
Semantic Middleware for Context Services Composition in
Ubiquitous Computing

Abdelghani Chibani
Citypassenger France

14 avenue du Quebec, KI1, 91945,
Courtaboeuf, Villebon France

achibani@citypassenger.com

Karim Djouani
LISSI Lab. Paris XII University

120-122 rue Paul Armangot 94400 -
VITRY SUR SEINE, France

djouani@univ-paris12.fr

Yacine Amirat
Yacine Amirat

LISSI Lab. Paris XII University
120-122 rue Paul Armangot 94400 -

VITRY SUR SEINE, France

amirat@univ-paris12.fr

ABSTRACT
In this paper, we describe a semantic middleware which aims to
provide ubiquitous computing applications with high level
contextual knowledge. The proposed middleware architecture is
designed around service agent entities, offering transparent and
reusable services for context semantic discovery, capture and
aggregation. Aggregation of contextual knowledge is modeled
using services composition mechanism along with dynamic
discovery of available service agents enabled through hierarchical
and distributed context directories organization. We introduce also
a new ontological model to describe contextual knowledge and
services interfaces. The proposed middleware is applied to the
design of travel organization service scenario, based on the
composition of some ad hoc context services.

Categories and Subject Descriptors
D.2.11 [Software Architectures] Middleware, services

D.I.2.11 [Distributed Artificial Intelligence] Multi-agent
systems, ubiquitous computing

I.2.9 [Artificial Intelligence] Ontologies, Semantic web

Keywords
Ubiquitous computing, Service Agent, Middleware, Context
Awareness, Semantic Web Ontology, Semantic Matching.

1. INTRODUCTION
With the rapid growth of IT and networking technologies,
ubiquitous computing (ubicomp) environments are becoming
increasingly complex systems. Theses environments are
characterized by multiple smart cooperating entities. To execute
their tasks, theses entities require an autonomic and cooperative
organization. Our work target aims at building context aware,
intelligent and autonomous service agents that have the capability

to follow mobile person in their journey, adapt its behavior to user
context, and providing them necessary services. These context
aware services take their full signification in several applications
like task execution assistance for mobile people, ambient
intelligence spaces, leisure and gaming communities, etc.

Context Awareness involves acquisition and reasoning about
contextual information and acting according to context changes.
We retain an interesting definition of context given by A. K. Dey:
“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and application themselves” [3].
Several research projects proposed semantic middleware
approaches based on central context server entities eg; E-Wallet
[4], SOCAM [5] and CoBrA [6]. Theses entities, which are based
on ontological model of context, are dedicated to process context
raw data, to store and provide these data in the form of high level
and semantic contextual knowledge. Unfortunately, some of these
projects do not take into account the semantic description and the
dynamic availability of context sources. For example, in SOCAM
a simple service discovery mechanism is proposed to create
dynamic links between applications and context provider
components.

To support a seamless, transparent access and processing of
context knowledge in ubicomp environment we need to design a
middleware layer mainly consisting of intelligent context service
agents. These service agents should be semantically and
automatically interoperable with heterogeneous services, devices,
sensors and actuators of the environment rather than statically
preprogrammed functionalities or drivers.

In this paper, we propose a semantic middleware for context
aware computing. We used an agent-based architecture to provide
in a flexible manner automatic mechanisms for discovery and
composition of services. To ensure a semantic interoperability of
the objects composing the ubiquitous space, this Framework is
based on ontological knowledge model by using semantic Web
ontology language OWL. The article is organized in the following
way: section 2 describes context service agent architecture.
Section 3 presents in detail the proposed context modeling
approach. It presents also how context aggregation and personal
service agents fulfils context services discovery and composition.
Section 4 describes a validation scenario of a travel organization
service for nomadic people.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

create-net
Typewritten Text

create-net
Typewritten Text

create-net
Typewritten Text

ziglio
Typewritten Text
requires prior specific permission and/or a fee.MOBILWARE 2008, February 13-15, Innsbruck, AustriaCopyright © 2008 ICST 978-1-59593-984-5DOI 10.4108/ICST.MOBILWARE2008.2486



2. SERVICE AGENT ARCHITECTURE
A service agent exhibits two main capabilities (autonomy and
cooperation). A service agent provides autonomic services, which
does not depend on an external controller. For example, accepting
or refusing a service request from another agent if any of the
privacy constraints is not matched or carrying out actions without
needing any external stimulus. The other example could be
advertising services in a given services directory, or sending
notifications to another agent about context changes. Moreover,
when the service agent cooperates, it is necessary to share with
other agents an understandable semantic description of its
identity, its capabilities, contextual knowledge, interaction
protocol, execution parameters, security, privacy, service quality
and cost.

Service
Advertising
Manager

Interactions and security Manager

Knowledge
Base

Service Behaviour

Services
Directory

Service Agent

Service Agent
Service
Advertising
Manager

Interactions and security Manager

Knowledge
Base

Knowledge
Base

Service Behaviour

Services
Directory

Service Agent

Service Agent

Figure 1. Context aware service agent architecture

A service agent is characterized mainly by the following
behavioral architecture, (see Figure 1):

 Service Advertising Manager: It maintains the up-to-date
semantic description of agent service. It allows the agent to
publish its service description or remove it from service
directories.

 Service Behavior Manager: It encapsulates the functional
behavior (or the execution logic) of the service agent. We
consider two types of functional behaviors. A reactive
behavior is dedicated to agent’s requests processing. We
consider only requests for context access and requests for
actuators control. Context capture agents and actuator agent
implement this behavior, through specific drivers and API.
The second type is a cognitive behavior which particularly
concerns personal agents and aggregation agents. This
behavior is a composition of existent reactive behavior
which makes it possible for the agent to discover and
invocate available services agents necessary to its tasks
execution. The service behavior module consists also of a
knowledge base, which allows reasoning and decision on
context.

 Interactions and Security Manager: It is in charge of
processing the messages received from other agents. These
messages can be of three types: context information queries
(queries requiring an immediate answer), subscription to
contextual notifications, request to execute an action with
an actuator or agent life cycle signaling messages.

2.1 Context service agent
A context service agent can be a simple agent acquiring
contextual raw data from a given sensor. We call them in this case
context capture agents (context sensor agent). Each capture agent
is associated with a single context source type, while other context
service agent can have a role of incorporating knowledge resulting
from the fusion of various context sources, to provide contextual

knowledge of higher level of abstraction. We call them in this
case aggregation agents. Context knowledge security and privacy
are handled inside each context service agent behavior through
preconfigured inference rules. On top of context service agent
infrastructure we find personal service agents. Theses agents are
dedicated to fulfill tasks related to a specific application domain.
The behavior of Personal agent is governed by a feedback loop:
perception of the context, reasoning and acting to respond to
context changes, through actuator service agents, example sending
an alarm, switching light on/off, moving a robot wild sending an
email, etc.). The services directory agents are used to provide the
service agents with services discovery and advertising capabilities.
Ontology server is proposed to manage ontology sharing and
access to reasoning engines. Gateway agents enable service agents
to interact with heterogeneous systems using protocols like web
services.

2.2 Context aggregation service behavior
Context capture agents are dedicated to capture context from raw
data sensors while context aggregation agent are dedicated to
fusion of contextual knowledge collected form various context
service agents. Aggregation agents differ from context capture
agents in their complete independence to context resources.
Consequently, when any context provider becomes unavailable, it
is possible for the aggregation agent to substitute the unavailable
service with other similar service, without canceling or
suspending its execution. In our architecture, context aggregation
agent exhibits two independent sub behaviors. The first sub
behavior concerns contextual knowledge capture and processing,
and the second sub behavior concerns the delivery of contextual
knowledge to other agents.

In the first sub-behavior, the agent sends an advertisement to its
associated directory agent in order to register its semantic
description. Simultaneously, agent sends a discovery request to
the directory agent to get appropriate context service agents. If
discovery fails, the agent switches to active standby state until it
finds available context sources. When the agent gets a selection of
available context providers, it sends invocation request to acquire
contextual knowledge. Invocation request is implemented
according to the context access protocol provided by the
middleware.

Parallel to context capture and processing behavior, the
aggregation agent executes a second sub behavior to manage
interrogation and subscription requests coming from other agents.
This sub behavior is initiated just after a successful registration of
the agent service description. It consists of a time delay for
messages. Message content could be one of the following: (i)
subscription to periodic notifications, (ii) interrogations with
immediate answers, (iii) or messages of signalization. For each
received message, the context agent starts by checking requestor
access rights according to its own service policy. If the requester
policy rights match with agent policy and required knowledge is
available in its internal database, agent responds with the
appropriate notification according to request parameters. Requests
parameters and agent description are provided by our context
awareness model.

Agent’s context access requests processing, completed in the same
manner by the sensor and aggregation agents, can be detailed
according to two service invocation modes (subscription to
notifications, interrogation requests). In the subscription to



notifications mode, request parameters, and the requestor agent
identifier, are registered in context service agent subscribers list.
The request parameter contains notification conditions (time or
context value threshold or preconditions). Context service agent
checks continuously for each subscriber if its request parameters
match to the actual context before sending the required contextual
knowledge notification. Conversely, in the interrogation mode,
the context service agent checks the availability of the contextual
knowledge required in its internal data base then sends to the
requestor agent the appropriate answer.

When all context service agents related to aggregation agent are
out of service, the aggregation agent switches to standby state
until the providers become available again. When standby period
is expired, the aggregation agent can consider that computing
environment had a major breakdown and decides to end its
service execution by sending an unsubscribe-me message to its
directory agent.

3. CONTEXT MODELLING
In the state of the art we can find different modeling approaches
[2]. These models present context as a set of attributes (data) that
could be captured from different disseminated sensors using, for
example, key value representation or semantic knowledge
representation through RDF predicates or ontologies. For us, an
efficient context modeling technique should exhibit characteristics
like flexibility, extensibility, expressiveness, and reasoning which
are very necessary to enable context awareness. These
characteristics will make the system able to identify, to describe
and to share any complex contextual information with a
homogeneous representation.

1. Table of context modeling approaches in the state of the art

Table 1 provides a summary of the required characteristics of
context modeling approach and their pertinence for our
architecture. Extensibility and expressiveness are important in the
way that they make it possible to enrich the description and the
representation of any new context information during run time
without review of the representation model. For example, a person
activity which is described by title, start and end time, location
name, could be extended to integrate full description of location,
participants profiles and activity type. According to the other
modeling in approaches, denoted in table 1, ontologies are so far
interesting because they provide an extensible and expressive
model associated to reasoning capabilities. Ontologies provide
also with high capability to take into account new contextual
attributes during system life cycle. In our work, we intend to
enable semantic interoperability of context service agents. For that
purpose, we propose an OWL ontology called UCOUS (User
Context Ontology for Ubiquitous Services), which can be
distinguished from the existing ontologies by its capability to
provide in the same representation both contextual knowledge
description and context services providing access to these

knowledge. In this way, we can get a homogeneous model based
on common classes that allows describing in the same manner
contextual knowledge and access services. Compared to LARKS
Frame model (for Agents capabilities description) and OWL-S
ontology (for semantic web services description), our model
offers more expressiveness in the description of context service
agent’s capabilities. The contextual knowledge discovery and
access is carried out in seamless manner through semantic
matching of desired context services with context services being
published in the environment.

3.1 Context services description
Figures 3 and 4 illustrate part of UCOUS context services
Ontology main classes. This ontology is considered as a semantic
meta layer on top contextual knowledge, which allows context
agents to advertise semantic description of the contextual
knowledge they provide, in a format understandable by any
service agent of the ubicomp environment. Service agents which
are continuously seeking for contextual knowledge will use this
published descriptions to identify and to select the best context
provider and how to interact with it.

Figure 2. Context services ontology OWL classes and
properties

Context services ontology core classes are “ContextService” and
“Context Agent”, (see Figure 3). These two classes are related by
an owl object property (denoted by “provides” in line #01#)
which means context agent provides a context service.
ContextService class is described using five owl object properties
(hasInput, hasOutput, hasType, hasDeliveryMode and hasPrivacy)
which refer to the following ontology owl classes:
“ContextParameter”, “InteractionMode”, and “PrivacyRule”.
ContextParameter class defines either input our output knowledge
of the context service, eg; line #08# “hasOuput” denotes an object
property defining an output Context Parameter, while Context
Information type is modeled by a Data Type property, which
refers to classes being inserted in the context knowledge ontology.

Interaction mode is modeled by owl class, denoted in line #06# of
Figure 4. In this class, we took into account two types of
interaction modes, closely related to context sources update
frequency. The first type is notifications mode, denoted, in Figure
4, by Notifications owl class in line #05#, which refers to
knowledge requiring a high frequency of notification, e.g.;
temperature, location of a mobile robot or a user, weather, user
activity, etc. We distinguish two sub types of notifications: (i)
periodic notification, denoted by Periodic Class (Line #08# of
Figure 4), which is carried out at regular time intervals and (ii)
notification on change of state, which is carried out according to
two cases. The first case, every time when a context change occurs
(when the context provider captures a new context parameter
value). The second case concerns a precondition, expressing if the

ContextService ContextParameter

actsOnBehalf

Context
Agent

hasValue

provides

User

hasOuput

InteractionMode PrivacyRule

hasPrivacyHasDeliveryMode

ContextInformation

hasInput

Activity

context

preference

OWL:CLASS

OWL:PROPERTY

OWL: SUB- PROPERTY

hasType

Travel Location

TravelLocationOWL:SUBCLASS

loactedAt

ContextService ContextParameter

actsOnBehalf

Context
Agent

hasValue

provides

UserUser

hasOuput

InteractionModeInteractionMode PrivacyRulePrivacyRule

hasPrivacyHasDeliveryMode

ContextInformationContextInformation

hasInput

Activity

context

preference

OWL:CLASS

OWL:PROPERTY

OWL: SUB- PROPERTY

hasType

Travel Location

TravelLocationOWL:SUBCLASS

loactedAt



value of a context parameter reached a given threshold. The
second type denoted QueryAnswer by is related to knowledge
requiring low level notifications frequency, e.g. user profile,
preferences, user contacts, user location description, user devices,
etc.

Figure 3. Partial OWL/RDF representation of context services
ontology

Figure 4. Partial OWL/RDF representation of context services
interaction modes

3.2 Context knowledge description
In our model, contextual knowledge is captured or inferred from
several heterogeneous sensors, using different data structures, can
be associated to inference rules language. This ontology makes it
possible for context aware services to derive user situation in a
specific time. In our Ontology, Contextual Knowledge, (denoted

in Figure 2 by Context Parameter and Context Information
classes) is modeled using three extensible concepts;
ContextInformation, User, Time, represented in OWL/RDF, (see
Figure 5). These concepts are sufficient to describe any user’s
contextual attribute semantics. In fact, these interrelated concepts
offer three levels of user context abstraction:

 Relational level: It consists of set of predicates
describing relations between user, structure of any
concept characterizing user’s context, time stamp of
context capture or inference, and time validity of the
capture or inferred contextual knowledge.

 Structural level: it provides extensible and complete
class taxonomy, providing semantic description of
context concept properties.

 User preferences level: It consists of predicates
describing; what is the preferred (or desired) user’s
context.

Figure 5. Partial OWL/RDF representation of contextual
knowledge ontology

These three levels of description are represented in figure 5
using the following classes:

 Time: This class describes any timestamp based
information, which enables temporal reasoning related
to context information. In order to re-use the maximum
of classes existing in OWL standard ontologies, Time
class is modelled, in line #08#, by InstantThing; a class
imported from OWL-Time Ontology [14].

 ContextInformation: This class makes it possible to
describe any contextual attribute properties. It is
modeled in our ontology by three object properties:
createdAt and trueAt properties (denoted by
<OWL:ObjectProperty> tag in lines #03# and #04#),

01<owl:ObjectProperty rdf:ID="provides">

02<rdfs:range rdf:resource="#ContextService"/>

03<rdfs:domain rdf:resource="#ContextAgent"/>

04</owl:ObjectProperty>

05<owl:Class rdf:ID="ContextService">

06 <rdfs:subClassOf rdf:resource="../owl#Thing"/>

07</owl:Class>

08<owl:ObjectProperty rdf:ID="hasOuput">

09<rdfs:domain rdf:resource="#ContextService"/>

10<rdfs:range rdf:resource="#ContextParameter"/>

11</owl:ObjectProperty>

12<owl:Class rdf:ID="ContextParameter"/>

13<owl:DatatypeProperty rdf:ID="hasContextType">

14<rdfs:domain rdf:resource="#ContextParameter"/>

15<rdf:type rdf:resource=" owl#FunctionalProperty"/>

16</owl:DatatypeProperty>

17<owl:DatatypeProperty rdf:ID="hasPrivacy">

18<rdfs:domain rdf:resource="#ContextService"/>

19<rdf:type rdf:resource=" owl#PrivacyRule"/>

20</owl:DatatypeProperty>

01<owl:ObjectProperty rdf:ID=" hasDeliveryMode ">

02<rdfs:domain rdf:resource="#ContextService"/>

03<rdfs:range rdf:resource="#ContextProvisionMode "/>

04</owl:ObjectProperty>

05<owl:Class rdf:about="#Notifications">

06<rdfs:subClassOf rdf:resource="#InteractionMode"/>

07</owl:Class>

08<owl:Class rdf:ID="Perdiodic">

09<rdfs:subClassOf>

10<owl:Class rdf:about="#Notifications"/>

11</rdfs:subClassOf>

12</owl:Class>

13<owl:ObjectProperty rdf:ID="onChangeContextParameter">

14<rdfs:range rdf:resource="#ContextParameter"/>

15<rdfs:domain rdf:resource="#Perdiodic"/>

16</owl:ObjectProperty>

17<owl:Class rdf:about="#QueryAnswer">

18<rdfs:subClassOf rdf:resource="#InteractionMode"/>

19</owl:Class>

01<owl:Class rdf:ID="User"/>

02<owl:Class rdf:ID="ContextInformation"/>

03<owl:ObjectProperty rdf:ID="createdAt">
04<rdfs:domain
rdf:resource="ContextInformation"/>
05 <rdfs:range rdf:resource=" /damltime/
time-entry.owlInstantThing"/>
06</owl:ObjectProperty>
07<owl:ObjectProperty rdf:ID="trueAt">
08<rdfs:range rdf:resource=" /damltime/time-
entry.owl#InstantThing"/>
09<rdfs:domain
rdf:resource="ContextInformation"/>
10</owl:ObjectProperty>
11<owl:ObjectProperty rdf:ID="contextOf">
12<rdfs:domain
rdf:resource="ContextInformation"/>
13</owl:ObjectProperty>
14<owl:ObjectProperty rdf:ID="context">
15<rdfs:range
rdf:resource="ContextInformation"/>
16<rdfs:domain rdf:resource="User"/>
17</owl:ObjectProperty>
18<owl:ObjectProperty rdf:ID="preference">
19<rdfs:range
rdf:resource="ContextInformation"/>
20<rdfs:domain rdf:resource="User"/>
21</owl:ObjectProperty>



which value range (denoted by <rdfs:range> tag) refers
to IntantThing class instances (denoted by #08#), while
contextOf object property (denoted by line #11#) refers
to User class Instances in the ontology.

 User: This class describes a system’s user. User is
defined in our ontology by two object properties:
Context and Preference (denoted by
<OWL:ObjectProperty> tag in lines #14# and #18#),
which value range (denoted by <rdfs:range> tag) refers
to ContextInformation class and subclasses instances.
At this level of description we describe only the
relationship between user and context while we avoided
defining the relationship between system’s user concept
and physical person concept in order to leave user as an
abstraction of any entity that could use system services
for example a software agent, or a mobile robot.

3.3 Context services composition schema
In our Framework context aggregation (or fusion) diagram is
represented by an acyclic directed graph. This graph makes it
possible to model aggregation with arcs representing inference
rules used to aggregate contextual facts. The arcs can be
differentiated by their priority. While the starting nodes which
corresponds to captured (or factual) contextual knowledge,
(inference rule premises), the arrival and intermediate nodes
correspond to the aggregated contextual knowledge (inference
rule results).

Concretely, this directed acyclic graph corresponds to contextual
service composition schema. In figure 6, we show an example of
how to derive next user travel (C7 node) by aggregating current
GPS location (C2 node) or address, activities schedules from her
agenda (C1 node). C1 and C2 are differentiated using the level of
priority where dashed arc has low level priority. At the
initialization of agent context capture behavior, this last load the
composition schema and translate it into services discovery
requests to be sent to the associated directory agent. Each request
contains a semantic description of required contextual knowledge
which could satisfy an aggregation rule. Directory agent processes
each request by executing a semantic matching operation between
the request description and services description registered in its
directory. The result of this operation is a selection of agent
service identifiers available and their respective descriptions.

Figure 6. initial aggregation graph

At the reception of the response from agent directory, the
aggregation agent updates its diagram of aggregation by adding to
each node respectively it associated service identifier and
description. For each starting node without corresponding service,
the aggregation agent removes its corresponding arc (Figure 7).
Automatically, after a successful services discovery, the agent
starts to request service corresponding to each aggregation node

of the diagram. For each node the agent of aggregation identifies
service domain and request mode of the targeted service.

Once, the aggregation agent sends invocation request
(subscription or interrogation) to the corresponding, it switches its
state to wait for notification and/or answer. If the targeted service
belongs to a private domain, the aggregation agent encloses to its
request privacy policy (access rights).

Once an answer or notification is received, its content is added to
the internal data base of the aggregation agent and supplied to the
inference engine in order to derive new contextual knowledge and
check its coherency to the overall model.

Figure 7. Updated composition schema after successful agent
services discovery

Due to dynamic nature of ubicomp services, the capture tasks can
fail at any time. For example, it is possible that one or more
agents of context of the diagram of composition become out of
service. Consequently, the aggregation agent reacts to these fault
by carrying out a rediscovery request in order to update its
composition schema (Figure 8).

Figure 8. Composition schema modification after
service failure

All failing or non authorized agent services are respectively
marked as out of service or removed from the composition schema
to avoid their rediscovery next time if directory agent is not up-to-
date. Discovery loop could be restricted to avoid that aggregation
agent indefinitely sends discovery requests.

3.4 Semantic discovery of context services.
OWL ontologies integrates Description Logics (DL) reasoning
capabilities, which are useful for context processing and
interpretation [10] [11]. An important reasoning capability in our
work is semantic matching of ontologies [12]. It allows an agent
to identify relevant classes from sets of example instances
according to the class description (matching template). This
function is useful to implement a semantic discovery of context
services. When an agent needs a specific contextual knowledge, it
sends a service discovery request to the closest directory agent
available in the computing environment. This request includes a
description of the required contextual knowledge in the form of a
service description according to our contextual services ontology.
Directory service agent, which is connected to OWL based
reasoning engine, will process then the discovery request by
executing a semantic matching between registered services
description in its internal directory data base and the received
request description. Compared to LARKS or DAML-S
Matchmaker [12] [13], our discovery mechanism combines both
contextual knowledge and services ontologies to process an

C3 : S1, S2 C2 : S3
C2

C6 : S4

Services
discovery

C3 : S1, S2 C2 : S3
C2

C6 : S4

Services
discovery

Service
S3 fails

C3 : S1, S2
C2

C6 : S4

C2 : S3

Service
S3 fails

C3 : S1, S2
C2

C6 : S4

C2 : S3

Inferred Context

C3

C4

C2

C5

C7

C1

Inference Premise:
Requested context

Intermediate
Inference result

C1 OR C2 => C4
C1 => C6
C3 => C5
C4 AND C6 AND C5 => C7

direct acyclic graph of context services composition

Context
aggregation
rules

High priority

Low priority

Inferred Context

C3

C4

C2

C5

C7

C1

Inference Premise:
Requested context

Intermediate
Inference result

C1 OR C2 => C4
C1 => C6
C3 => C5
C4 AND C6 AND C5 => C7

direct acyclic graph of context services composition

Context
aggregation
rules

High priority

Low priority

C6



efficient matching among contextual services agents by using
more than one service directory. Our ontologies are used here to
extend the structure of services directory being held by a directory
service agent. The later offers two types of services: services
description inside the directory and semantic matching with agent
requests.

4. SCENARIO
The scenario we studied concerns the implementation of personal
agent dedicated to assist sales people when traveling by
automatically discharging them from travel organization tasks.
This agent which is integrated in the Citypassenger services
platform, will use contextual knowledge to automate travel
planning and booking. This agent makes it possible to offer the
users two services. The first service consists of seeking and
proposing best flights offers corresponding to user travel and
activity planning. The second service consists of booking flights
automatically selected. The execution of the behavior of the
Travel Organizer agent requires the availability of the following
context services infrastructure: time, diary, localization, current
activity, next location, profile of the user and travel planning. The
travel organizer interacts with user through his PDA web browser
GUI interface. This interface makes it possible to associate the
activities scheduled in the user agenda with contextual
notifications corresponding to its localization and its travel
planning as well as the flight offers. For each travel, a link “to
consult” is displayed automatically in the PDA agenda to notify
user about flights corresponding to his/her next travel. The user
can then select a flight and launch booking process. The booking
form is filed by the Travel Agent from contextual knowledge
except for payment order which must be validated at the end by
the user. The various tests with the users show that travel
organizer personal service takes into account user context
changes, and carries out context aware actions which are flight
booking and user notification by a GUI interface, without
requiring any focus from user. Compared to booking service
portal like Opodo™ , which at least requires more then ten
interactions and a complete focus of the user during more then 15
minutes, to search and book a flight for his next travel, our
scenario requires only two interactions without any focus by the
user, Figure 9.

Figure 9. Semi automatic flight reservation after travel
context change event.

5. CONCLUSION
In this paper, we have presented a service agent approach for
context services composition in ubicomp environments. This
approach is based on the use of ontologies to model context
services description and discovery. Aggregation of contextual

knowledge is modeled as a composition service schema through
using direct acyclic graphs while dynamic discovery of services is
used to check the availability of service during run time. We have
used the proposed architecture in the implementation of a context
aware travel organizer personal service. Various tests, in
particular consistency check, have shown the efficiency of the
proposed approach. The ongoing work concerns the integration of
the middleware on top of OSGI a standard service platform for
residential environments .

6. REFERENCES
[1] Baldauf, M., Dustdar, S. Rosenberg, F., “A Survey on

Context-Aware Systems”. International Journal of Ad Hoc
and Ubiquitous Computing, 2(4): 263 – 277, 2007.

[2] Strang, T., Linnhoff-Popien, C. “A Context Modeling
Survey. In Proceedings of Workshop on Advanced Context
Modelling, Reasoning and Management, 2004.

[3] Dey, A. K. “Providing Architectural Support for Building
Context-Aware Applications”, PhD thesis, Dec. 2000

[4] Gandon, F., Sadeh, N., Semantic Web Technologies to
Reconcile Privacy and Context Awareness. Web Semantics
Journal, 1 (3): 241-260, 2004 .

[5] Wang, X.H., Zhang, D.Q., Gu,T., Pung, H.K., OWL encoded
context ontology (CONON), Ontology Based Context
Modeling and Reasoning using OWL, Second IEEE
Conference on Pervasive Computing and Communications.

[6] CoBrA: Context Broker Architecture, an intelligent broker
for context aware smart spaces, http://cobra.umbc.edu/

[7] Román, M., Hess, C.K., Cerqueira et al : A Middleware
Infrastructure to Enable Active Spaces. IEEE Pervasive
Computing, 1(4): 74-83, October-December 2002.

[8] Rey G., Coutaz, J., The Contextor Infrastructure for Context-
Aware Computing Component-oriented Approaches to
Context-aware Computing ECOOP’04, Oslo, 14 june 2004

[9] Chibani, A., Semantic web oriented agent’s middleware for
context aware ubicomp applications. Phd Thesis, University
of Paris 12, 2006

[10] Dean, M., Schreiber, G., OWL Web Ontology Language
Reference, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/owl-ref/

[11] Horrocks, I., Patel-Schneider,P.F., Boley, H., Tabet,S.,
Grosof,B., Dean, M., SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, W3C Member
Submission 21 May 2004,

[12] Paolucci, M., Kawamura, T., Payne T., and Sycara K..
Semantic Matching of Web Services Capabilities.
Proceedings of ISWC Conference, June 2002.

[13] Sycara K., Lu J., Klusch, M., and Widoff, S., Matchmaking
Among Heterogeneous Agents on the Internet., Proceedings
AAAI Spring Symposium on Intelligent Agents in
Cyberspace, Stanford, USA, 1999.

[14] OWL-Time Ontology, http://www.isi.edu/~pan/damltime

New Travel
Schedule Notification at

13:54

User commit
reservation

Flight reserved
successfully by agent at

14:20

New Travel
Schedule Notification at

13:54

User commit
reservation

Flight reserved
successfully by agent at

14:20




