the appropriate agent of the ServiceAgentSystem in the
form of an ACL message. The result of the request is returned to
ServiceGateWayAgent also as an ACL message and is
communicated to the Mobile Grid Service Interface by means of a
standard web service client that invokes for example a “set”
method.

Figure 3. Interaction between framework components
ServiceAgentSystem: The ServiceAgentSystem is the component
that actually encapsulates the service functionality. It can be a
single agent or a more complex structure composed of several
cooperating agents. The operations that can be performed by the
ServiceAgentSystem may be triggered by ACL request messages
sent by the ServiceGateWayAgent. These messages may indicate
for example a method to invoke along with the corresponding
arguments. Dynamic method invocation can be achieved by
exploiting the Java Reflection API. Furthermore, certain
behaviors and appropriate ontologies need to be developed for
ServiceGateWayAgent and ServiceAgentSystem to interact
efficiently (area for future work).

Figure 3 shows a sequence diagram that demonstrates the abstract
interactions between the components of the framework when an
operation invocation for the mobile grid service occurs.

This sequence diagram corresponds to the case that the invocation
of an operation exposed by the Mobile Grid Service Interface is
conducted in a synchronous way. In case of asynchronous
invocation, the Mobile Grid Service Interface may return an
address for a blackboard service where the result will be posted,
along with an identifier for retrieving the result.

4.3 Overall Architecture
The overall architecture of the proposed system is depicted in
Figure 4. According to OGSA, a grid system is considered to be
composed of a collection of grid services. These services are
provided by grid service containers residing in different hosts that
are connected with each other over a network. Service migration
to remote hosts can be achieved by utilizing the mobility
mechanisms provided by the proposed GriSBAP system. In order
for a service to be able to move to a different service container, an
AgentContainer Service must have been deployed to it, so that
agent migration can be supported.

The interface of the mobile service is deployed only to one service
container and acts as the access point to any external client that
needs to interact with the service functionality. Service
functionality is thus exposed by a standard WSDL interface and is
attached to a standard endpoint for the whole service lifecycle. On
the other hand, the service functionality implementation can be
distributed dynamically to all available service containers with an
AgentContainer Service instance residing in them.

Figure 4. Overall System Architecture
In Figure 4, the Mobile Grid Service Interface is shown to reside
in the service container that the AMS Service is deployed. This is
due to the fact that the interface needs to communicate with the
ServiceGateWayAgent by sending ACL messages. As described
in section 4, communication in the GriSBAP system is handled by
the AMS, thus it is more efficient to deploy the Mobile Grid
Service Interface on the same service container as the AMS
Service in order to minimize communication costs. Similarly, the
ServiceGateWayAgent resides in the AgentContainer Service that
runs on the same service container as the Mobile Grid Service
Interface.

Finally, service discovery for the proposed mobile grid services
can be accomplished by using accepted standard procedures.
Since the front end of the service is actually a standard GT4
stateful web service, protocols such as UDDI [21] and tools like
Globus MDS [22] may be normally used for service discovery and
resource monitoring.

4.4 Use Case
Key issues in the development of efficient grid middleware are
resource monitoring and load balancing. A number of approaches
to these problems have been proposed in the literature [23 - 25]
based on the mobile agent paradigm. The proposed systems
commonly consist of several agents residing on available nodes,
which monitor cpu load or other resources, and certain agents that
schedule tasks appropriately, or encapsulate tasks and move to
available nodes as needed in order to complete their execution. In
the architecture proposed in this paper, such an agent system can
be considered to be the functionality of a resource monitoring and
task-scheduling service and corresponds to the
ServiceAgentSystem described previously. A service interface can
expose operations for job submission and retrieval of resource
monitoring information, so that a user may access the
functionality of the service (for example submit jobs) using
standard web service clients.

5. CONCLUSIONS AND FUTURE WORK
In this paper, an attempt towards integrating mobility into the
OGSA grid environment by exploiting the mobile agent
computing paradigm has been presented. The GriSBAP system,
which is an agent platform conforming to FIPA standardization
and that consists solely of stateful web services has been
introduced. Moreover, several issues concerning mobility
integration to grid services have been discussed. Building on

GriSBAP, a framework architecture that enables the functionality
of a service to move among different grid containers is proposed.
Mobility integration can be accomplished by separating the
implementation of a grid service in three different levels: service
functionality implementation as a mobile agent system, operation
exposure through a standard WSDL interface and interconnection
between these two levels through a gateway agent. A potential use
case scenario describing the whole life cycle of a resource
monitoring and task-scheduling service for grid systems has also
been presented and analyzed, emphasizing the advantages of the
proposed solution.

In future work, the GriSBAP system will be expanded by
implementing more efficient communication mechanisms and by
importing further features of FIPA standardization, especially
interaction protocols that are essential for synthesizing complex
agent behaviors. Furthermore, an API for the creation of mobile
grid services as described in this paper will be developed, and
other ways of mobility integration will also be investigated.

6. ACKNOWLEDGMENTS
The work presented in this paper has been funded by the project
PENED 2003(03ED/226). The project is co financed 75% of
public expenditure through EC – European Social Fund, 25% of
public expenditure through Ministry of Development - General
Secretariat of Research and Technology and through private
sector, under measure 8.3 of operational program
"COMPETITIVENESS" in the 3rd Community Support Program.

7. REFERENCES
[1] I. Foster, C. Kesselman, S. Tuecke. “The Anatomy of the

Grid: Enabling Scalable Virtual Organizations.” International
Journal of Supercomputer Applications, vol. 15, No. 3, 2001,
pp. 200-222.

[2] I. Foster, C. Kesselman, J. Nick and S. Tuecke,”The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration”, Globus Project, 2002

[3] OASIS Web Services Resource Framework (WSRF) TC,
http:// www.oasis-open.org/committees/wsrf/

[4] L. Moreau, “Agents for the Grid: A Comparison with Web
Services (Part I: Transport Layer)”, Cluster Computing and
the Grid, 2002. 2nd IEEE/ACM International Symposium
on, 21-24 May 2002, pp. 220 – 228

[5] Moreau L., Avila-Rosas A., Dialani V., Miles S. and Liu X.,
“Agents for the Grid: A Comparison with Web Services (part
II: Service Discovery)”, In Proceedings of Workshop on
Challenges in Open Agent Systems, Italy, (2002), pp. 52-56.

[6] Zahreddine W., Mahmoud Q.H., “An agent-based approach
to composite mobile Web services”, 19th International
Conference on Advanced Information Networking and
Applications, 2005. AINA 2005, vol. 2, 28-30 March 2005
pp. 189 - 192

[7] Bellavista P., Corradi A., Monti S., “Integrating Web
services and mobile agent systems”, 25th IEEE International
Conference on Distributed Computing Systems Workshops,
2005, 6-10 June 2005, pp. 283 – 290.

[8] M.O. Shafiq, H.F. Ahmad, H. Suguri and A. Ali,
“Autonomous Semantic Grid: Principles of Autonomous

Decentralized Systems for Grid Computing”, IEICE
Transactions on Information and Systems 2005, E88-D(12),
pp. 2640-2650.

[9] Sze-Wing Wong, Kam-Wing Ng, “A middleware framework
for secure mobile grid services”, Sixth IEEE International
Symposium on Cluster Computing and the Grid Workshops,
2006, vol. 2, 16-19 May 2006.

[10] I. Foster, N.R. Jennings, C. Kesselman, “Brain meets Brawn:
why grid and agents need each other”, Third International
Joint Conference on Autonomous Agents and Multiagent
Systems, 2004, pp. 8-15.

[11] Foundation for Intelligent Physical Agents,
http://www.fipa.org/

[12] I. Foster, “Globus Toolkit Version 4: Software for Service-
Oriented Systems”, IFIP International Conference on
Network and Parallel Computing, Springer-Verlag LNCS
3779, 2005, pp. 2-13.

[13] The Globus Alliance, http://www.globus.org/

[14] FIPA Agent Management Specification
http://www.fipa.org/specs/fipa00023/

[15] Simple Object Access Protocol (SOAP),
http:// www.w3.org/TR/soap/

[16] Web Service Definition Language (WSDL),
http:// www.w3.org/TR/wsdl

[17] OASIS Web Services Notification (WSN) TC,
http://www.oasis-open.org/committees/wsn/

[18] A. Fuggetta, G.P. Picco, G. Vigna, “Understanding Code
Mobility”, IEEE Transactions on Software Engineering, vol.
24, no. 5, May 1998, pp. 342-361.

[19] FIPA ACL Message Structure Specification,
http://www.fipa.org/specs/fipa00061/

[20] FIPA ACL Message Representation in XML Specification,
http://www.fipa.org/specs/fipa00061/SC00061G.pdf

[21] OASIS Universal Description, Discovery and Integration
(UDDI) Specifications,
http://www.oasis-open.org/committees/uddi-spec/

[22] Globus Monitoring and Discovery System (MDS),
http://www.globus.org/mds/

[23] S.D. Desic, D. Huljenic, “Agents Based Load Balancing with
Component Distribution Capability”, 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 21-24 May 2002, pp. 354 - 358.

[24] J. Cao, D.P. Spooner, S.A. Jarvis, S. Saini, G.R. Nudd,
“Agent-based grid load balancing using performance-driven
task scheduling”, International Parallel and Distributed
Processing Symposium, 22-26 April 2003.

[25] Li Chunlin and Li Layuan, “Agent framework to support the
computational grid”, Journal of Systems and Software,
Volume 70, Issues 1-2, February 2004, Pages 177-187

