
Monitoring Smartphones for Anomaly Detection

Aubrey-Derrick Schmidt
DAI-Labor

Technische Universität Berlin
aubrey.schmidt@dai-

labor.de

Frank Peters
DAI-Labor

Technische Universität Berlin
frank.peters@dai-

labor.de

Florian Lamour
DAI-Labor

Technische Universität Berlin
florian.lamour@dai-

labor.de

Sahin Albayrak
DAI-Labor

Technische Universität Berlin
sahin.albayrak@dai-

labor.de

ABSTRACT

In this paper we demonstrate how to monitor a smartphone
running Symbian OS in order to extract features that de-
scribe the state of the device and can be used for anomaly
detection. These features are sent to a remote server, be-
cause running a complex intrusion detection system (IDS)
on this kind of mobile device still is not feasible, due to
capability and hardware limitations. We give examples on
how to compute some of the features and introduce the top
ten applications used by mobile phone users basing on a
study in 2005. The usage of these applications is recorded
and visualized and for a first comparison, data results of the
monitoring of a simple malware are given.

Keywords

Monitoring, Smartphone, Anomaly Detection, Mobile De-
vice

1. INTRODUCTION
Mobile phones get more and more popular. Since August

2006, more mobile phones than inhabitants are registered in
Germany [3]. As the capabilities of these devices increase,
they are not simple voice centric handsets anymore; rather
they provide mobile computing power that can be used for
several purposes. Especially smartphones represent a possi-
bility of moving appropriate applications from the PC to mo-
bile devices, as they mostly provide large bandwidth wireless
network access, office tools and the possibility of installing
third party programs. But with the increase of capabilities,
more and more malicious software (malware) targeting these
devices emerge. We believe that the evolution of malware for
mobile devices will take a similar direction as the evolution
of PC malware. This will lead to the same problems, like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mobilware’08 February 12-15, 2008, Innsbruck, Austria.
Copyright 2008 ACM 978-1-59593-984-5/08/02 ...$5.00.

missing signatures for unknown threats and new appearing
malware at high frequency.

This paper introduces an approach how to monitor smart-
phones in order to extract values that can be used for re-
mote anomaly detection. Anomaly detection does not need
signatures in order to work, which allows the detection of
new and unknown malware. Therefore, it has to be learned
what is the normal behavior of a user and device in order to
be able to distinguish between normal and abnormal, pos-
sibly malicious actions. The extracted features are sent as
vector to a remote system, taking the responsibility for ex-
tended security measures away from the probably unaware
user. These vectors can be used for methods from the field of
artificial intelligence, like Artificial Immune Systems (AIS)
[5] or Self-Organizing Maps (SOM) [2], in order to detect
abnormal behavior.

In Section 2 we explain what a smartphone actually is and
where it can be used. In Section 3 we show how to build a
monitoring client running on a smartphone and give explicit
examples on values that can be extracted from Symbian OS
devices. In order to be able to learn, what is normally done
on smartphones, we map actions excerpted from a study
on mobile phone usage to different use cases and specify
testing scenarios on them. Examples of these, together with
the corresponding monitoring results, are given in Section 4.
Finally in Section 5, we conclude the paper and point out the
future work. Note that a list of further features measurable
on Symbian OS is given in the Appendix.

2. SMARTPHONES
In this paper we use the expression smartphone1 in order

to describe a mobile device that mostly unifies functionalities
of a cellular phone, a PDA, an audio player, a digital camera
and camcorder, a GPS2 receiver and a PC.

Smartphones often use PC-like QWERTY keyboards in
order to increase typing speed and sometimes PDA-like pen
displays for improved data and command handling. Mecha-
nisms were developed that additionally improve text input,
like T9, which means“Text on 9 keys”and represents predic-
tive text technology. Smartphones use different techniques
for creating wireless connections for communication purpose:

1In the sense of this work, we will use the expressions smart-
phone, mobile phone and mobile device equivalently.
2Global Positioning System

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2492

• GSM3 represents the second generation (2G) of mobile
end-to-end communication, mainly used for voice calls
and services like SMS4

• GPRS5 in combination with 2G is often described as
2.5G, as it provides voice and packet data

• W-CDMA6 was designed as replacement of GSM and
is used in the FOMA7 system (JP) and UMTS8, being
able to transport data at higher speed than GSM.

Additionally, the devices provide Bluetooth, Wireless LAN
(WLAN) or IrDA9 support for shorter range wireless con-
nectivity. Using one of these connections, a user is able to
make phone calls, use an internet browser, play multi-player
games or read emails.

Furthermore, the smartphone can be seen as the first plat-
form for pervasive computing [1], where interesting areas of
application were pointed out by Roussos et al. [12]:

• Mobile Phones as information service endpoint, e.g.
applied as navigational assistance or location based
services.

• Mobile Phones as remote controllers for different de-
vices, like television or HiFi station.

• Mobile Phones as pervasive network hubs to provide
wide area connectivity, e.g. for wearable systems that
need to communicate in order to transmit health re-
lated data.

• Mobile Phones as ID tokens in order to store informa-
tion used to verify the user and information.

Smartphones can be applied to these fields, not only, but
partly because they have standardized operating systems
installed. Following Canalys [4], there are three main com-
petitors in this field: Symbian OS from Symbian Ltd. [14],
Windows Mobile from Microsoft [10], and Research In Mo-
tion (RIM) with the Blackberry devices, with 78.7%, 16.9%,
and 3.5% market share on the smart mobile device market,
respectively. These operating systems enable the installa-
tion of third party applications, which allows customization
of the device according to the software needs of the user.
But this customization brings the danger of being infected
by malware along. According to Peter Gostev from Kasper-
sky Lab. [6], from June 2004 to August 2006, 31 new families
of malware for mobile devices with 170 variants were recog-
nized, where Caribe was the first worm to hit the mobile
community (Symbian OS).

Jamaluddin et al. described in [8] how easy it is to write a
Trojan horse capable of sending SMS messages to premium
services. The usage of this malware is visualized in Subsec-
tion 4.5.

3Global System for Mobile Communications
4Short Message Service
5General Packet Radio Service
6Wideband Code Division Multiple Access
7Freedom of Mobile Multimedia Access
8Universal Mobile Telecommunications System
9Infrared Data Association

3. THE MONITORING CLIENT
Intrusion detection can be separated into two fields:

signature-based misuse detection and anomaly detection. As
the devices are monitored for anomaly detection, it is im-
portant to monitor device data that enables differentiation
between normality and anomalies. In [13] Eugene Spaf-
ford et al. point out that host-based approaches, direct
data collection techniques and internal sensors are prefer-
able to network-based approaches, indirect data collection
techniques and external sensors. This was taken into ac-
count when designing our monitoring client.

3.1 The Client Design
We propose three main components for the monitoring

client: User Interface, Communication Module and Feature
Extractor.

The User Interface enables command entering, like
changing server or port. It can be used to visualize the
state of the monitoring client, e.g. sending or buffering, or
even to indicate anomaly detection results.

The Communication Module is responsible for manag-
ing connection states and sending or buffering the feature
vectors, which is shown on Figure 1. If the client cannot
connect due to signal loss, it starts buffering until a con-
nection can be established. If a connection is not possible
before the buffer is filled, it adds the last extracted vector
and removes the first.

Device_Connection

Idle

timer tick

Acquire data

data ready[buffer<threshold]

Connect

stored

data ready[buffer>=threshold]

connected[buffer>0]

Store to buffer

connection failed

data sent

connected[buffer=0]

data sent

Send buffer

Send current data

Figure 1: The possible connection states of the mon-
itoring client

The Feature Extractor has several different components
gathering and computing features. Features describe the
state of the monitored device. They represent various mea-
surements and observations of resources and other hard- and
software components. If no direct interfaces are provided by
the operating system, features are extracted by using al-
gorithms or methods, which provide approximated results.
This is done with care, as additional encumbering of the al-
ready limited device possibly distort the monitoring results.

3.2 The Symbian Client
The monitoring client was developed in Symbian C++ ver-
sion S60 3rd with Nokia Carbide.vs and consists of the three
proposed components. The User Interface can be used to
change server port and address, to start, stop or move the

Figure 2: The Nokia E61 smartphone running the
monitoring client.

client into the background. Further user information can be
inserted in order to control access to the remote server. For
reasons of program stability and to prevent interference, the
GUI is running in a thread separate from the other compo-
nents. Further work may even remove the user interface to a
separate application, since there is no need to tie up GUI re-
sources for an application running in the background. The
Communication Module uses SOAP10 Webservices on top
of TCP/IP in order to communicate with the server. As
we found out, sending data — or even just remaining in
ready-to-send mode — is rather expensive in terms of bat-
tery power. To prevent the rapid depletion of the power
source, first, all data is stored locally and sent in bulk after
reaching a certain threshold level. The Feature Extractor
is triggered to fetch new monitored data every thirty sec-
onds11, which is stored locally and later, upon reaching the
threshold, sent to the server using the appropriate service.

3.3 The Symbian Features

Table 1: An Excerpt of the Extracted Features
Name Compl. Description

RAM FREE simple Indicates the amount
of free RAM in Kbyte

USER INACTIV-
ITY

simple Indicates, if the user
was active in the last
ten seconds

PROCESS
COUNT

medium Indicates the amount
of running processes

CPU USAGE complex Represents the CPU
Usage in percent

SMS SENT
COUNT

complex Represents the
amount of SMS
messages in the sent
directory

Symbian OS12 provides some programming interfaces for
extracting features, e.g. fetching the amount of free RAM
or the user inactivity time are one-line commands. But
not all areas are covered, especially reading network traffic
packets cannot be done by average programmers, as the ap-
plication programming interfaces are restricted. Some other
features need complex method constructs in order to be
extracted. We distinguish between three different method
complexities: simple, medium and complex. Features that
can be called through Symbian C++ interfaces taking only

10formerly: Simple Object Access Protocol
11due to hardware limitations
12tested on Version 9.1 S60 3rd

one or few lines of code are categorized as simple. Features
that need several classes or algorithms to be computed
are marked as complex. Everything in between is marked
as medium. Some of the features can be used to identify
and manage observed users or devices. In the following,
we describe how to compute some of the features shown
on Table 1 with pseudo code. Some of these will be used
to visualize user activity in Section 4.4 and Section 4.5.
In order to present, how Symbian C++ programming looks
like, we will show the real call for getting the available RAM:

RAM FREE is a feature that can be easily extracted. All
applications need more or less RAM in order to work, so
every running program/malware should have impact on this
value.

User::LeaveIfError(HAL::Get(
HALData::EMemoryRAMFree, iFreeRamSize));

USER INACTIVITY indicates if a button was pressed
within the last 10 seconds. If so, a “0” is returned else a “1”.
This feature uses a function that returns the absolute user
inactivity time in seconds. This value is very interesting for
giving hints on activities that are not directly caused by the
user and happen automatically and/or periodically in the
background.

Table 2: Pseudo Code for Indicating User Activity

GET UserInactivityTime

IF UserInactivityTime ≥ 10 seconds
RETURN User is inactive

ELSE
RETURN User is active

The PROCESS COUNT can be easily computed through
a while loop that is checking the existence of processes. Each
started application should increase the process count at least
by one, and so should malware.

Table 3: Pseudo Code for Getting the Process Count
(and Further Information)

WHILE there are more processes
INCREASE counter
FETCH process information from process object
STORE process information

RETURN the counter

The CPU USAGE cannot be read through a given Sym-
bian OS interface. While searching for an approximation,
we found a method described by Marcus Gröber [7] that
manually checks, whether the CPU is busy or not. This
is done by requesting a timer event with low priority 100
times a second. Another request with high priority checks
every second how often the low priority request was actually
called. The answer can be used to approximate the usage
of the CPU, as the more the CPU is busy the less the low

priority request will be called. The following code fragment
shows the main calls and functions of this method.

Table 4: Pseudo Code for Approximating the CPU
Usage

CREATE new requesting Active Object with low priority
CREATE new checking Active Object with high priority

SEND low priority time request to CPU 100 times/second
CHECK the number of accepted requests every second

Return approximated CPU usage every second

SMS SENT COUNT like every feature relating to mes-
saging (SMS, MMS, and email) needs some more complex
functions to be computed. But once implemented, most of
the similar features can be extracted using the same classes.
Together with USER INACTIVITY this feature can help to
indicate malware sending cost causing messages.

Table 5: Pseudo Code for Getting the Amount of
Sent SMS Messages

CREATE messaging session
CONNECT messaging session to sent folder

SELECT SMS sent folder
RETURN amount of SMS messages

3.4 Securing the Monitoring Client
As the communi- No. Application Usage

1. SMS 83%
2. Games 61%

3. Camera 49%15

4. MMS Picture 46%
5. PDA Functions 36%
6. Internet 31%

7. WAP 30%16

8. Bluetooth 28%
9. Email 27%
10. Video Camera 27%

Table 6: TNS GTI 2005 Top
Ten Applications/Services

cation or even the
monitoring client it-
self can be targeted
by malware, it is im-
portant to secure the
functionality of the
client.

Using encryption
for the communica-
tion channel should
be a proper way to
secure communica-
tions. Securing the
application is more
complicated. The
Symbian OS API provides a method for setting processes to
different critical levels. On highest level, if the monitoring
client process is killed, the device reboots and restarts
the process. This functionality was not added yet, as it
obviously could lead to denial of service attacks on the
device, but at least it would guarantee either that the
monitoring agent is running or that the user brings the
device to a specialist. Another possibility is checking the
running applications, that are clearly identifiable through
a unique ID, and as soon as an unknown application is
started, this could be compared with an application white
list, that includes all allowed programs. If an unknown

program was started, the system could kill it or alert the
user and system.

4. EXPERIMENTS
As our goal is to provide data that enables differentiation

between normal and malicious device usage, we need to know
first, what actually is normal. TNS Technology released
a booklet [15] sourced from the TNS Technology’s Global
Technology Insight (GTI) 2005, where typical user actions
on mobile phones are described. We excerpted actions that
we performed on a Nokia E61 smartphone [11] in order to
monitor normality. The corresponding software behaviors,
visualized as data results, can be found in the Section 4.4.

4.1 TNS GTI 2005 Study
The GTI 2005 bases on data coming from 6807 people aged
16 to 49, in 15 different countries. These respondents used
a mobile phone (6517 persons), PDA or laptop and accessed
the internet at least once a week. The study partly focused
on the adaption of technology applications on mobile devices
[15], which we used to excerpt the top ten actions, that were
introduced in that work. These top ten actions base on the
percentage of mobile phone users, who use the corresponding
application and can be seen on Table 6.

4.2 Testing Specification
In order to perform the actions, we had to specify testing

scenarios where we had to distinguish between different use
cases, for example a smartphone user can send and receive
a SMS message of various size with various recipients. We
identified about 40 use cases and specified a testing protocol
for each. An example protocol is given on Table 7.

Table 7: The Testing Specification for Multi-player
Game - Miniblaster

Preconditions:
• Miniblaster is installed on two devices
• Bluetooth is disabled
• settings in Miniblaster:

• music/sound enabled
• Two minutes of non-device-usage before testing

Testing:
1. Launch Miniblaster on both devices
2. Start hosting on one device
3. Join game on second device
4. Play two rounds
5. Host exits game with left selection key
6. Second device confirms note and exits
7. Two minutes of non-device-usage

Expected Results:
• Fall of FREE RAM
• Raise of CPU USAGE
• Bluetooth gets enabled
• Data transfer

4.3 Technical Set Up

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

SMS SENT COUNT

PROCESS COUNT

CPU USAGE

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

BLUETOOTH STATUS

PROCESS COUNT

CPU USAGE

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

MMS SENT COUNT

PROCESS COUNT

CPU USAGE

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th FREE RAM

USER INACTIVITY

PROCESS COUNT

CPU USAGE

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

CONNECTION COUNT

HD FREE

PROCESS COUNT

CPU USAGE

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

USER INACTIVE

BT STATUS

PROCESS COUNT

CPU USAGE

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

MAIL SMTP SENT COUNT

PROCESS COUNT

CPU USAGE

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

CONNECTION COUNT

HD FREE

PROCESS COUNT

CPU USAGE

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th FREE RAM

USER INACTIVITY

PROCESS COUNT

CPU USAGE

Figure 3: Actions monitored on a Nokia E61: u.l. sending SMS messages, u.c. simple/3D/multiplayer gaming,
u.r. sending MMS messages, c.l. PDA function reading .PDF file, c.c. internet browsing, c.r. Bluetooth data
transfer, b.l. sending email, b.c. mp3 download, b.l. PDA function creating new calendar entry

We used the Nokia E61 smartphone for testing, which is
running Symbian OS 9.1 and has a QWERTY keyboard.
It supports most of the conventional techniques and pro-
tocols used in current smartphones, for example WCDMA
and WLAN. A 64Mbyte storage card is plugged, which al-
lows storage of various files, like videos, which then can be
viewed on the 320 × 240 pixel display [11]. The installed
Symbian-C++ monitoring client was triggered for sending a
feature vector every 20 seconds to our test server with pub-
lic IP-address and attached database. This is done using a
Webservice via UMTS-connection. The feature vector, that
was sent, has a size of less than 8 Kbyte and contains about
50 features.

4.4 Results
On the Figure 3 you can see the usage of most of the top

ten applications: Figure 3 shows on the upper left the usage
of the Short Message Service. It is separated into four parts:
sending empty message, writing and sending a 150-character
message, writing and sending a 300-character message and
writing and sending a 150-character message with multiple
recipients. The upper center shows the usage of three differ-
ent kinds of games: a simple game called Miniblaster, a more

complex game named Sky Force Reloaded and Miniblaster
in multi player Bluetooth mode. The upper right visual-
izes sending an empty MMS message, writing and sending
a 150-character MMS message and writing and sending a
MMS message with attached picture. The center left repre-
sents the usage of PDA functionalities; in detail it is reading
a .PDF file. Browsing the internet can be seen on center
graph, where different links were clicked and a picture was
downloaded. The center right refers to sending an image to
a paired Bluetooth device. The bottom left displays sending
of various emails. On the bottom center graph, we used the
internet to download an 8 Mbyte MP3 file, which was played
afterwards. Finally, the bottom right graph represents the
making of a new entry into the calendar.

What we can see, although the number of vectors varies
on the different figures, is that each application affects the
corresponding features in a different way, for example gam-
ing produces much more CPU utilization than creating and
sending MMS messages. This encourages the attempt to
apply anomaly detection to the field of malware detection.

4.5 Malware Data
As we mentioned before, we use the malware proposed by

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector Count

N
o

rm
a

liz
e

d
 L

e
n

g
th

FREE RAM

SMS SENT COUNT

PROCESS COUNT

CPU USAGE

Figure 4: Malware activity on a Nokia E61

Jamaluddin et al. [8] in order to monitor example malicious
behavior. If activated, this malware sends a SMS message
every time the key “2” is pressed. In Figure 4, every time
the SMS SENT COUNT increases, an increase of processes
and CPU busyness and a decrease of available RAM can be
observed. At vector count 96 we determined, that a Nokia
E61 device only can hold 100 SMS messages, which lead to
the deletion of these.

5. CONCLUSION AND FUTURE WORK
In this paper we demonstrated how a smartphone can be

monitored in order to transmit feature vectors to a remote
server. The gathered data is intended to be used for anomaly
detection methods that analyze the data for distinguishing
between normal and abnormal behavior. Abnormal behavior
can indicate malicious software activity. Furthermore, even
unknown malware can be detected, since no signatures are
used. In our results we saw, that most of the top ten applica-
tions preferred by mobile phone users affect the monitored
features in different ways. This strengthens the approach
of using anomaly detection in order to detect malware on
mobile devices.

Gathering more data from different kinds of smartphones
that are running different operating systems, like MS Win-
dows Mobile or Palm OS, will be one of the tasks that we will
focus in future. Furthermore, additional malware is needed
for increasing the quality of our data sets. If these sets are
big enough, we will start to test methods from various fields
from computer science, like AI and information retrieval, in
order to attempt to detect the malicious activities. A first
step towards this can be seen in [9] from our colleague Katja
Luther et al., where a biological inspired immune system
analysis feature-based network data.

Acknowledgments

This work was funded by Deutsche Telekom Laboratories.

6. REFERENCES
[1] Gregory D. Abowd, Liviu Iftode, and Helena Mitchel.

The Smart Phone: A First Platform for Pervasive
Computing. IEEE Pervasive Computing, pages 18–19,
2005. April-June.

[2] Sahin Albayrak, Christian Scheel, Dragan Milosevic,
and Achim Müller. Combining Self-Organizing Map

Algorithms for Robust and Scalable Intrusion
Detection. In M. Mohammadian, editor, Proceedings
of International Conference on Computational
Intelligence for Modelling Control and Automation
(CIMCA 2005), pages 123–130. IEEE Computer
Society, 2005.

[3] Bundesverband Informationswirtschaft
Telekommunikation und neue Medien e.V.- BITKOM.
Mehr Handys als Einwohner in Deutschland.
http://www.bitkom.de/41015_40990.aspx (15.
August 2007), 2006.

[4] Canalys. EMEA Q3 2006 - Highlights from the
Canalys Research.
http://www.canalys.com/pr/2006/r2006102.htm (15.
August 2007), 2006.

[5] Stephanie Forrest, Alan S. Perelson, Lawrence Allen,
and Rajesh Cherukuri. Self-nonself Discrimination in a
Computer. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 202–212.
IEEE Computer Society Press, 1994.

[6] Alexander Gostev. Mobile Malware Evolution: An
Overview, Part 1. http://www.viruslist.com/en/
analysis?pubid=200119916 (15. August 2007),
September 2006.

[7] Marcus Gröber. Applications for Symbian.
http://www.mgroeber.de/epoc.htm (15. August
2007).

[8] Jazilah Jamaluddin, Nikoletta Zotou, Reuben
Edwards, and Paul Coulton. Mobile Phone
Vulnerabilities: A New Generation of Malware. In
Proceedings of the 2004 IEEE International
Symposium on Consumer Electronics, pages 199–202,
September 2004.

[9] Katja Luther, Rainer Bye, Tansu Alpcan, Sahin
Albayrak, and Achim Müller. A Cooperative AIS
Framework for Intrusion Detection. In Proceedings of
the IEEE International Conference on
Communications (ICC 2007), 2007.

[10] Microsoft Corporation. Windows Mobile.
http://www.microsoft.com/germany/

windowsmobile/default.mspx (15. August 2007),
2007.

[11] Nokia. Nokia E61.
http://www.nokia.co.uk/A4221036 (15. August
2007), 2007.

[12] George Roussos, Andy J. March, and Stavroula
Maglavera. Enabling Pervasive Computing with Smart
Phones. IEEE Pervasive Computing, pages 20–27,
2005. April-June.

[13] Eugene Spafford and Diego Zamboni. Data Collection
Mechanisms for Intrusion Detection Systems. CERIAS
Technical Report 2000-08, CERIAS, Purdue
University, 1315 Recitation Building, West Lafayette,
IN, June 2000.

[14] Symbian Software Limited. Symbian OS - the mobile
operating system. http://www.symbian.com
(15. August 2007), 2007.

[15] TNS Technology. Consumer Trends in Mobile
Applications - A TNS Technology Briefing for
Technology Decision Makers.
http://www.tns-global.com/ (15. May 2007), 2005.

