
Nano-kernel: A Dynamically Reconfigurable Kernel for WSN

Susmit Bagchi
ATD/CS Research Laboratory

Samsung India Software Operations
Bagmane Technology Park

Bangalore, India

susmitbagchi@yahoo.co.uk

ABSTRACT
The Wireless Sensor Networks (WSN) have received considerable
research attention in recent time. The sensor devices of a WSN
are severely resource constrained having a very limited
operational lifetime. Such sensor devices have to adapt to the
changing environment at deployment site and need dynamic
reconfiguration. The operating systems supporting the sensor
devices should be capable of realization of dynamic
reconfiguration at kernel level as well as at application layer. This
paper proposes a design framework of nano-kernel, a lightweight
operating system for sensors. The proposed nano-kernel
architecture incorporates dynamic reconfiguration capability by
decoupling the kernel data objects from the policies implemented
in the kernel subsystems. Based on the modular design approach,
an implementation direction is outlined.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design.

General Terms
Design, Theory.

Keywords
Wireless Sensor Networks, Mote, Kernel, Modules, Software
Components, Object Oriented Design.

1. INTRODUCTION
The Wireless Sensor Networks (WSN) have gained a substantial
research attention in recent time [1][2]. The wireless sensor
nodes, sometime referred to as mote or mote-class devices, are the
resource constrained computing devices equipped with a set of
sensors and wireless networking capability, often deployed in-situ
[1]. The sensor nodes sense the environmental phenomena upon
deployment based on integrated hardware platforms composed of
an array of sensors and the wireless networking system having the
backend data services [1]. In general, the majority of the tasks
running on the sensor nodes are interrupt-driven IO intensive in

nature and a few are the CPU intensive tasks needing periodic
wake-up schedule [12]. The mote-class device or sensor hardware
is typically controlled by the embedded operating systems. Based
on the multitasking lightweight operating systems, the WSN
nodes support a set of complex tasks such as, signal processing
and target tracking [1], time synchronization [7][8] and data
compression along with encryption [9]. Designing the embedded
and lightweight operating system for WSN is challenging due to
severe resource constraints of the micro sensor nodes along with
restricted operational lifetime based on battery capacity [1][12].
The desirable features of such embedded operating system for
WSN are reconfiguration capability [10][11][13] and supporting
the dynamic reprogramming of the mote [1]. Reconfiguration
capability of the sensor system indicates that the system software
as well as the applications can change in runtime [1][10]. The
design and development complexity of the kernel having
reconfiguration capability is balanced by the need of adaptability
of the sensor nodes and the WSN system in total to the changing
environment such as, temperature, pressure and humidity etc. and
changing system resources such as, radio bandwidth and battery
power [10][11]. Researchers have proposed to design the
reconfigurable embedded operating system for WSN [11][23] as
well as the general purpose reflective operating system [14]. The
examples of WSN operating systems capable of dynamic loading
the application modules include SOS [21] and Contiki [25]. In
this paper, an architectural framework of a dynamically
reconfigurable operating system kernel for WSN is described. The
design philosophies followed are the decoupling of the kernel data
objects from the policies or algorithms implementing the kernel
subsystems and high modularization of the kernel components by
splitting the kernel address space into lightweight nano-kernel
core and a set of kernel devices. The various kernel devices are
“hooked on” into the nano-kernel core as the dynamically
reconfigurable components having detachable interfaces to the
nano-kernel. These kernel devices implement the policies or the
algorithms and consume the kernel data objects external to them
through import/export interfaces. The properties of the proposed
design architecture are as followings.

� Decoupling the kernel data objects from the implementation of
algorithms or policies of kernel subsystems.

� Persistency of the kernel data objects retaining the previous
states of computation.

� Dynamic change in the policy or algorithm of a subsystem,
which incorporates the dynamic reconfiguration capability of the
kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobilware’08, February 12–15, 2008, Innsbruck, Austria.
Copyright © 2008 ACM 978-1-59593-984-5/08/02…$5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
MOBILWARE 2008, February 13-15, Innsbruck, Austria
Copyright © 2008 ICST 978-1-59593-984-5
DOI 10.4108/ICST.MOBILWARE2008.2500

create-net
Typewritten Text

� The newly loaded kernel devices or kernel subsystems can use
the previous states of the subsystems saved into the persistent
kernel data objects, following the checkpointing philosophy.

The rest of the paper is organized as follows. Section 2 describes
the related work. The architectural framework of nano-kernel is
illustrated in section 3. Section 4 describes the comparative
analysis of the proposed nano-kernel architecture with respect to
the other systems. Section 5 and section 6 describe the
implementation direction and conclusions, respectively.

2. RELATED WORK
Reconfiguration capability of a kernel is an important feature of
the operating system intended to embedded systems and the WSN
[10][11]. Specially, in case of WSN, where the sensor devices are
distributed in-situ, the reconfiguration and adaptation at
application layer as well as at the kernel level are required in
order to accommodate the changes in the environment. One way
to reconfigure the kernel of the operating system for WSN is to
conduct remote reprogramming [1]. It is reported that, the added
complexity in the kernel design due to multithreading along with
preemptive scheduling based on time quanta can be
accommodated in MICA2 mote [1]. An example of multithreaded
operating system for WSN is MANTIS [1]. The MANTIS kernel
manages the available RAM as the heap, however, the
applications running on MANTIS kernel are not encouraged to
allocate dynamic memory from the heap in order to reduce the
computation overhead [1]. An energy-aware and resource-centric
real-time operating system for WSN is Nano-RK [22], which
supports priority-based preemptive multitasking. The
multithreading optimization techniques for WSN operating
systems are illustrated in [24]. In an event-driven kernel design
approach, the TinyOS is designed for sensor networks [3].
TinyOS handles the IO requests as a set of events, where an event
can interrupt a running task [1][3]. TinyOS uses a modularized
static programming language, nesC, which analyzes the code and
handles the concurrency issues within the language and not in the
user space [1][3]. TinyOS eliminates the context switching and a
task runs towards its completion after it is started [3]. Apart from
TinyOS, the other standard sensor network systems include
MetaCricket [4], Location-aware cricket [5] and BTNodes [6]. In
another approach, the THINK component based software
architecture is proposed allowing applications to reconfigure at a
low cost [11]. Based on the software component model, the
THINK architecture encapsulates internal states and offers an
abstraction of the states to the environment [11]. The components
have a set of interfaces and a binding controller, which binds the
components dynamically. THINK core architecture is
implemented in C language, not in Java, in order to reduce
performance degradation [11]. The main limitation of THINK
component model is the increase in main memory footprint. The
concept of protected virtual memory system is incorporated in the
t-kernel design through the load-time instrumentation of the
application code [12]. In t-kernel, the “branch” and “jump”
instructions of the application code are “naturalized” to produce
“natins” [12]. This imposes the memory access boundary
protection on the applications under the control of t-kernel.
However, such load-time instrumentation of the application code
enhances the code dilation and heavy computation overhead.
Hence, the applications tend to slow down considerably [12]. A

general purpose reconfigurable and extensible operating system
kernel, named Kea, is designed based on the concept of micro-
kernel architecture [13][16]. The Kea kernel architecture is
comprised of “domains” and “portals” [13][16]. The inter domain
calls are controlled through IDC [13], which requires the run-time
application stack alteration. The context switching time of Kea
kernel is considerably high involving 70% of the time needed for
IDC [13][16]. Based on the object oriented design philosophy, a
framework for constructing an operating system for mobile
computing environment is proposed [14]. The Apertos framework
is designed based on the object and meta-object separation as well
as maintaining meta-hierarchy among the objects. The limitation
of Apertos kernel is the severe performance degradation and
higher exception handling latency, which is in the order of 76
microseconds [14]. The other extensible operating systems are
exokernel [15], DEIMOS [19] and SPIN [20]. Other than the
extensible and reconfigurable designs of operating system
kernels, researchers have proposed to decouple the data objects
and algorithm implementations in order to introduce flexibility in
software architecture [17][18]. The dynamic reconfiguration of
the software system architecture gets easily realizable by
decoupling the core data objects from the algorithm
implementation.

3. NANO-KERNEL ARCHITECTURE
The set of IO intensive tasks or applications runs on the sensor
devices in WSN has specific characteristics such as, interrupt-
driven periodic or sporadic activation having a short execution
lifetime. However, there can be a few CPU bound tasks such as,
data encryption algorithm, which will be having relatively longer
execution lifetime. As the available RAM at a sensor node is very
limited, the kernel of the operating system should be having a
small footprint. In addition, the kernel design architecture will be
dynamically reconfigurable allowing remote programming. In
view of these operational and environmental characteristics of a
mote-class device or sensor, the nano-kernel architecture is
conceptualized. The proposed kernel architecture is designed
based on decoupling the kernel data objects from the logical
computation part or the algorithms implementing the kernel
subsystems or kernel devices in order to introduce structural
flexibility. Inspired by the design philosophy of dynamic modules
of Linux kernel, the kernel devices of the proposed architecture
are highly modularized by minimizing direct dependency between
two kernel devices. The schematic representation of the proposed
reconfigurable kernel architecture is shown in Figure 1. The entire
kernel address space is logically divided into two parts, nano-
kernel core and the other kernel devices implementing policies.
This means that, the nano-kernel core is a lightweight single
thread of execution and it treats the other components of the
kernel viz. scheduling policy, file system, device drivers and
memory/resource managers as the separately executing devices
within the kernel protection boundary. The kernel devices are
decoupled from the persistent kernel data objects to enable the
kernel subsystems to be dynamically reconfigurable. The
interactions between the nano-kernel core and kernel devices are
through two interfaces involving kernel data objects and the nano-
kernel/device capability interfaces as shown in Figure 1. This
design architecture allows easy replacement of a kernel device or
subsystem dynamically without affecting the other kernel
components. The nano-kernel does not directly control the

peripheral devices of a sensor node. The very low-level device
handling is done by hardware specific device drivers.

3.1 Nano-Kernel Core
The nano-kernel core is composed of the single thread of
execution controlling the data object access, maintaining interrupt
vector table and synchronizing the operations of other kernel
devices. The internal architecture of nano-kernel core is illustrated
in Figure 2. The applications can invoke a set of system calls
(syscalls) to interact with the kernel devices through the nano-
kernel core. The functions of the nano-kernel core can be grouped
into two categories viz. branching to interrupt handlers based on
the sensor interrupts and routing syscalls as well as kernel device
calls crossing the device-domains. When an application invokes a
system call to interact to the kernel device, the nano-kernel core
routs the call to the appropriate kernel device and returns the
result to the application. This enables the nearly straight forward
application-device interaction with minimum abstraction reducing
response time and enhancing portability of applications. In other
case, when a kernel device (KD1) calls a service from another
kernel device (KD2), then the nano-kernel routs the call from
KD1 through the capability interface of KD2. This design
rationale helps in creating the highly modularized kernel
architecture along with data and policy decoupling. The capability
interfaces between the nano-kernel core and kernel devices have
two parts denoting nano-kernel entry points for devices and the
entry points of devices for the nano-kernel core. The capability
interfaces are constructed through dynamic binding following the
module registration design mechanism. The various kernel data
objects are created and maintained by the nano-kernel core. The
objects reside in the object store maintained of the nano-kernel
core and are persistent as long as the system is in the power-on
state. The data objects can be created statically at compile time or
dynamically by the nano-kernel core and are tagged according to
the domain of existence of the data objects. The domain of the
persistent kernel data objects are classified into two subclass types
namely, hardware data object (HWDO) and software data object
(SWDO) as shown in Figure 2. The HWDOs are the objects
attached to any specific sensor hardware of the mote-class device.
The examples of HWDOs are radio_object associated to wireless
radio subsystem and camera_object associated to the camera
sensing subsystem of the sensor device. Accordingly, the
examples of SWDOs are scheduling_object, memory_object and
file_object. The objects of the subclass type HWDOs are
accessible to the device driver modules. The objects of the
subclass type SWDOs are accessible to various kernel subsystems
depending on the object association with the particular subsystem.
For example, the scheduler subsystem of the nano-kernel can
access the scheduling_object of the object store. The
scheduling_object contains all the data variables, scheduling
parameters and the list of process control blocks (PCB) related to
the scheduling activity. Likewise, the memory_object contains the
set of data items related to the memory management system. In
addition to the decoupling of the data objects from the policy
implementations, the access to the individual data objects within
the persistent object store is also domain specific. The kernel
object access control mechanism checks and controls any access
to kernel data objects from the persistent object store by the
kernel devices as shown in Figure 2. This implies that the
scheduler subsystem or scheduling device cannot directly access

the memory_object. The nano-kernel core checks and controls the
import/export of the data objects to/from object store at runtime.

Figure 1. Nano-kernel Architecture Overview.

Figure 2. Internals of Nano-kernel Core.

3.2 Kernel Devices
The kernel devices are synonymous to the kernel subsystems
implementing the computational and functional policies or
algorithms. The nano-kernel core can replace an existing kernel
device with another device dynamically. Hence, for example, to
the nano-kernel core, the scheduler is a scheduling device, which
is a dynamically loadable module. The internal components of a
kernel device are shown in Figure 3. The “Local data” (LD)
member is a set of local data variables/structures used by a kernel
device. The interfaces between the kernel devices and the nano-
kernel core are categorized into two types namely, data object
interface (DOI) and capability interfaces (CI). The data object
interface is used by the kernel devices and the nano-kernel core to
implement export/import of the persistent kernel data objects.
Likewise, the capability interface between the kernel devices and
nano-kernel core is used to invoke services across the domains.
The kernel devices import the domain related data objects from
the object store, upon loading the module within the nano-kernel
core, denoted by “Imported data” (ID) member in Figure 3. The
“Computation logic” (CL) of Figure 3 denotes the algorithm or

Kernel address space

Nano-kernel core

Persistent object store

Object interface Capability interface

Kernel subsystem policies (kernel devices)

Nano-Kernel thread

Nano-kernel core

Persistent object store

SWDOs HWDOs

Object
access
control

Device
capability
registration

Kernel
devices

Scheduler

Memory
manager

Camera
device

Dynamic
binding
interface

policy implemented by the kernel device, which consumes the
imported data objects. The “IO ports” (IOP) member of the kernel
device is optional and indicates the hardware port addresses
controlled or used by the corresponding device. It is possible that
some of the kernel devices do not have IOP, for example the
scheduling subsystem. While loading a kernel device, the nano-
kernel exposes the data object interface and a set of kernel core
capabilities to the device denoting the kernel core entry points
(Kernel entry points). In response, the kernel device registers the
device entry points within the nano-kernel core denoting the
capabilities of the device (Device entry points). Before unloading
a kernel device module, the nano-kernel core sends a STOP
message through the capability interface of the device. In
response the device freezes its current state into the imported data
object and exports the updated data object to the nano-kernel core
through the DOI. On receiving the exported object within the
persistent object store, the nano-kernel core unloads the kernel
device.

Figure 3. Components of Kernel Devices.

Figure 4. Dynamic Reconfiguration Sequences.

3.3 Dynamic Kernel Reconfiguration
The incorporation of dynamic reconfiguration capability of the
nano-kernel for WSNs is supported by two design philosophies.
These are (1) decoupling the data objects from the policies or
algorithms and (2) the highly modularized nano-kernel
architecture consisting call routing reducing the inter-
dependencies of the kernel subsystems. In addition, the fault
tolerance capability of the nano-kernel is enhanced because, due
to reduced inter-dependencies of kernel subsystems, failure of one
kernel device would not stop the whole system from functioning.

Figure 4 illustrates the reconfiguration sequences in the kernel.
Upon receiving the radio message (reconfig) to reconfigure a
kernel device (policy), the nano-kernel core sends a “STOP”
message to the corresponding device through device entry point.
In response, the kernel device gathers the current state of
execution into the imported data object and exports the data
object to the nano-kernel core. Next, the nano-kernel core unloads
the kernel device and loads a new kernel device as a replacement.
Upon loading a new device, the dynamic binding of capability
interfaces is accomplished. In the next step, the kernel device
imports the corresponding kernel data object of matching subclass
type from the nano-kernel core. The nano-kernel core does not
interpret any data present in the kernel data objects; rather, it acts
as the facilitator of the resources.

4. COMPARATIVE ANALYSIS
This section provides the comparative analysis of the proposed
nano-kernel architecture with respect to the other contemporary
systems. The THINK component model [11] follows the
exokernel-like architecture [15]. The nano-kernel does not follow
the exokernel-like architecture and hence, the memory footprint is
not dilated in case of nano-kernel. Unlike the Kea architecture
[13][16], the proposed reconfigurable nano-kernel does not
introduce inter domain calls crossing memory protection
boundary requiring MMU hardware support, which is absent in
the CPU of the majority of sensor nodes, as well as computation
overhead due to the runtime instrumentation of the stacks. The
DEIMOS [19] design model discourages the implementation of
complex policies within any kernel subsystem. Unlike DEIMOS,
the nano-kernel does not restrict any implementation of the
complex policies in dynamically reconfigurable manner as the
kernel subsystems. Unlike the TinyOS [1][3], the proposed nano-
kernel does not rely on any special static programming language
except the general purpose system programming languages such
as C and the assembly language. The SOS [21] and Contiki [25]
advocate dynamic reloading of application modules. However, the
proposed nano-kernel architecture uses the mechanism of
dynamic reloading of kernel modules. In contrast to RETOS [23],
the nano-kernel architecture does not need dynamic relocation of
data section of a module as the data blocks used by the module
are resident in kernel as persistent objects.

5. IMPLEMENTATION DIRECTION
This section provides the implementation roadmap of the
reconfigurable kernel architecture. It is envisioned that following
the design mechanism of dynamically loadable module of Linux
kernel, the proposed nano-kernel architecture can be
implemented. The nano-kernel core is a single thread of execution
started by bootloader of the BSP (Board Support Package) of the
sensor devices. The nano-kernel core builds the interrupt vector
table, loads the interrupt handler modules and installs the handler
entry points. Depending on the configuration of a sensor device,
the persistent object store is created and filled with the data
objects of different subclass types. Next, the kernel devices are
loaded by the nano-kernel core by constructing the data object
interfaces and registering the capability interfaces of the loaded
kernel devices. At this point, the loaded kernel devices may use
the data object interface to import the kernel data objects from the
persistent object store of the nano-kernel core. The data object
interface is consisting of the functions having prototypes such as,

LD ID CL IOP DOI CI

Hardware ports Kernel
entry
points

Device
entry
points

Kernel Core Execution Kernel Device Execution

1. recv_radio_msg (“reconfig”)

2. send_device (“STOP”) -------� 1. store_current_state (Obj)

3. get_kernel_object (device)�--- 2. export (Obj)

4. unload_device (device) ------� 3. release_resources ()

5. load_device (new_device) ---� 4. store_kernel_entries ()

6. store_device_capabilities() �-- 5. register_capabilities ()

7. export (Obj) --------------------� 6. import (Obj)

int import_obj (int subclass, string device_name, object_pointer
*input …) and int export_obj (int subclass, string device_name,
object_pointer *output …), where subclass variable identifies the
subclass type of the object, device_name indicates the name of the
kernel device requesting the object and the object_pointer is the
reference to the object in the persistent data object store. This
means that the copying the object is not needed. The return values
of the functions indicate whether the import/export of the data
objects are successful or failed. The nano-kernel core, on
receiving the calls from data object interface, must check the
device_name and subclass of the object to determine the validity
of the import/export requests. The capability interfaces between
nano-kernel core and kernel devices are consisting of a set of
functions specific to the kernel device domain. For example, the
capability interface of the scheduling device may be consisting of
the following functions, dev_start (…,args,…),
dev_stop(….,args,….), dev_get_next_schedule(…,args,…),
dev_get_highest_priority(…,args,…) etc.

 Unified map

System call

 Inter device call

 User space Kernel core Kernel devices

Figure 5. The Unified Mapping and Call Routing Abstraction.

In order to establish call routing for the syscalls invoked by
applications as well as the inter-device calls, the nano-kernel
creates a unified mapping of the incoming calls to the appropriate
functions of the device interfaces. The unified abstraction of the
system calls interface maps the system calls and device entry
points and may be represented as followings, sys_get_priority
(task_id), sys_get_memory (size) etc. The system calls are
grouped internally by the nano-kernel core according to the
destination kernel devices in order to fast determination of the
destination interface function address. For example,
sys_get_priority (task_id) system call will be grouped to the
mapping of the scheduling device capability interface addresses
and sys_get_memory (size) system call will be grouped to the
mapping of the memory device capability interface addresses. The
single unified mapping architecture helps in easy and fast
implementation and reduces the overheads related to
multilayered-abstractions such as, code dilation and increased
response time. The unified mapping and call routing abstraction is
illustrated in Figure 5. The timer interrupt is handled by the nano-
kernel core. While handling the timer interrupt, the nano-kernel
core checks the scheduling requirement of the system and calls
the scheduling device to receive the reference to the PCB of next
schedulable task. Maintaining the design philosophy, the context
switcher module is isolated from the scheduling device because
the context switcher is hardware specific in nature and can be

viewed as the CPU-driver. If the scheduling device replies that no
task is ready to execute, the nano-kernel puts the system into
sleep mode or power-down mode to save battery power. The
interrupt handling is done by directly branching to the addresses
of the interrupt handler functions and the system call handling is
done by routing the calls to the appropriate capability interface
functions through unified mapping mechanism. The pseudo code
representation of the nano-kernel implementation framework is
illustrated in Figure 6.

Figure 6. The Nano-kernel Implementation Framework.

Application

Scheduling
device

Memory
device

Camera
device

Proc kernel_device (kernel_core_entry *kptr[]) {
obj_pointer *obj; int subclass; string device_name;
dev_entry *ptr[] = {&dev_start(args), &dev_stop(string),..};
internally_store_kernel_core_entry_points (kptr);
kptr →register_dev_entry_points (device_name, ptr);
int x = kptr → import_obj (subclass, device_name, obj);
if (x) initialize_object (obj);
else prepare_to_unload_module ();
}
Proc dev_start (args){ ………..}
Proc dev_stop (“STOP”) { stop_device ();
 save_current_state (obj); release_resources ();
 kptr →export_obj (subclass, device_name, obj);
}

dev_entry_ptrs *dev[];
Proc nano_kernel_core () {
kernel_core_entry *kptr[] = {&import_obj(obj_pointer*),
&export_obj(int,string,obj_pointer*),
®ister_dev_entry_points (string, dev_entry *)};
install_interrupt_handlers_once (&dev_interrupt_handler);
install_timer_interrupt_vector_once (&nano_kernel_core);
load_kernel_devices_once ();
for (all_kernel_devices) {kernel_device (kptr[]); }
while (TRUE) { int x = check_scheduling ();
 if (x) { PCB_ptr p = dev_get_next_schedule (args);
 context_switcher (p); }
 else sleep (time_quanta); }
}
Proc dev_interrupt_handler () {
switch (interrupt_number) { case radio_intr :
 string msg_recv = check_radio_message_buffer ();
 if (msg_recv.RECONFIGURE) {
 dev[msg_recv.device_name].dev_stop(“STOP”);
 check_export_obj_completion();
 unload (msg_recv.device_name); load_new_device ();
 kernel_device (kptr[]);} break;
 case camera_intr : camera_intr_hlr(); break;
 case TRAP : int index =
 unified_mapping (syscall || inter_device_call);
 route_call_to_device (index); break;
 ………… }
 interrupt_return;
}
Proc register_dev_entry_points (string s, dev_entry *p[])
{ dev[device_name] = s; dev[s].ptrs[] = p[]; }

6. CONCLUSIONS
The operating systems intended to WSN should be lightweight
and fast responding to an external sensor input. This paper
proposes a dynamically reconfigurable and lightweight operating
system kernel architecture called nano-kernel. The proposed
nano-kernel design architecture is consisting of a nano-kernel
core and dynamically reconfigurable kernel subsystems. The
design philosophies are to decouple the kernel data objects from
the implementations of algorithms or policies and to create the
highly modularized kernel architecture. All the subsystems of
nano-kernel are designed as kernel devices implementing device
specific policies or algorithms. The nano-kernel core is a single
thread of execution, which dynamically binds the kernel devices
through the capability interfaces. The system calls and inter-
device calls are routed through a unified mapping abstraction. The
kernel devices are two types: a hardware specific module, such as
camera driver or a software module, such as scheduler subsystem.
Kernel data objects are persistent, imported/exported by kernel
devices and retain the last states of computation allowing
incorporation of checkpointing feature of the nano-kernel core.

7. REFERENCES
[1] Bhatti S. et al., MANTIS OS: An Embedded Multithreaded

Operating System for Wireless Micro-sensor Platforms,
ACM Kluwer Mobile Networks & Applications (MONET)
Journal, August, 2005.

[2] Akyildiz I. F. et al., A Survey on Sensor Networks, IEEE
Communications Magazine, August, 2002.

[3] Hill J. et al., System Architecture Directions for Networked
Sensors, In Proc. of 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), November, 2000.

[4] Martin F., Mikhak B., Silverman B., MetaCricket: A
Designer’s Kit for Making Computational Devices, IBM
System Journal, Vol. 39, No. 3 & 4, 2000.

[5] Priyantha N. B. et al., The Cricket Location-Support System,
In Proc. of 6th Annual ACM International Conference on
Mobile Computing and Networking, August, 2000.

[6] Leopold M., Dydensborg M. B., Bonnet P., Bluetooth and
Sensor Networks: A Reality Check, 1st ACM Conference on
Sensor Systems, LA, November, 2003.

[7] Elson J., Girod L., Estrin D., Fine-Grained Network Time
Synchronization using Reference Broadcasts, In the Proc. of
OSDI-2002, Boston, December, 2002.

[8] Dai H., Han R., TSync: A Lightweight Bidirectional Time
Synchronization Service for Wireless Sensor Networks, ACM
SIGMOBILE Mobile Computing and Communications
Review, Vol. 8, No. 1, January, 2004.

[9] Zhao J., Govindan R., Estrin D., Computing Aggregates for
Monitoring Wireless Sensor Networks, In the Proc. of 1st
IEEE International Workshop on Sensor Network Protocols
and Applications, Anchorage, May, 2003.

[10] Raatikainen K. E. E., Operating System Issues in Future
End-User Systems, PIMRC, 2005.

[11] Senart A., Charra O., Stefani J. B., Developing Dynamically
Reconfigurable Operating System Kernels with the THINK

Component Architecture, In Proc. of the Workshop on
Engineering Context-aware Object Oriented Systems and
Environments, OOPSLA, 2002.

[12] Gu L., Stankovic J. A., t-kernel: Providing Reliable OS
Support to Wireless Sensor Networks, In the Proc. of 4th
International Conference on Embedded Networked Sensor
Systems, Colorado, 2006.

[13] Veitch A. C., A Dynamically Reconfigurable and Extensible
Operating System, PhD Thesis, Deptt. Of Computer Science,
The University of British Columbia, July, 1998.

[14] Yokote Y., The Apertos Reflective Operating System: The
Concept and its Implementation, In the Proc. of Conference
on Object Oriented Programming Systems, Languages and
Applications, Vancouver, 1992.

[15] Engler D. et al., The Operating System Kernel as a Secure
Programmable Machine, In the Proc. of ACM SIGOPS
European Workshop, 1994.

[16] Veitch A. C., Hutchinson N. C., Kea- A Dynamically
Extensible and Configurable Operating System Kernel, In
the Proc. of 3rd International Conference on Configurable
Distributed Systems, IEEE CS, Washington DC. 1996.

[17] Nguyen D., Wong S. B., Patterns for Decoupling Data
Structures and Algorithms, In the Proc. of 30th SIGCSE
Technical Symposium on Computer Science Education,
ACM Press, New Orleans, 1999.

[18] Cattaneo M. et al., GAUDI – The Software Architecture and
Framework for Building LHCb Data Processing
Applications, In the Proc. of International Conf. on
Computing in High Energy and Nuclear Physics, 2000.

[19] Clarke M., Coulson G., An Architecture for Dynamically
Extensible Operating Systems, In the Proc. of 4th
International Conference on Configurable Distributed
Systems, Annapolis, May, 1998.

[20] Bershad B. N. et al., Extensibility, Safety and Performance in
the SPIN Operating System, In the Proc. of 15th ACM
Symposium on Operating Systems Principles, 1995.

[21] Han C.C. et al., A Dynamic Operating System for Sensor
Nodes, In the Proc. of the 3rd International Conference on
Mobile Systems, Applications and Services, USA, 2005.

[22] Eswaran A. et al., Nano-RK: an Energy-aware Resource-
centric RTOS for Sensor Networks, The 26th IEEE
International Real-Time Systems Symposium (RTSS), IEEE
CS, USA, 2005.

[23] Cha H. et al., RETOS: Resilient, Expandable and Threaded
Operating System for Wireless Sensor Networks,
International Conference on Information Processing in
Sensor Networks (IPSN), ACM Press, USA, 2007.

[24] Kim H., Cha H., Multithreading Optimization Techniques for
Sensor Network Operating Systems, The 4th European
Conference on Wireless Sensor Networks (EWSN), Springer
LNCS 4373, Netherlands, 2007.

[25] Dunkels A. et al., Contiki – a Lightweight and Flexible
Operating System for Tiny Networked Sensors, In the Proc.
of 1st IEEE Workshop on Embedded Networked Sensors
(Emnets-I), USA, 2004.

