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Abstract

Mobile internet services have started to pervade into ve-
hicles, approaching a new generation of networked, ”smart”
cars. With the evolution of in-car services, particularly with
the emergence of services that are personalized to an in-
dividual driver (like road pricing, maintenance, insurance
and entertainment services) the need for reliable, yet easy
to handle identification and authentication has arisen. Ser-
vices that demand unambiguous and unmistakable continu-
ous identification of the driver have recently attracted many
research efforts, mostly proposing video-based face/pose recog-
nition, or acoustic analysis.

A driver identification system for vehicular services is
proposed, that, as opposed to video or audio based tech-
niques, does not suffer from the continuously changing en-
vironment while driving, like lighting or noise conditions.
A posture recognition technique based on a high resolution
pressure sensor integrated invisibly and unobtrusively into
the fabric of the driver seat has been developed, taking the
pelvic bone distance as a biometric trait. Data coming from
two 32x32 pressure sensor arrays (seat- and backrest) is
classified according to features defined based on the pelvic
bone signature, mid and high pressure distribution and body
weight. Empirical studies, besides analyzing (quantitative)
driver recognition performance, assess the identification tech-
nique according to the qualitative attributes universality,
collectability, uniqueness, and permanency.

The proposed driver identification technique is implicit
and thus not reliant to attention, it is continuously in opera-
tion while seated, and requires no active person cooperation.
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These characteristics encourage the universal use of the ap-
proach – a whole new modality for person-to-environment
interaction seems possible.

Keywords. Continuous Person Identification, Sitting Pos-
tures, Implicit Interaction, Interaction modalities.

1. Motivation

Due to the evolution of mobile wireless communication
technologies, and the explosive growth of the internet itself,
the vision of ”internet enabled cars” has become a reality.
An ample effort in research and development has been un-
dertaken by stakeholders in the automotive industry, and
even political authorities. Among the most prominent re-
cent research challenges are ”intelligent networked car so-
lutions” (”Intelligent Car Initiative”1), identifying research
areas like ”next generation driver assistance systems”, ”co-
operative systems based on C2C (Car-to-Car) and C2I (Car-
to-Infrastructure) communication” and ”real-time traveller
and traffic information”[5]. Numerous scenarios motivate
the improvements and advantages that could be attained
regarding to safety, security, comfort and even ejoyability, if
services delivered to cars would be based on notions of con-
text, knowledge and ”intelligence”, while the underpinning
technology of ”Intelligent Cars” is identified as being com-
munications: ”[..]interaction between the driver, the vehicle
and the road environment in an integrated approach[..]”[5].

In order to implement personalization at the services
and applications level, reliably, trustworthy, unambiguous
and continuous identification mechanisms have been iden-
tified as a key enabling technology [9] for services in net-
worked cars. Reliably identifying the driver of a vehicle
with technologies not prone to misuse (like sharing ignition
keys, swapping the person who drives, etc.) is an indispen-

1European Commission i2010 Intelligent Car Inita-
tive, URL: http://ec.europa.eu/information_society/
activities/intelligentcar, last visited: May 18, 2008
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Figure 1. Driver identification from sitting postures and examples of personalized vehicular services

sible prerequisite for services involving accounting or billing
like dynamic road pricing, dynamic insurance pricing, cause
based taxation or consumer controlled entertainment.

As for example, a system for calculating a personalized
car insurance rate based on the driving-behavior of a person
has been proposed in [3] and [4]. Several options for drivers
to attack the insurance system and modifying insurance
rates, e.g. by software adaptation, replacing of communica-
tion messages, modify in-car sensor values, etc. have been
discussed. Although insurance rate calculation is proposed
to be personalized, the driver itself is not inspected – he is
simply identified as being the owner of the car; but usually
a couple of persons (e.g. family members) share one car. If
the insurance contract is person-bound, and person identi-
fication is done e.g. by personal ignition or pincode, this
identification could be outwitted. An example scenario of
abuse could be the following: A person ”A” which is in an
aggressive driving state could identify itself as person ”B”,
drives then with high risk or even drunk, violates speed
limits or ignores red lights, etc. and thereby automatically
increases the insurance rate of ”B”, while ”A”s own insur-
ance contract will not be affected.

To solve such problems, personalized, networked car ap-
plications require a solution for safe person identification
to guarantee that person-bound services in cars are effec-
tivly linked to the subject concerned. A number of bio-
metric identification methods applicable in the automotive-
field have been introduced. Most of them require active
participation of the involved user, e.g. sensors located in
the car door handles, fingerprint readers inside the car [15,
p.60], retina or iris scan systems. Other systems identify

the driver by a unique key, e.g. by pressing a ”personal”
button beside the seat or using a RFID-tag embedded in a
personalized ignition key.

Traditional approaches of identification are not based
on any inherent attribute of an individual; they suffer from
a number of obvious disadvantages: A key can be lost or
stolen, a pincode may be forgotten or guessed by an im-
postor [11, p.91] and then permits unallowed persons to
control the vehicle (unauthorized handover). On the other
hand, RFID-technology for identification is antiquated and
insufficient for offering stable, reliable, authentic and trust-
worthy individual-related services2.

In this paper we propose a implicit ”sitting posture recog-
nition system”, implemented as a passive method that in-
spects the pressure patterns on driver’s seat and backrest.

A few more ideas of applications in networked cars which
would gain from our approach of driver identification are
the following:

(i) Cause-based taxation: Climate change and pollu-
tion has raised consideration of political authorities
to cause-based taxation models for drivers. Whether
the car nor its owner should be the subject of emission
regulations (like exhaust, green house, CO2), but the
individual driver. Legislation for cause-based taxation
would be ultimately reliant to reliable driver identifi-
cation.

2Analyzing RFID’s Reliability And Stability Limitations,
URL: http://www.informationweek.com/industries/
showArticle.jhtml?articleID=53200075 (releasing date:
November 16, 2004)



(ii) Personalized insurance policies: In the last 50
years a steadily increasing volume of traffic (caused by
flexible work schedules, longer journeys to the place
of work, and the demand of people for a more mobile
lifestyle) has been discovered [1]. This trend is set to
continue [18], causing more traffic jams and a higher
risk of travelling on roads [9].

The future of mobility will be different compared to
todays individual traffic: Public transportation will
gain importance in the near future by providing fast
point to point connections between urban centers with
airplanes, trains or busses driving on individual lanes.
Only the last few kilometers from airports or railway
stations to the destination outside cities will be driven
with rental or shared cars. Highly flexibly models for
covering this picture are offered already today, e.g.
by Deutsche Bahn AG or ÖBB in Austria. Different
types of cars can be rented by the hour, day or week
without paying basic charges. Pick-up and return is
possible in a lot of cities all around the country (200
locations in Austria3), at any time of day or night.

Car rental fees, particulary dominated by insurance
rates, are quite high today. A careful and accident-
free driver which frequently uses car-sharing would
suppose a personal insurance rate (which of course
is cheaper than the actual one from the rental-car
provider). The contract would be bound to the in-
dividual and no longer to the car or the car owner
and would automatically carried with the driver and
applied to any driven car (”cross-car” insurance).

(iii) Logistics and fleet management: (i) Delivery vans
of small transport companies (pharmaceutical prod-
uct transports, home lunch services, etc.) are steered
by multiple persons. (ii) In heavy load transporta-
tions a few lorry drivers share one and the same truck.
(iii) Most taxi companies operate a vehicle fleet. Cabs
are operated 24 hours a day by different people.

In all these cases administrative costs could be min-
imized and misusage could be avoided if the opera-
tor is aware of the actual driver of any vehicle. Sec-
ondary, the use of personal insurance contracts from
each driver (as described above) could minimize run-
ning costs of each car or truck (but on the other
hand, for persons with high insurance rates, e.g. poor
drivers, it would be hard to get a driving job).

(iv) Car comfort: Networked driver identification leads
to auto-configuration of any vehicle at boarding-time.
This is particulary comfortable if the car is shared
or interchanged by a number of persons (e.g. family
members), or for any car-rental model.

Beside personalized services in networked car environments,
person identification from sitting postures also generate sur-
plus value in single-car applications:

(i) Safety: Authorization by using sitting postures as
alternative or add-on to common ignition keys. Only

3http://www.denzeldrive.at/carsharing/142_293.php,
(last visited: May 18, 2008)

permitted persons are allowed to drive the car. Be-
side this, the feature directs to respectable limitations.
What is, for instance, when the owner of the car is in-
jured or incapacitated, and someone else must drive
him to a hospital – has the authorization process be
completed before the helping person could use the ve-
hicle?

(ii) Intelligent driver assistance: Select voice type of
the navigation system, manage the air-conditioning
system, choose the designated radio station, control
background-lightning of dashboard, etc. according to
users bias, and maybe enhanced by additional sensors
(such as ECG-device, respiration sensor, GPS unit).

(iii) Vehicle dynamics control: Automatically adapt
the cars running gear corresponding to users preferred
driving behaviour or evidenced assumptions (soft run-
ning gear for family trips, tough sports suspension in
a race, etc.).

(iv) Implicit interaction: Handicapped persons would
benefit from alternatives to common input devices,
such as switch or leverage, if using specific pressure
patterns, not appearing in common driving situations,
and mapped to pre-defined actions/activities. For ex-
ample, a turn is forthwith not done by operating the
direction indicator/leverage, but by pressing the left
shoulder twice into the back of the seat.

(v) Driving comfort: Automatically adapt parameters
of the car (height and offset of the seat, adjust mirrors,
etc.) if a person is identified.

The performed studies and enforcement of experiments fol-
lowed the suggestions of Jain et. al. [11, p. 92], which rec-
ommended the four characteristics universality, collectabil-
ity, uniqueness and permanency as beeing essential for good
and accurate biometric systems. In our tests, these at-
tributes are analyzed isolated to get more meaningful re-
sults whether they are suitable for unique distinction of any
person (and therefore allows in-car person identification) or
not.

Outline: The rest of the paper is structured as follows:
Section 2 motivates experimental system design, section 3
gives an introduction and explanation to the referred bio-
metric characteristics. Section 4 describes the setup of our
testbed for body-posture sensing. Section 5 mentions the
features, extracted from the pressure mats and utilized for
data evaluation and processing, section 6 gives a presenta-
tion of the achieved results for driver identification. The
last section addresses our findings and encountered prob-
lems, and suggests future work.

2. Driver Identification Systems

As already mentioned above, a lot of research has been
conducted in the area of C2C and C2I. Various special-
ized communication (e.g. 802.11p) and sensor technologies
as well as application scenarios have been developed – to



give a summary over the wide range of topics and technolo-
gies is nearly impossible (the main subjects are: wireless
communication, security, reliability, driver assistance sys-
tems). Initatives are partly funded by research ministries
all around europe as well as european commission.

Further interestingness and actuality of this topic can
be indicated by large industry consortiums like Germany’s
BMW AG and Volkswagen AG, France’s Renault, Italy’s
Fiat SpA, etc. and a number of research institutes like
Fraunhofer, NEC Europe Ltd., Siemens AG or Bosch GmbH
doing research in this domain (project pages available on
the internet presents foci and results of the individual co-
operations).

Andreoni et. al. [2] had already presented a system for
analyzing postures of car drivers in 2002. They noticed,
that ”[..]it is evident that an integrated analysis of all the
aspects involved in the car driver posture is very complex
and practically impossible to propose[..]” [2, p.512]. In [6],
an overview about pressure mapping systems and their us-
age is given. [10] introduces a model for extracting postures
from humans in motion, [12] discusses the usage of sitting
postures and measurements with FSA-mats, [19] concen-
trates on the identification of static sitting postures. Over-
beeke et.al. [13] and R. Picard together with her research
group presented several approaches of using FSA-mats in
traditional office-chairs to identify distinct user-states, e.g.
in [16] and [8].

None of the discussed approaches had been evaluated in
the car-domain. Furthermore, they had not raised the claim
of presenting a system for identifying persons by their sit-
ting postures, and thus maybe brings our proposed system
into the position of beeing the first one for unique distin-
guishing between any number of persons sitting on a car
seat.

3. Biometric Identification

Biometric identification refers to identifying a person on
the base of his or her physiological characteristics and bio-
metric identifiers. Our experiments for driver identification
from sitting postures are aligned along the recommenda-
tions for ideal biometric systems from Jain et. al. [11,
p.92]. They also accounted that these requirements are not
always feasible for useful biometric systems and that other
issues had to be considered in the realization of an authentic
system:

(i) Performance is, beside factors like wastage of re-
source, characterized by the attributes false reject-rate
and false-alarm rate [15, p.57]. In a optimal (biomet-
ric) system both of these error rates tend to zero.

(ii) Acceptability denounces the willingness of people to
accept the usage of a particular biometric identifier in
everyday life.

(iii) Circumvention means, how easy it is to fool the
system through fraudulent methods.

The significance of any biometric identification system is
determined by the assortment of appropriate features. Ac-
cording to our considerations above, following characteris-
tics have to be validated in our experimental setting:

(i) Universality – ”Every person should have this
feature”: In the current experiment we only use pres-
sure disseminations from seat- and backrest-mat. Each
driving person has a bottom and a back, therefore all
selected features (specification follows later in section
5) are collectable.

(ii) Collectability – ”It should be possible to ex-
tract the interested attributes”: Any car driver
sit’s on the seat, and consequently produces pressure
patterns on seat- and backrest-mat. (At least, if the
person sit’s on the leading area of the seat or is lean-
ing forward, pressure is indicated on the seat mat, but
not on the backrest mat).

(iii) Uniqueness – ”There should be only one per-
son with this characteristics”: For the indication
of uniqueness it is necessary to train a test database
with a large number of subjects. We endorse this sug-
gestion with additional restraints of measured people:
They should be in a tight belt of age (20 to 30 years
old) and should have the same stature (height from
175 to 185 cm, weight from 70 to 80 kg) to avoid de-
pendencies and divergence.

(iv) Permanency – ”The features should always stay
the same”: Different clothes (beach wear, jeans, ski-
overall), trouser buttons pressing on the mat, or ob-
jects in the back-pocket (wallet, cell phone, bunch of
keys) affect the results (”white noise”). For consider-
ing problems regarding the feature permanency, a spe-
cial experiment with different artefacts in the pockets
has been done.

4. Experimental Setup for Body Pos-
ture Sensing

For data acquisition in our prototype (see Figure 2) we
used force sensor arrays (FSA), interconnected to a com-
mon notebook computer with USB interfaces. The pro-
posed system is universal and could be used in any type
of car (utility-driven car, sports car with body-contoured
seats, comfort station wagon, etc.) for arbitrary style of
sitting or driving (rush-hour traffic, family trip, etc.).

Research Hypothesis
We suppose that the 4 biometric characteristics, mentioned
just above, are proper to discriminate sitting postures of
any person inside a car. Experimental settings in different
types of cars (sports car, family van, etc.) and with a large
number of subjects has to be processed to approve or reject
this hypothesis.

Pressure Mapping: Requirements
A pressure mat system has to fulfill the following needs to
be appropriate for us: (i) The area of common seats in a car
is about 50 ∗ 50cm2, thus the size of utilized force sensor
arrays should be similar. The mat itself should be flexi-
ble and thin so that it’s easy deployable in a car; (ii) The
system should be able to be applied to any person with pos-
sibility of driving a car, e.g. persons from 18 up to 75 years



Figure 2. Driver identification prototype, in-
stalled in utility car, sports car and comfort
station wagon (from left to right)

and a weight of 40 to about 125 kg; (iii) Precise measure-
ments with a large number of sensors should be possible
with a high update rate of less than one second. Three sys-
tems matching these requirements had been identified; we
have decided to use the ”FSA Dual High Resolution System”
from Vista Medical against the other two systems (Tekscan,
XSENSOR) (because of a local technical consultant of the
first one).

The selected system allows recording of the loads on a
thin, flexible sensor-mat, consisting of a matrix of 32 by 32
piezoresistive sensors. Each of them covers a range of 0 to
26, 67kPa (data specification of the mat system indicates a
pressure range from 0 to 200 mmHg, but as kPa is a SI unit,
all Torr or mmHg values are conversed). The sampling rate
of a mat is normally in the range 1 to 10Hz, but sometimes
connection errors lead to a slight delay.

Sensing Software
The original pressure sensing system as shipped with had
to be ported to better integrate into the evaluation envi-
ronment. Particularly, a data acquisition and evaluation
application had to be implemented. Communication with
the data collection system was then implemented based on
the OLE components included in the FSA software package.

Improve Sensor Readings. Because of sudden move-
ments and other artefacts, it is necessary to generate a more
sophisticated matrix of sensor readings. This has been done
by calculating the median of each of the 1.024 sensor values
over a series of measurements (we preferred the ”median”
against the ”mean” because of it’s better stability concern-
ing to outliers). Tests showed us that 5 measurements are
enough to create a sufficiently stable matrix. To guaran-
tee data integrity and avoid errors in measurement, each
experiment has been repeated and stored at least 4 times
(in consideration of the hamming distance). Pelvic bones
of male and female are different and allows gender discrim-
ination (e.g. as showed in [14]), hence we concentrated our
actual experiments primarily on male subjects (27 persons
out of the whole of 34 subjects), the class of female drivers
should be reliable distinguished from the male ones by eval-
uation of pelvic bones.

Reference Weight. After calibration, a reference weight
has been applied to the seat mat. This had been done by

placing a specific person (with given weight) onto the seat
mat and performing 100 consecutive readings from it. The
mean value of the accumulated pressures is used as reference
factor for later weight estimations.

Subjects. For a validation of our hypothesis (see section
4 above), the experiment was applied to a total of 34 per-
sons as shown in Table 1, most of them were male and 80%
(P90 − P10) were in the age from 20 to 31 years, acquired
on the university campus and around. Male subjects vary
in weight from 58kg to 104kg, and in size from 160cm to
194cm. The 7 female test persons vary from 46kg to 70kg
in weight, and from 160cm to 173cm in size. For easier
evaluations, all of them were wearing long trousers with
no artefacts (wallet, cell phone, etc.) in the back-pockets.
Each subject had been briefed to adjust the seat to sit com-
fortable in the car, reaching clutch and throttle pedal and
put both hands onto the steering-wheel (driving-position).
Changing the pre-defined position of the backrest had not
been allowed, hence the angle between backrest and seat
was equal for any reading.

Test Execution
To assess the quality and accuracy of the current proto-
type, a database with pressure patterns from 34 subjects
had been created. All tests had been processed inside a
comfort station wagon (see right picture in Figure 2) with
pressure mats attached to both, seat and back. We used
euclidean distance metrics, a well-researched approach in
the field of pattern recognition, to match a persons cur-
rent pressure dissemination against earlier stored patterns.
Execution of the experiment had been done in two stages:

Training set. In the first phase, a large number of data
samples had been captured, features of the test persons had
been extracted and stored into a database: Some personal
data had been collected from each test person (Nickname,
Age, Gender, Weight and Size) and stored additionally. Af-
ter that, consecutive reading of sensor data is started, alter-
nating between seat and backrest mat; raw-data is written
into the database, completed by a timestamp and personal
data. The estimated duration for recording of one person
is less than 5 minutes, including introduction and briefing.

The prototype has been used in different types of cars
(respectively on different types of seats), for meaningful in-
terpretations only the data sets from one type (Audi A6,
rightmost-images in Figure 2) had been used. By evalu-
ating the pressure distribution on the seat mat, weight of
subjects could be estimated.

Testing set. Afterwards (in the ”live system”) the sam-
ple of any acquired person has been compared to all stored
data sets to locate the best matching dataset (they are rep-
resented by most similar pressure disseminations).

5. Feature Determination, Classification,
and Mapping

Subsequent listed features have been selected and used



Sex Number Percentage Min Max Mean Median Std.Dev.
Subjects % xmin xmax x x̃ σ (P10) (P90)

Age
All 34 100.00 19.00 53.00 25.35 24.50 6.17 20.00 30.70
Female 7 20.59 19.00 53.00 30.57 28.00 7.90 22.60 40.40
Male 27 79.41 19.00 31.00 24.00 23.00 12.45 20.00 28.80

Size
All 34 100.00 160.00 194.00 165.65 178.00 10.78 168.00 185.70
Female 7 20.59 160.00 173.00 165.86 168.00 5.67 160.00 171.20
Male 27 79.41 168.00 194.00 179.44 180.00 8.74 171.80 186.00

Weight
All 34 100.00 46.00 104.00 72.00 73.00 3.50 56.60 85.00
Female 7 20.59 46.00 70.00 58.00 56.00 5.69 49.60 69.40
Male 27 79.41 58.00 104.00 75.63 75.00 10.61 63.00 85.00

Table 1. Sex-related statistics of subjects used in the experiment

for our evaluations. Futhermore, suggestions for choosing
this features are accounted.

(i) Pelvic Bones: This complex feature includes the lo-
cation of the pelvic bones on the seat mat. They
produce the highest amount of pressure on the seat,
which could be detected by the position of the two re-
gions on the mat with maximum pressure value. An
example of how this could be found is shown in Figure
3. In our current implementation, euclidian distance
between the two points with the highest pressure is
calculated and used for further evaluations.

A. Durability: The distance of pelvic bones does not
change if we gain weight or wear different clothes.
Thus, this feature is permanent.

B. Sex-dependency: Females have a differently shaped
pelvic than males. The possibility of discrimina-
tion has been identified and published early, e.g.
in [7] and [17].

(ii) Mid to High Pressure Area: The value for this
feature is calculated from the number of sensors where
it’s load is higher than 10% of maximum pressure force
indicated on the mat. In Figure 3, amount of this fea-
ture is equivalent to the number of non-white pixels.

(iii) High Pressure Area: This feature is the area of
pressure cells with values exceeding 90% of the max-
imum pressure measured on the mat. It can be seen
as the dark-grey surface in Figure 3.

(iv) Weight: Is calculated as accumulation of pressure
values, measured on any of the 1.024 sensors. By the
reason that every sensor covers the same area we can
simply add up the individual amounts. The result is a
fairly constant indicator for the weight of the current
person. As explained later, we do not get an exact
value for person’s weight, it is a rather vague estima-
tion; larger sensor mats and higher resolution could
probably solve this problem.

The combination of the distinct features (i) to (iv) from
above directs to the feature vector, which is stored into
the database.

Sitting Postures
Due to the fact that drivers are sitting in many different
postures, there were several enrollments for each person
necessary (the pressure maps of different persons sitting in
similar postures are on the contrary very much alike).

If a person ”A” sits in a specific posture during the en-
rollment process, e.g. leaning forward, then everyone that
sits later in a similar posture and has not been enrolled for
that posture will also be identified as person ”A”. To avoid
this, we specified specialized enrollment-rules as a fixed set
of sitting postures. Each person has to be enrolled for all
of this postures, in the current experiment only the posture
”sit upright” had been used for evaluations.

Permanent and Unique Features
Although the bottom is a rather permanent part of the
body, the pressure map we get is it not: It changes with
every movement. This makes it hard to find features that
stay stable. One feature that is independent of movement
is the total pressure we exert on the ground. It changes in
a linear fashion with the person’s weight. Tests had shown,
that with the currently hardware we get only a very vague
estimation of the total pressure:

(i) Mat size: For a couple of test persons the seat mat
is a little bit too small (in that case, part of the legs
are lying outside the sensing surface).

(ii) Pressure range: At some points, especially at re-
gions of pelvic bones, the pressure exceeds the cal-
ibration range maximum of the mat. Sensor values
are cut at 26, 67kPa and therefore a correct estima-
tion of the total pressure on this area is not possible
anymore.

(iii) Weight estimations: By reason of unbalanced load
sharing and dead space between the sensors, the total
weight could not be exactly estimated from the sum
of all charged sensors.

Training Datasets
Basis for the identification process is a database with as
many data sets as possible. The implemented enrollment



Figure 3. Pressure on the car seat with over-
layed pelvic-bone identification

process determines the features of 5 different pressure maps,
takes the median value of each and stores the resulting fea-
ture vector along with a timestamp and some personal data;
statistical characteristics are calculated later. Although the
driver of a car is severely limited in his movements (e.g.
leaning to the side) there is still enough diversity that a
single enrollment is unable to cover all aspects. The pres-
sure distribution on the seat changes dramatically even with
small movements – to encounter this, we enrolled every per-
son at least 4 times.

Classification and Mapping
The identification process determines the feature vector of
a new pressure mat reading and tries to find the closest
vector in the database. Pairwise distances between all vec-
tor elements are calculated, multiplied with a weight factor
and accumulated to the final indicator. The weight factors
were obtained from experimental test series, with all fea-
tures transformed in a ”normalized space” to allow a mean-
ingful comparison. Test series showed that most features
perform almost identical, only the ”High Pressure Area”
turned out to be a rather poor indicator.

6. Results

The biometric identification features universality and
collectability are trivially supported by our system. Con-
sequently, we discuss the remaining characteristics perma-
nency and uniqueness in more depth.

Permanency
Table 2 shows a confusion matrix of the seat mat for the
experiment described in section 4 above. All sitting posture
variantes4 of a subject with objects in the back-pocket are
compared to each other. The upper triangular part of the
confusion matrix shows the distinctions between postures
with different artefacts. The scale factor was determined
from the maximum difference of any two ”normal” sitting
postures, out of the 34 subjects in the database. The factor
has been, independently for seat and back, set to 100%. No
artefacts have been directly placed on person’s back, there-
fore variance on the backrest-mat is only little (maximum
of 28.27%, corresponding table is not shown) compared to
variances on the seat mat. On the seat, the maximum differ-
ence for the pressure pattern between one subject in normal
posture and the same person with applied artefacts in the
back-pockets is 58.88%. For reliable person identification
this value is quite high, especially when compared to the
maximum difference of any persons which is 100.00%.

N KL KR CL CR DL DR DRKL
N - 29.4 39.8 50.0 46.5 55.6 52.7 58.9
KL - 38.3 42.6 43.0 48.4 49.9 51.0
KR - 33.8 33.5 49.0 36.0 47.7
CL - 34.0 37.0 37.6 45.4
CR - 36.9 28.8 39.5
DL - 41.8 34.3
DR - 31.5
DRKL -

Table 2. ”Permanency-Test”: Confusion ma-
trix of postures with artefacts for the seat

Experimental Results. In the current prototype the fea-
ture permanency cannot be guaranteed if allowing any kind
of artefacts in the pockets or even different clothes. Statisti-
cal characteristics of the artefact-afflicted datasets (minx =
28.82%, x = 41.89%, maxx = 58.88%) are very similar to
that of the normal datasets (minx = 24.78%, x = 54.79%,
maxx = 100.00%). A more detailed comparison is given in
Figure 4 as well as in Table 3.

Uniqueness
For determining the accuracy and uniqueness of pressure
patterns, the feature vector as described in section 5 has
been evaluated for two subjects with a large number of
recordings (31, 105 samples). Table 4 shows the results for
the feature weight (raw data in the upper rows, normalized
weights in the lower – factorized with the reference weight,
as indicated in paragraph ”Reference Weight” above). The
mean-value gives a relative precise estimation of actual per-
son’s weight, but deviation is rather large. For evaluating
4Abbreviations for artefacts: N . . . Normal posture, KL
. . . Bunch of keys, left back-pocket, KR . . . Bunch of keys,
right back-pocket, CL . . . Cell phone, left back-pocket, CR
. . . Cell phone, right back-pocket, DL . . . Digital camera,
left back-pocket, DR . . . Digital camera, right back-pocket,
DRKL . . . Digital camera, right back-pocket and bunch of
keys, left back-pocket



Data Database Min Max Mean Median Std.Dev.
Sets xmin xmax x x̃ σ (P25) (P75)

Seat mat (normalized)
34 Normal 24.78 100.00* 54.79 52.93 12.39 46.45 62.08
8 Artefacts 28.82 58.55 41.89 40.79 8.13 35.59 48.75

Backrest mat (normalized)
34 Normal 15.16 100.00* 41.10 38.43 12.00 32.21 45.56
8 Artefacts 11.61 28.27 20.02 19.47 4.16 17.37 2.45
*Maximum difference of any two normal datasets has been set to 100%

Table 3. Data characteristics for boxplots of seat- and backrest-mats

Data Actual Min Max Mean Median Std.Dev.
Sets Weight xmin xmax x x̃ σ (P10) (P90)

Weight
105 75.5 137.976 196.339 176.589 177.599 14.530 157.749 193.004
31 80.0 162.937 212.093 192.251 196.602 13.933 165.606 207.200

Weight (Normalized)
105 75.5 58.797 83.667 75.251 75.682 6.192 67.223 82.246
31 80.0 69.433 90.381 81.925 83.779 5.937 70.571 88.295

Table 4. Accuracy of consecutive measurements of 2 subjects

the feature uniqueness, test candidates have been sat into
the car again and a larger series of consecutive readings
have been processed. For each of the tests measured pos-
tures have been compared to all patterns in the database
and a list of deviations was stored in a separate table. The
rank was assigned in the order of minimal differences – rank
1 means least deviation between current feature vector and
the database-value (=best match), rank 34 means largest
difference (=worst match, because database has exactly 34
datasets).
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Figure 4. Boxplot comparing differences be-
tween the 34 ”normal” datasets and that with
”artefacts”, each for seat and back

Experimental Results. A graphical representation of re-
sults can be found in Figure 5 (disjoined for the two exper-
iments). The dark grey bars in the diagram shows that the

matching algorithm for the 31 readings of experiment 1 di-
rects to rank 1 to 6. This means at worst case, which occurs
in only 3.33%, matching between a measurement against all
34 postures in the database results in place 6. This stands
for rather high stability for the sitting posture of that per-
son. But on the other hand it can be seen, that exact match
(=rank 1) is obtained in less than 25%, which of course is
poor. Light grey bars shows results for the 2nd experiment,
which is divergent to the first one: Exact match is here
given in 48, 08%, but the remaining 51.92% are nearly even
distributed to all ranks. 86, 54% are assigned to ranks 1 to
10, the remaining 13, 46% are splitted into places 11 to 30.
Absolut worst case (which occurs in 0.96%) is the classifi-
cation into rank 30.

7. Conclusions

Motivated by an ample emergence of in-car services go-
ing way beyond the usual automatic customization of the
vehicle’s comfort configuration, to networked car services
like mobile internet, dynamic road or dynamic insurance
pricing, networked maintenance and entertainment services,
etc., which all are reliant to unambiguous and unmistak-
able, continuous driver authentication, we have developed
a driver identification method based on the biometrics of
sitting.

Our approach is based on implicit interaction, inspect-
ing sitting postures, acquired from pressure mats on driver’s
seat- and backrest. Posture recognition, opposed to vision
detection techniques, does not suffer from environment con-
ditions like brightness or weather. The measuring system
itself is invisibly and unobtrusively integrable into the vehi-
cle seat and avoids attentive participation of the user. In an
experimental setup we have evaluated our system against
the features of biometrical identification systems like uni-
versality, collectability, permanency, and uniqueness.
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Figure 5. ”Uniqueness-Test”: Matching ranks for two test participants with 31 (dark grey) and 105
(light grey) samples. Results above rank 15 are merged into one class.

The primary conclusions are:

(i) Universality and (ii) Collectability: All utilized
features are based on pressure patterns, acquired from
a seat- and a backrest-mat (unobtrusivly integrated in
a car seat). A driver has to sit on the seat, therefore
both of the features universality and collectability can
be guaranteed.

(iii) Permanency: This feature gives evidence about sys-
tem stability regarding ”noise” caused by the driver
(e.g. with different clothes, artefacts in the pockets,
age or weight). Experiments confirmed our assump-
tions that the system is vulnerable to (large) objects
in the back-pocket and to different clothes (ski overall
vs. swimming trunks).

(iv) Uniqueness: Results from the test on uniqueness are
rather poor. In the smaller experiment, exact match-
ing between 31 test data sets and the database is given
in 23.33%, while deviation is very low (in any case, the
comparison leads to classes 1 to 6, with highest val-
ues on rank 2 and 1). A small value for the variance
stands for high systems stability and ”low noise”. The
second experiment on 105 data sets directs to a di-
vergent result: Exact match is given in 48.08%, the
remaining 51.92% are dispersed from classes 2 to 30,
with 86.54% inside classes 1 to 10.

Nevertheless, rework on algorithms on the basis of changed
features should lead to major improvements, especially for
the parameter uniqueness:

(i) Feature Vector Calculation: Execute comparison
of parameters first, after that apply weight factors
and finally calculate the feature vector (the other way
around as now).

(ii) High-Pressure Areas: Because of excessive loads
on the mat for special regions (e.g. on pelvic bones),
low- and mid-pressure areas should be used more ex-
tensivly.

(iii) Filters: Low-pass filters should be applied to ac-
quired data before performing feature-evaluations.
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