
A Middleware Approach to Dynamically Configurable
Automotive Embedded Systems

Richard Anthony1

44 (0)20 8331 8482
R.J.Anthony@gre.ac.uk

Paul Ward1

44 (0)20 8331 8588
P.A.Ward@gre.ac.uk

DeJiu Chen2

46-(0)8-790 6428
chen@md.kth.se

Achim Rettberg3

49 441 9722-247
Achim.Rettberg@iess.org

James Hawthorne1

44 (0)20 8331 8588
J.Hawthorne@gre.ac.uk

Mariusz Pelc1

44 (0)20 8331 8588
M.Pelc@gre.ac.uk

Martin Törngren2

46-(0)8-790 6307
martin@md.kth.se

ABSTRACT
This paper presents an advanced dynamically configurable
middleware for automotive embedded systems. The layered
architecture of the middleware, and the way in which core
and optional services provide transparency and flexible
platform independent support for portability, is described.
The design of the middleware is positioned with respect to
the way it overcomes the specific technical, environmental,
performance and safety challenges of the automotive
domain. The use of policies to achieve flexible run-time
configuration is explained with reference to the core policy
technology which has been extended and adapted
specifically for this project. The component model is
described, focussing on how the configuration logic is
distributed throughout the middleware and application
components, by inserting ‘decision points’ wherever
deferred logic or run-time context-sensitive configuration is
required. Included in this discussion are the way in which
context information is automatically provided to policies to
inform context-aware behaviour; the dynamic wrapper
mechanism which isolates policies, provides transparency to
software developers and silently handles run-time errors
arising during dynamic configuration operations.

Keywords
Automotive embedded systems, dynamic configuration,
policy-based computing.

1. INTRODUCTION
Modern automotive control systems operate in complex
environments in which many software and hardware

components interact to provide a wide range of
functionalities, and in which a diverse array of potential
problems and inefficiencies can arise. The embedded nature
of the systems brings additional problems such as restricted
computational resources and updating behaviour is difficult.
However, future use-scenarios imply frequent configuration
changes to update versions, support field upgrades, and
allow owner customisation for example for infotainment
preference settings, fleet-specific configuration and driver
profiles that can be taken from vehicle to vehicle. To meet
these challenges, the traditional fixed behaviour systems
must give way to more flexible dynamic systems. The trend
is the same for many other types of embedded systems, [1].
The next generation of control systems need to have several
potentially conflicting qualities which include high
performance in real-time, high robustness, efficiency,
extensibility and support for flexible, simple and fast
(re)configuration.
The Dynamically Self-Configuring Automotive Systems
project (DySCAS) is developing a middleware (MW) that
meets the above mentioned challenges. The key
motivational themes driving the design are: flexibility - to
permit timely upgrades and reconfiguration at low cost;
reliability - to ensure safety and predictability, and to
support self-diagnosis and repair where possible; and
transparency - so that application developers and end users
are provided with appropriately abstract interfaces to the
underlying control system and are thus relieved of the
complexity burden. 1 2 3

To achieve the desired qualities, the DySCAS MW
comprises a number of software components each of which
can embed dynamically replaceable logic at pre-defined
‘Decision Points’ (DPs). The MW has been designed such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 The University of Greenwich, Greenwich, London, UK.
2 Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden.
3 Carl von Ossietzky Universität Oldenburg, Offis e.V., Escherweg 2,

26121 Oldenburg, Germany.
Conference name: ISVCS 2008, July 22 - 24, 2008, Dublin, Ireland.
Copyright 2008 ICST 978-963-9799-27-1

that the application software sees a single system image and
is not directly aware of physical hardware resources such as
Electronic Control Units (ECUs) and sensors. This enables
the MW to perform reconfiguration ‘silently’, for example
to achieve load balancing for performance optimisation, or
task relocation to overcome an ECU failure. A high-level
policy grammar permits behaviour within each DP to be
specified very flexibly, and to be changed when required
without redeploying code. An innovative ‘Dynamic
Wrapper’ (DW) mechanism enables the dynamic
configuration behaviour to automatically collapse down to
pre-defined static behaviour on a per-DP basis should any
run-time problems arise which would affect the correctness
of the dynamic adaptation.

2. Automotive challenges and DySCAS
Embedded electronic systems have been widely employed
in modern automotive vehicles. By means of computer
software and hardware, automotive embedded systems offer
unique opportunities for advanced functionalities, high
performance, and flexibilities in system development and
maintenance. Today vehicles in series production already
contain the same amount of electronics as aircraft did two
decades ago. It is predicted that the share of automotive
embedded systems in respect to a vehicle’s total value will
reach 40% by 2015, bringing in innovations and new
features in driver assistance, fuel efficiency, vehicle
integration and traffic safety [2]. The increased use of
embedded electronic systems in vehicles, however, also
implies growth and change in product and development
complexity. For many advanced applications, there are
emerging needs on the integration of distributed data and
functionalities and the incorporation of behaviours with
different criticalities and types (e.g., time- and event-
triggered tasks), further characterized by real-time, resource
and dependability constraints. In system development, such
product complexity is augmented by the involvement of
multiple stakeholders and organisations, heterogeneous
technologies and components, and lifecycle concerns in
regards to maintenance, upgrade, variability and reuse. To
cope with the technical and managerial challenges, new
technologies, tools, and methodologies are necessary [3].
Current automotive embedded electronic systems adopt a
static configuration scheme, in which the environment
assumptions, system functionalities and behaviours,
component compositions and resource deployment are
defined during the development process and kept stable
over the complete lifetime. This is, however, insufficient for
many future scenarios of automotive vehicles.
Technological improvements have lead to more powerful,
yet cheaper and smaller ECUs and a greater variety of
sensor types; facilitating new and exciting use cases. User-
expectations and competition between manufacturers have
led to an increased importance being attached to the ability
to support automatic dynamic configuration to achieve fault

tolerance, optimised performance and user customisation.
Like embedded systems in other domains (e.g., avionics and
med-tech), automotive embedded systems are safety critical
because of their effects on the vehicle, the environment and
humans. Meanwhile, automotive embedded systems also
constitute consumer products and are thus sensitive to
usability, cost-efficiency, and reliability. For example, it is
expected that future automotive vehicles will provide the
ability of building ad-hoc networks between vehicles and
with external mobile devices to share information and
functionality. The ability of allowing cost efficient and
reliable field-upgrades of software is also considered
important for vehicle customization, personalization, and
incorporation of technology innovations. For the reasons of
dependability, time-to-market and lifecycle efficiency,
future scenarios of automotive embedded systems also call
for enhanced QoS (quality of service) support. This will
permit post-development time optimization according to the
actual resource utilizations and operation conditions. The
support for load-balancing, on-line V&V, and error-
handling also makes it possible to reduce the number of
ECUs, wiring, and power consumption and to potentially
migrate part of the costly development-time testing effort to
run-time.
DySCAS aims to advance the basic technologies and
introduces context-aware and self-managing behaviours into
automotive embedded electronic systems [4]. Targeting the
above mentioned future scenarios, the DySCAS approach
explicitly addresses the automotive needs in regards to
configuration flexibility, quality assurance, and complexity
control in particular in the infotainment and telematics
domains. DySCAS develops and proposes a MW system
that allows automotive embedded systems to dynamically
reconfigure themselves according to the environmental
conditions, application states and resource deployment, to
cope with unexpected events, emerging use cases and
optimization needs, and external devices not known at the
deployment time. To promote industrial acceptance, the
DySCAS approach explicitly addresses a number of
challenges facing automotive products, including the MW
overheads and predictability, the provision and management
of design and operation information at run-time, the
synchronisation of distributed behaviours, and the concerns
of usability, security, and robustness. These are discussed in
the remainder of this section.
Many automotive applications have real-time requirements,
ranging over closed loop periodic controllers to multimedia
and communication functions. The systems are often highly
resource constrained because of the large series being
produced. To introduce MW solutions in automotive
embedded systems, the performance overheads in time and
in resource utilization (e.g., bus, CPU, and memory) need to
be properly handled. While overheads are unavoidable
because of the MW mechanisms, the DySCAS approach
aims to keep the MW overhead as small as possible while

making the behaviours predictable. To this end, the choice
of algorithms, the instantiation, mapping, and allocation of
MW services, as well as the planning and controlling of the
MW tasks, are all of importance. For the dynamic
operations, predictability will be achieved through
mechanisms that negotiate and reserve necessary resources
in advance and provide synchronisation with application
conditions. One particular concern is the choice of target
platforms. The DySCAS project does not restrict the MW
solutions but stipulates a strategy by explicitly specifying
the assumptions and dependencies of the MW services on
the system software and hardware platforms. The
AUTOSAR RTE is here used as a reference [5]
complemented by some typical MW configuration and
instantiation alternatives, allowing the engineers to further
optimize the needed capacity in engineering practices.
One challenge related to the QoS and dynamic
configuration is dealing with the complexity of embedded
systems and the existence of multiple quality concerns.
Instead of a single optimization need, there can be multiple
and sometimes conflicting adaptation goals and behaviours,
varying according to the vehicle states and service modes.
Moreover, depending on the functional interdependencies
of application programs and the sharing of system resources
and devices in a system, a change on the system
configuration or component behaviour can affect the overall
functionality and performance negatively. To avoid
unexpected impacts on system dependability, the decisions
also need to take the vehicle state, such as in terms of
vehicle speed and direction into consideration. For example,
it is controversial to allow software download and update
when the car is moving at 100km/h. The DySCAS approach
aims to provide necessary run-time support for enabling a
systematic and efficient implementation of QoS and
dynamic configuration behaviours in automotive systems.
The core is a set of MW services that facilitates the
sampling of system configuration and operation states, the
computation for QoS and dynamic configuration decisions,
and the actuations of such decisions.
For a networked system, it is important that the decisions
are made based on a consistent global view and actuated in
a synchronized way. This in turn necessitates the MW
support for consolidating distributed information in regards
to vehicle conditions, application states, operation events,
and resource availability, as well as the support for
disseminating the consolidation results. Another important
aspect underlying the embedded decisions is the
incorporation of offline design decisions, specifying the set-
points of QoS control, the variability of functional and
operational dependencies, and the design and technology
constraints on reconfiguration and software upgrade. The
assumption in DySCAS is that the system developers will
derive such information based on the system architecture
specification. The MW provides support for tracking and
maintaining such information at system runtime (e.g., as

component meta-data). To validate the MW support and
promote dynamic configuration in automotive systems, the
DySCAS project is currently investigating algorithms for
resolving the architectural dependencies and change impacts
at system run-time.
The move from static system to dynamic configurations is a
large step for the automotive industry. The introduction of
adaptive aspects of configuration and behaviours, and the
ability to defer part of the configuration decisions and V&V
efforts beyond the point of systems deployment, call for
enhanced support for error detection, error handling, and
error repair. The intended support is related to the control
and coordination of related operations such as: monitoring
the system execution, planning for rollback and producing
checkpoints, transferring and recovering component states,
re-flashing a node and controlling the execution states of
application software and devices.

3. Background and related work

3.1 Middleware and Control
Over the years, a wide range of MW technologies has been
developed for distributed computer systems, targeting
various application areas. MW technologies for distributed
software focus on the deployment and integration of
independently developed software components, while
emphasizing the support for scalable and dynamic
configuration. MW in this direction includes for example
EJB [6], DOT NET [7], CORBA and CCM [8]. Many of
such MW products are not suitable for embedded systems
due to their memory and performance overheads or the lack
of support for real-time, data consistency, and fault-
tolerance. To overcome these shortcomings, many MW
solutions for real-time and embedded systems have been
developed, including HADES [9], ARMADA [10], and the
RT-CORBA implementations TAO [11] and ZEN [12]. In
the domains of sensor networks, ubiquitous and networked
embedded systems, there are also MW technologies
developed to support advanced dynamic configuration and
automated software maintenance. MW in this direction
includes 2K [13] and RUNES [14], applying meta-object
protocols and reflection for run-time inspection and
adaptation of configuration and behaviours [15], QoS
control for optimal performance and reliability when the
availability of resources changes [16]. There are also many
dedicated MW efforts targeting particular aspects or
application domains of dynamic configuration, such as the
Jini network technology [17] for the plug-and-play of non-
real-time services and devices, the HAVi [18] software
architecture for the configuration and interoperation of
home networks, the OSGi architecture [19] for coordinated
development, deployment and management of network
services, and the Simplex architecture [20] for the online
upgrade of automatic control software. One formal
approach is given by the component framework Lusceta

[21], providing not only a QoS-aware reflective MW, but
also formalisms for specifying, simulating, analyzing, and
run-time synthesizing QoS management.
Due to the lack of compatibility in regards to the automotive
specific standards and technologies in respect to system
specification and implementation, existing MW solutions
will not be suitable as base technologies on which the
DySCAS MW system can be built. Nevertheless, these
generic solutions together provide a reference source for the
design of the DySCAS architecture in regards to MW
structuring, fault-tolerance, and execution control. One
important basis for the DySCAS architecture is the
AUTOSAR (AUTomotive Open System ARchitecture) [5]
standard. It provides a domain specific approach to the
specification and management of application software
components, system services and run-time environment, and
the overall system configuration integrating application and
system resources. While AUTOSAR is limited to static
configuration, the standardized architecture framework and
modelling support constitutes a very important basis for
DySCAS to understand and specify the application and
platform characteristics.

3.2 Policy-based configuration
In DySCAS, policy-based computing is used to achieve the
dynamic configuration of the automotive MW. Policies
provide a powerful means of representing the logic required
to make decisions which is decoupled from the underlying
deployed code. Policies are flexible and can be formalised
by using a closed grammar described in a formal notation
such as EBNF or a schema definition language. A suitably
expressive language enables a wide range of behaviour to
be represented at high level by a relatively simple policy
description. Policies can also be used at a lower, more-
detailed level if required.
Policy technologies usually provide general guiding
strategies or can only be changed between executions [22,
23]. Ponder [24] permits run-time changeable security
policies and has a very feature rich and extensible grammar.
It is suitable for use in self-adapting policy-based security
software but may not be as well suited for applications with
other requirements. Ponder has been used in [25] for the
management of differentiated services networks.
AGILE [26] is the policy language used in DySCAS. A
policy script can be loaded into an application at run-time to
change the behaviour of the application at the point where
the script is inserted. The scripts are loaded and processed
by an AGILE library instance. The DySCAS MW supports
run-time adaptability though the use of AGILE-Lite; a
lightweight, embedded version of AGILE [27, 28].
The points at which decision logic can be changed, called
Decision Points (DPs), are specified at design time; [29]
provides a detailed explanation of DPs and the supporting
mechanisms. Policy scripts can be loaded into these points
(usually when the component containing the DP is

initialised) and can replaced with other policy scripts during
run-time, yielding different or more advanced decisions.
The AGILE language has a level of flexibility more
normally associated with a lower-level programming
language. For example, indirect addressing is supported at
the policy script level, so that all constructs can be
dynamically configured by changing the parameter
variables supplied. Consider ‘rule’ constructs which can be
used to implement Boolean logic as well as simple
conditional tests. It is possible to use the outcome of one
rule to contextually change the behaviour of another rule by
changing the actual parameters (not simply the values)
compared in the second rule. Other dynamically
configurable constructs include:
1. Utility Functions. A simple tool for choosing a path

based on which of the provided options has highest utility
value in a given context. The utility of an option is
obtained as the sum of the products of each term and
weight pair (terms represent sensed environmental
conditions, weights represent the relative importance of
each term). The action associated with the option that has
the highest utility is performed.

2. Tolerance Range Checks. A TRC checks a variable
against upper and lower bound conditions (specified as a
centre value and an acceptable range value; both
dynamically configurable). A three-way fork is
implemented, with separate actions performed in each
case of above upper bound, within bounds, and below
lower bound. This is a simple and effective way to restrict
certain actions from being performed unless a condition is
violated by more than a configurable margin, and is thus
particularly useful in hysteresis control.

Although powerful, AGILE policies at the same time can
define functionality at a high level so that developers can
focus on the intended business logic and need not be experts
in concepts such as autonomics and policy-based
configuration. A policy can be a statement of intent, without
having to describe exactly how the behaviour is achieved,
(since the lower-level mechanisms are pre-built). An
AGILE policy editing tool further simplifies the task of
preparing policy scripts; making script editing less
problematic and less error-prone, see also [26, 30, 31].
Policy languages currently do not support ‘learning’ in the
AI sense, which in any case would be too big a leap for
automotive embedded systems which represent a highly
safety-critical domain. However, the AGILE language does
provide a means of persisting adapted policy state
(representing user preferences, contextually-informed
decisions etc.) in the form of a ‘template’ which can be used
to initiate other instances of the policy (i.e. in other DPs, or
in the same DP at a later time). This mechanism allows long
term adaptation, spanning many evaluations of a policy.

4. The DySCAS Middleware
The architecture constitutes an overall design for the

intended DySCAS MW system where various policy-driven
self-management mechanisms are defined, integrated, and
realized in an automotive context. Figure 1 provides an
outline of the DySCAS MW architecture, including the
major MW services and the external interfaces towards the
application software and target platform. Above the
portability layer, the MW system is structured into three
levels of control. This layering strategy allows a
hierarchical decomposition of control tasks through which a
larger reconfiguration problem is reduced to more
elementary operations. This pattern is widely adopted in
many complex control systems [32].
DySCAS MW services are further divided in two groups:
(1) optional services, providing basic support for network
and platform transparencies, and (2) core services,
providing embedded reasoning and decision support
through the contained policies and other control functions.
The optional services are placed in the Instantiation
Interface (shown as dashed blocks in figure 1). These
services interact directly with the underlying system
platforms and provide support in respect of portability,
interoperability, transparent communication, concurrency
control, membership management, much as the support
offered by other traditional MW systems. These services are
optional as the support can be obtained through systems,
network, or other external MW. Under these circumstances,
the components implementing such services act as
wrappers/containers for the corresponding external services.
Across the architecture layers, there are three paths of
control: 1. context monitoring and event detection path; 2.
reasoning and decision path; and 3. actuation and
synchronisation path. The context monitoring and event
detection path performs the role of monitoring the context
given by the current status of vehicle, applications as well
as the current deployment of target and external resources.
It monitors the events/states of interest and consolidates the
information into a consistent context definition. This path is
data intensive and runs from the system platform to the
Resource Deployment Management Service (RDMS) via
the DySCAS Instantiation Interface. Multiple context
monitoring and event detection paths can exist in a
networked system, targeting individual nodes, network
realms, and the entire network system separately. The
dissemination of the context information is supported based
on the publish/subscribe paradigm. In each MW service
component, there is a context management proxy
responsible for subscribing necessary context information
published by local or remote RDMS, preprocessing the
obtained context information such as into normalized
quality figures, and triggering the computation or decision
modules in the case of context change.
The reasoning and decision path starts when a context
change is detected (e.g., discovering an external device) by
the monitoring and detection path. It performs the roles of
assessing such events/states and planning for the

configurational adaptations. The contained policies capture
the configuration rules, including the allowed variability
and constraints. This provides a system with the ability to
reason about the correctness and efficiency of its current
state, and to plan for changes without eroding the
architecture or violating the functionality and dependability
(e.g., safety, security, and availability). In DySCAS, this
path is subdivided into: 1. a dynamic configuration control
path, supported by the Autonomic Configuration
Management Service (ACMS), and 2. a dependability and
QoS path, supported by the Dependability & Quality
Management Service (DQMS).
Of great importance to the DySCAS MW system is the
actuations and synchronizations of dynamic configurational
actions on a distributed system. This is supported by the
actuation and synchronisation path, invoked by
configurational decisions in the reasoning and decision
path. Major MW services in this path include the
Autonomic Configuration Handler (ACH), the Resource
Deployment Management Service (RDMS), the SW Load
Management Service (SLMS), as well as other services in
the Instantiation Interface providing support for the
portability and system interaction. Through this path, each
dynamic configuration decision (e.g., updating a software
component) is refined first into a set of elementary
operations (e.g., invoking transferring states, unloading,
loading, initializing, and executing a software component)
and then into more primitive operations in terms of device
and system service invocations. The actuation and
synchronisation path also provides the scheduling and
triggering support for the actuations across a distributed
platform. During the executions, the status is frequently
monitored. A failed execution may cause rescheduling of
the operations or revising of configurational decisions.
In DySCAS, each individual resource domain, ranging from
an individual ECU node at the lowest level, to a network
domain, and to an aggregation of networks, is allowed to
have its own complete set of core services that together
form a global monitoring and decision hierarchy in a
cascade way. For example, in a networked system, there can
be multiple MW control paths, targeting individual
resources separately (e.g., a node or a network realm).
Normally, each of these services is deployed for an
individual resource domain, such as each node and for an
entire network domain (e.g., a group of ECUs sharing a
specific communication bus). Global decisions in a
networked system are then derived by consolidating local
decisions. Each DySCAS MW service can act as a proxy for
consolidating a global system view or for obtaining system-
wide decisions. For performance reasons, the DySCAS MW
also allows the context information suppliers and the
decision makers to be allocated at different positions within
a network according to the computational resources
available. For dependability reasons, the services can be
implemented with redundant components or distributed.

Figure 1. A schematic overview of the DySCAS architecture.

KEY:
Static function block

Embedded Decision Point
(populated at run-time)

Default output of DP

DP

Context Inputs from other
components

Outputs

Software
component

DP

DP
KEY:

Static function block

Embedded Decision Point
(populated at run-time)

Default output of DP

DPDP

Inputs from other
components

Context

Software
component

Outputs

DPDP

DPDP

Figure 2. A software component with

multiple DPs

5. The DySCAS Dynamic Component Model
The application and resource flexibility in a DySCAS
system is realized using techniques inspired by the policy-
based computing paradigm. In contrast to those approaches
that only provide change from one entire system
configuration to another, this method allows small changes
to occur independently at various points throughout the
system. We describe a methodology for very flexible
configuration of software post-deployment and without the
need to compile new code or even restart the system.
As explained in section 4, the configuration ‘intelligence’
needs to be distributed across components. DySCAS
achieves this in three key ways: A flexible, designed-for-
purpose MW; a versatile component model which supports
dynamic mapping of components’ context requirements and
dynamic mapping of the executional behaviours of
components (e.g. start-up initialization and ordering,
operation modes); and policy-based configuration, in which
each component (in the MW as well as application
software) can include a number of policies which can be
easily upgraded without changes to the deployed code.
The architecture has been designed with dynamic self-
configuration as a core-feature and not a bolt-on. The
fundamental concept is that each software component that
makes up the MW itself, or applications that operate at the
next level, can embed zero or more DPs. Each DP can be
dynamically configured by loading a policy at run time. If a
component has multiple DPs each operates independently
having its own policy and context requirements.
The DySCAS dynamic component model describes several
design, operational and interaction aspects of software
components in the DySCAS system, to support the required
flexibility with respect to deferred behaviour and dynamic
configuration. The model specifies:
• A method for design-time embedding of DPs into

software components;
• Run-time support for the operation of DPs;
• Support for multiple independent DPs per software

component;
• The ability to specify default behaviour per DP, for

example if a policy is not loaded;
• A mechanism to dynamically load the appropriate policy

into a DP from an on-system repository;
• A mechanism to dynamically replace a policy with a

new version;
• A mechanism to automatically map the required context

information to each DP;
• The Repository Service (RS), which provides the

appropriate policy for a DP on demand;
• The Context Management Service (CS), which provides

the required context information to policies within DPs;
• The Dynamic Wrapper mechanism (DW) which

facilitates automatic handling of faults arising from the
operation of dynamic configuration.

The basic approach is to identify, at design time, places in
the software where dynamically changeable behaviour is
appropriate. At each of such points a DP is embedded into
the compiled code, marking out the possibilities for
reconfiguration after deployment. The way which a decision
is made (the logic) is not statically compiled into the DP; it
is specified in a policy which is loaded (in the form of a
data file, via an API method) into the DP at run-time. This
separation of decision logic from the compiled code is an
advanced method of policy based computing and is the key
to post-deployment reconfiguration in DySCAS. Figure 2
shows the design-time view of a software component with a
combination of multiple DPs and statically compiled
functional blocks.
A key characteristic of computing systems in the
automotive domain is the difficulty in making changes post-
deployment during a long vehicle lifecycle. Under current
practice this can only be achieved by directly servicing each
vehicle by suitability qualified personnel with specific
equipment. DPs allow flexible run-time configuration of
software components, at any time that policies can be
loaded into the system. This can be physically, a user

transfers new policies to the vehicle using a storage
medium, or directly to a wireless enabled vehicle. This
capability not only allows the changes to be made to correct
possible problems but also to make use of new devices and
information.
The DP concept also future proofs applications. There are
circumstances where a developer is aware that future
enhancements to behaviour will be necessary, but is not
aware of the details at the time of application deployment.
In such cases DPs can be embedded at the appropriate
places in the logic and very simple policies can be provided
initially which can be replaced with more-sophisticated
logic when necessary.

5.1 Dynamic context management
The fact that post-deployment configuration changes are
supported implies that in general the context requirements
of a DP’s policy are not known at the time of software
deployment (because the policy logic itself is deferred). It
would be possible to design a system in which the context
information available to a particular DP were fixed when
the DP was inserted. For example a DP which controls
cabin temperature can be known to need ‘current
temperature’ and ‘current desired temperature’ as input
context even before the actual policy logic which controls
the temperature is provided. However, such a fixed
approach to context provision limits any future policy logic
to reasoning based on the same context information types. A
new use-scenario in which the cabin temperature control is
to take into account the state of alertness of the driver
(automatically cooling the cabin when the driver’s control
inputs are sensed to be less precise – indicating drowsiness)
can only be supported if the additional context information
can be provided to the new policy. Dynamic context
mapping also helps to facilitate independent upgrade of
functionally dependent components. Consider a scenario
where component A generates context information
consumed by component B (for simplicity assume that each
component has a single DP, i.e. a single policy operates in
each component). An upgrade of component A may result
in context information being produced to a different
precision, in a different format, or in the generation of new
context information not previously available. In a fixed
context-mapped system such changes cause component
incompatibilities and thus component upgrades ripple
through the system. However, if context mapping is
dynamic, only the policy for component B need be changed
(without changing the code) thus keeping the number of
component changes low and thus simplifying the change
management process which in turn enhances reliability
whilst reducing change and testing costs.
However, dynamic context mapping introduces several new
challenges which include: how to dynamically identify and
match together the appropriate context producers and
consumers; whether to directly couple, or decouple the

consumer-producer component pairings, how to maintain
low interaction intensity between components (and thus to
keep communications overheads and complexity low), and
how to handle a ‘Context Not Available’ situation
experienced at a consumer.
To achieve dynamic context mapping, and to automatically
handle the challenges identified above, the DySCAS
component model includes a pair of mechanisms: the
Context Manager Service (CS); and the Dynamic Wrapper
(DW) - see section 5.3.2.
The CS is itself policy-configurable so that it can be made
to operate in different modes as required by an implementer,
and its behaviour can be dynamically changed if required.
The default operation model is publish-subscribe-consume.
A component that requires a particular context item issues a
subscribe request to the CS, which updates a subscriber
table of current context demands. A component that
produces a particular context item publishes it to the CS
(which updates a context information table). The CS checks
to see if the value has changed and if so pushes out the new
value to all subscribers. In this way the CS decouples the
producer and consumer and also reduces communication
and processing at the consumer since context is only pushed
to them on a state change basis, and not at the rate that
individual samples are produced. The CS also serves as a
cache of most recent values which are made available when
a new consumer is initiated, thus avoiding the new
consumer having to either contact several producers
directly, or waiting until all required context values have
been pushed to it. Changing the CS policy would enable for
example broadcast operation or a hybrid of broadcast and
the subscribe approach.
A further key benefit of the CS is that provides transparency
to the developers of software components in that a context
producing component does not need any design time
consideration of consumer components, and a consumer
component does not need any design time consideration of
what context will be used or where it is generated.
Managing the context information in this way also supports
reconfiguration of the location of running software. For
instance, an important software component may be shifted
from one node to another due to resource availability. The
context information required by this component’s DPs can
be routed to the new location dynamically.

5.2 Behavioural boundaries
The critical nature of the application domain requires
careful consideration when allowing configuration changes
to be made. During the normal software development
procedure, the compiled code (the static function blocks
shown in figure 2) can be extensively tested and proven
using formal methods. Robustness and fault-tolerance of the
methodology is guaranteed by limiting reconfiguration
within a software component using two design-time
specified constructs. Firstly, the number and location of the

decision points within the component, define the possible
changes to the behaviour. Secondly, the dynamic wrapper
associated with each DP specifies the behavioural
boundaries for that DP, so that any policy-based
reconfiguration cannot result in actions beyond these limits
(this is explained in more detail in section 5.3.2).

5.3 Middleware integration
The DySCAS MW supports dynamic policy-based
reconfiguration by providing a policy evaluation library,
AGILE-Lite, and supporting DP and DW mechanisms.
Dynamic context management (described above) is also
provided to support policy-dependant context requirements.

5.3.1 Decision Point Support
AGILE-Lite provides DP organisation, the functionality to
parse and evaluate a policy at run-time and robustness
features using the Dynamic Wrapper mechanism. The
library is a lightweight implementation for embedded
systems, requiring minimal resources to achieve dynamic
and robust behaviour (the ‘lightest’ version to date has a
memory footprint of just 34kbytes). It supports an XML
grammar based on the AGILE policy language [26]. When
requested, AGILE-Lite will evaluate a specified DP and
produce a decision result based on the currently loaded
policy and current context information.
Internally the library architecture contains three functional
layers shown in figure 3:
• Decision Evaluation Module (DEM); parses and

evaluates policies, producing a result based on the
policy logic and current context.

• Dynamic Wrapper (DW); responsible for silent handling
of errors and ensuring a legal result is returned for a
evaluation request.

• Decision Point API; provides developer access,
including loading and evaluation of policies for
specified decision point.

Middleware / application component

Decision Point API interface

Dynamic Wrapper

Decision Evaluation
ModulePolicy

Middleware / application component

Decision Point API interface

Dynamic Wrapper

Decision Evaluation
ModulePolicy

Figure 3. 3-layer architecture of the AGILE-Lite library

5.3.2 The Dynamic Wrapper
As shown in figure 3, the DW forms the interface between
the software component (via the API) and the DEM.
The DW is responsible for making context subscription
requests to the CS on behalf of its specific DP. A policy’s
required context inputs (termed ‘environment variables’) are
identified when the policy is parsed by the DEM.
The DW is also responsible for providing mechanisms for
basic validation and robustness support. During the policy
load operation the DW determines whether:

• An appropriate policy was located and provided by RS,
• The policy script was loaded from file correctly,
• The policy was parsed correctly, and found to be

referentially self-consistent,
• The policy meets the DP specification (in particular this

requires that the possible logic outputs of the policy
match the DP configuration).

In case of any of the above problems, the policy load
processes is deemed to be unsuccessful and the wrapper sets
up error flags for diagnostic purposes. Where a previous
policy had been successfully loaded, automatic rollback to
that policy is initiated.
When the DP is invoked (and thus the policy must be
evaluated), the DW monitors whether a policy has been
loaded in the DP, and that the various policy objects that
constitute the policy logic have each been instantiated
correctly (for example there was sufficient memory
allocated). The policy objects include the types: Policy,
Template, Variable, Action, Rule, UtilityFunction,
ToleranceRangeCheck, and ReturnValue. Additionally,
through the context subscription mechanism, the DW
determines if a context-not-available situation arises –
which would prevent the policy logic reaching the correct
outcome.
If any of the above DP-evaluation tests fail, the DW sets up
corresponding error flags and returns the DP-specific
‘default’ value, which is pre-defined by the software
developer. Thus the DW ensures that, should any run-time
problem occur related to the dynamic policy configuration
aspect, the affected DP collapses down to statically defined
and thus totally predictable and verifiable behaviour.
Through its silent error handling (i.e. by trapping errors
generated in the DEM, and returning a predefined ‘legal’
return value to the component), the DW makes a significant
contribution to system robustness and safety. The
implementation of dynamically configurable components
has been achieved in a manner which can be only
advantageous in comparison to static components and will
never decrease the system stability and integrity. From a
component developer point of view, the DW is entirely
transparent, because it works silently and cannot cause
component failure. The only way to detect its intervention is
to check whether error flags were set or not. In general, a
developer can simply use the decision result produced by
the DP in their code.

5.3.3 The DP API
During the design of a policy-configurable component, the
developer identifies those points at which dynamic
behaviour is required. For each of these points one DP
should be created. At DP instantiation it is required to
specify default outcome (in case of dynamic evaluation
failure) and all other valid outputs. The developer should
then decide how the component will behave in response to
the policy decision. To complete each DP, an AGILE policy

script is written and stored in the RS, to be loaded at run-
time. When the component is executed and a DP is
evaluated, a decision is made using this policy and the
current context information. The decision then becomes a
data item within the component and processed as coded by
the developer. The DW ensures that this decision is either
the default value or one of the other supplied valid outputs.
This transparency removes the burden of writing any
special error handling code for the DP.
The API functions make the three layer library structure
transparent to the component developer. If the component
developer is not interested in errors arising during policy
loading or decision evaluation and chooses not to test or
handle any error flag set up silently by dynamic wrapper, it
is actually indistinguishable whether the component
evaluation returned and actual policy decision or the default
value predefined at DP instantiation. This transparency
simplifies the use of the library and guarantees that the
worst possible outcome of a failure in dynamic decision
evaluation is safe, static and non context-aware behaviour
of a component. A DP can be embedded and operational as
a deferred logic place holder, prior to providing a policy.

6. Automatic internal reconfiguration
DySCAS configuration is implicitly dynamic, but it can be
triggered in a variety of ways. Policy-based configuration of
components is usually performed each time the component
is initialized. New DP-specific policies can also be loaded
into the system between, or during run-times. A new policy
may be loaded ‘pulled’ because a user requests a specific
upgrade, or ‘pushed’ during an annual service or may be
automatically loaded ‘in the field’ perhaps delivered from
the vehicle manufacturer’s back-end systems to the vehicle
via a wireless network hotspot.
However, additional forms of automatic dynamic
configuration are directly supported directly by the MW. In
particular it is necessary to support load balancing to ensure
efficient use of resources within the vehicle, and in some
cases the resources of temporarily attached user devices. To
run applications or tasks for example of the vehicle
infotainment system more efficiently, a migration to the
additional mobile device makes sense to use its unused
resources. Thus it is possible to migrate for example tasks
of the navigation system to a connected PDA for faster and
more detailed map rendering and more optimal calculation
of routing information.
After the connection of the PDA to the vehicle infotainment
network with the aid of standardized interfaces like
Bluetooth or WLAN, the device is discovered and the
appropriate device information, locally running processes,
and device and network resources are registered by a
dedicated service.
In consideration of all running processes and the resources
situation within the vehicle infotainment system appropriate
services decide on a possible load balancing according to

strategies; based on characteristics and parameters of the
system and tasks, and initiate the task migration where
required. Thus the appropriate navigation system tasks
migrate from the navigation system to the PDA. After the
calculation the results of the tasks are sent back to the
navigation system, where they are used.
To realize the use case scenario described above the MW
architecture is required to fulfill several requirements:
• Event management – Added devices and device removal

have to be discovered by the vehicle infrastructure.
• Device registration - Detailed information and capabilities

of the newly added devices have to be registered.
• Resource management - Status information and resource

load of each device (ECU) have to be known.
• Load balancing - Potential task migrations have to be

initiated based on strategies which take into consideration
characteristics and parameters of the system and tasks.

A detailed description of these four tasks within the
automotive MW architecture is provided in [33] and [34].
For the load balancing we use a cost based strategy. The
Load Balancer evaluates possible migration of tasks to the
additional device. Migration is only a useful option if the
cost of migrating is lower than the cost of keeping tasks
with their original device. The cost benefit ratio for tasks of
busy devices is computed which helps the Load Balancer to
form the decision of whether to migrate or not.
The calculation of migration costs of tasks is realized
according to the priority list of the most loaded strategy
(i.e., tasks with a high load have a higher priority). This
enhancement enables dynamic load balancing and is
therefore a basis for self-optimisation in a vehicle network.
The Load Balancing mechanism is automatically invoked,
and it can also be internally policy-configured for additional
flexibility – for example several different load balancing
algorithms can be simultaneously deployed within the same
component each optimal under different circumstances. A
policy is used to contextually select which of the fixed
algorithms is the most appropriate at a given instant.

7. Conclusion
The research issues addressed by the DySCAS project are
quite challenging. The automotive domain traditionally uses
static functionality because of issues which include strict
real-time performance and the safety critical nature of the
systems. Thus whilst the potential advantages of introducing
dynamic configuration and context-aware behaviour are
very high, opening up whole realms of future use-cases, the
accompanying technical requirements are very demanding.
The project is still ongoing and presented here are partial
solutions towards the desired dynamically configurable
systems. This paper has described some of the novel and
technically advanced aspects of the automotive MW,
focusing on the architecture and the software component
model. In combination these two aspects permit very
flexible dynamic configuration and context-awareness by

distributing the configurational intelligence across the
various components as required. A dynamic context
mapping service decouples components so that component
upgrades can be performed in isolation. The strong
obligations of robustness, validation and verification are
met by wrapping the dynamic configuration mechanism
with an automatic fault-handling mechanism which silently
downgrades a problem component to static default
behaviour.

Acknowledgements
The DySCAS project is funded within the 6th framework
program “Information Society Technologies” of the
European Commission. Project number: FP6-IST-2006-
034904. The project website provides further details [4].

References
[1] K-E. Årzén, A. Cervin, T. Abdelzahler, H. Hjalmarsson, A.
Robertsson, Roadmap on Control of RealTime Computing System,
EU/IST FP6 ARTIST NoE, Control for Embedded Systems
Cluster.
[2] Auto Catalog, Pass 2000, McKinsey & Company.
[3] M. Törngren, D. Chen, D. Malvius, J. Axelsson. Chapter -
Model based development of automotive embedded systems.
Automotive Embedded Systems Handbook. Editors Nicolas Navet
and Francoise Simonot-Lion. Taylor and Francis, CRC Press -
Series: Industrial Information Technology. 2008.
[4] DySCAS project website: http://www.DySCAS.org
[5] AUTOSAR initiative: www.autosar.org
[6] Sun Developer Network. Enterprise JavaBeans Technology.
Available <http://java.sun.com/products/ejb/index.jsp>
[7] Microsoft. Microsoft .Net. Available
<http://www.microsoft.com/net/default.mspx>
[8] Object Management Group. CORBA 3.0. Available
<http://www.omg.org/
technology/documents/formal/corba_2.htm>
[9] E. Anceaume, G. Cabillic, P. Chevochot, I. Puaut, HADES: A
Middleware Support for Distributed Safety-Critical Real-Time
Applications, Intl. Conf. on Dist. Computing Systems, 1998.
[10] T. Abdelzaher, M. Bjorklund, S. Dawson, W.-C. Feng, F.
Jahanian, S. Johnson, P. Marron, A. Mehra, T. Mitton, et al.,
ARMADA Middleware and Communication Services, Real-Time
Systems, 1997.
[11] C. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz,
M. Atighetchi, and D. C. Schmidt, Integrated Adaptive QoS
Management in Middleware: An Empirical Case Study, 10th Real-
time Technology and Application Symp., May, 2004, Toronto.
[12] R. Klefstad, D. C. Schmidt, and C. O'Ryan. The Design of a
Real-Time CORBA ORB using Real-Time Java, Proc. IEEE Intl.
Symp. Object-Oriented Real-Time Dist. Computing, April 2002.
[13] F. Kon, J. R. Marques, T. Yamane, R. H. Campbell, and M.
D. Mickunas. Design, Implementation, and Performance of an
Automatic Configuration Service for Distributed Component
Systems. Software: Practice and Experience, 2005.
[14] C. Mascolo, S. Zachariadis, G. Pietro Picco, P. Costa, G.
Blair, N. Bencomo, G. Coulson, P. Okanda, T. Sivaharan. Runes
Middleware Architecture. D5.2.1, RUNES Project.
RUNES/D5.2.1/PU1/v1.7, FP6. Inf. Society Technologies. EC.
[15] P. Cointe, editor. Meta-Level Architectures and Reflection:
2nd International Conference, Reflection '99, St. Malo, France,

volume 1616 of Lecture Notes in Comp. Science. Springer, 1999.
[16] D. C. Schmidt, Adaptive middleware: Middleware for real-
time and embedded systems Communications of the ACM,
Volume 45 Issue 6, June 2002.
[17] SUN Microsystems, Jini Network Technology,
<http://www.sun.com/software/jini/>
[18] HAVi. Home Audio Video interoperability.
http://www.havi.org.
[19] OSGi Alliance: The OSGi service platform – dynamic
services and networked devices. http://www.osgi.org
[20] L. Sha, R. Rajkumar, M. Gagliardi. Evolving Dependable
Real-time Systems. Proc. IEEE Aerospace Conference, 1996.
[21] L. Blair, G. Blair, A. Andersen and T. Jones. Formal Support
for Dynamic QoS Management in the Development of Open
Component-based Distributed Systems. IEE Proceedings Software.
Vol. 148 No. 3. June 2001.
[22] IBM. Policy technologies.
http://www.research.ibm.com/policytechnologies/.
[23] O. Ronen and R. Allen. Autonomic policy creation with
singlestep unity. Proc. 2nd Intl. Conf. on Automatic Computing,
pp. 353-355, Seattle, USA, 2005. IEEE Computer Society.
[24] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
ponder policy specification language. In POLICY '01: Proc. of the
International Workshop on Policies for Distributed Systems and
Networks, pp. 18-38, London, UK, 2001.Springer-Verlag.
[25] L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive
policy-based framework for network services management. Jnl.
Netw. Syst. Management., 11(3), pp. 277-303, 2003.
[26] R. J. Anthony. The agile policy expression language for
autonomic systems. ITSSA, 1(4): 381-398, 2006.
[27] R. Anthony and C. Ekelin. Policy-driven self-management for
an automotive middleware. In proc. 1st Intl. Workshop on Policy-
Based Autonomic Computing (PBAC), At ICAC '07: 4th Intl.
Conf. on Autonomic Computing, Florida, USA, June 2007.
[28] R. Anthony, A. Rettberg, I. Jahnich, M. Torngren, D. Chen,
and C. Ekelin. Towards a dynamically reconfigurable automotive
control system architecture. In International Embedded Systems
Symposium, Irvine, CA, USA, May 2007. IFIP.
[29] P. Ward, M. Pelc, J. Hawthorne and R. Anthony. Embedding
Dynamic Behaviour into a Self-Configuring Software System (To
appear) In Proc. 5th Intl. Conf. on Autonomic and Trusted
Computing, Oslo, Norway, June 2008.
[30] R. Anthony. Policy autonomics website.
http://www.policyautonomics.net/.
[31] R. J. Anthony. Policy-centric integration and dynamic
composition of autonomic computing techniques. In ICAC '07:
Proc. 4th Intl. Conf. on Autonomic Computing, Jacksonville,
Florida, USA, June 2007, IEEE Computer Society.
[32] J.S. Albus, F.G. Proctor, “A Reference Model Architecture
for Intelligent Hybrid Control Systems”, Proc. Intl. Federation of
Automatic Control, USA, 1996.
[33] I. Jahnich and A. Rettberg. Towards Dynamic Load
Balancing for Distributed Embedded Automotive Systems. In: A.
Rettberg, M. Zanella, R. Dömer, A. Gerstlauer, F. Rammig,
(Editors) Embedded System Design: Topics Techniques and
Trends, Irvine, DA, USA, May 2007.
[34] I. Jahnich, I. Podolski, A. Rettberg. Integrating Dynamic
Load Balancing into the Car-Network. In 4th Proc. Electronic
Design, Test and Application (DELTA 2008), Hong Kong,
January 2008.

http://www.dyscas.org/
http://www.autosar.org/
http://www.research.ibm.com/policytechnologies/

	1. INTRODUCTION
	2. Automotive challenges and DySCAS
	3. Background and related work
	4. The DySCAS Middleware
	5. The DySCAS Dynamic Component Model
	5.1 Dynamic context management
	5.2 Behavioural boundaries
	5.3 Middleware integration
	5.3.1 Decision Point Support
	5.3.2 The Dynamic Wrapper
	5.3.3 The DP API

	6. Automatic internal reconfiguration
	7. Conclusion
	Acknowledgements
	References

