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ABSTRACT
The usability of remote controls for home entertainment sys-
tems like TV sets, set-top boxes, satellite receivers and home
entertainment centers has reached overstraining complexity:
about eight to ten remote controls with about sixty to eighty
push-buttons each are typical for a home entertainment sys-
tem setting today. To be able to harness the ever growing
remote control interaction complexity, we propose physical
shortcuts to express the most frequently used control com-
mands. Embodied into an orientation aware artifact which
serves as a tangible user interface, physical shortcuts are ar-
ticulated as hand gestures by the user, and converted into
control commands compatible with the built in infrared re-
ceivers of standard consumer electronics.

Starting with an analysis of the kinematics of the human
hand, the types of grip and its correlation with the size and
shape of an object which the hand grasps and holds, we
study different tangible interface geometries with the po-
tential to serve as a physical shortcut interface, and thus
as a complementary remote control. Besides cubical and
cylindrical artifact geometries of different sizes, also hybrid
shapes are investigated with respect to their affordance, i.e.
the action possibilities of an artifact readily perceivable by
an actor. For the final cube like tangible interface design,
ATMega168 microcontroller based electronics involving a
three axis acceleration sensor and a gyroscope, together with
low power IEEE 802.15.4 wireless communication compo-
nents have been developed. A finite state machine based
software architecture is deployed for artifact based hand
gesture recognition, and table driven issuing of IR remote
control commands. Finally, a fully functional cube remote
control, the TA cube, is presented as a tangible remote con-
trol for an IPTV set-top box.
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1. INTRODUCTION
Remote controls for home entertainment systems, such as
television sets, sound systems and set-top boxes, are de-
signed according to a one button per function paradigm.
Function overload of modern entertainment systems hence
makes button based remote controls a rather confusing user
interface. While some of the buttons are not used at all and
some are used occasionally, there are usually a few func-
tions that are used frequently: hopping channels/stations
(TV or radio), controlling the volume and switching on/off.
Recent television platforms like IPTV set-top boxes, addi-
tionally provide a graphical user interface in order to navi-
gate through a hierarchical menu structure, demanding even
more buttons or yet another remote control.

Figure 1: Grip-kinematics and capabilities of the
human hand: power grip (above) and precision grip
(below) [10].

Inspired by the observed inadequacy of the button-based re-
mote control designs with respect to frequently invoked con-
trol commands, we have started to investigate on alternative
control designs. As one such alternative we propose physical
shortcuts, allowing to issue control commands with gestures
natural to the human hand. These physical shortcuts are
implemented as gestures for tangible artifacts, requiring a
convincing affordance and a simple but sufficiently versatile



gesture set. Operating traditional remote controls follows
a certain pattern, illustrated with the example of watching
TV: (i) grabbing the remote control to switch on the TV,
(ii) pushing some buttons while watching TV, (iii) putting
away the remote control when done. Analyzing this informal
interaction protocol reveals that the human hand already
undertakes a lot of actions prior to the intended launching
of a command, like grasping, holding or turning it to a face-
up position. These hand gestures, are already expressing
intent for a command launch, which could already be used
to invoke the command itself. This observation and the de-
sign motivation of making command invocation easier and
quicker, encourages a the use of tangible artifacts that can
be manipulated using one’s hands and that support a “grab-
to-switch-on” functionality. An important essential in the
design process for a tangible remote control is the function-
ing of the human hand when it comes to grip and control: a
human hand can fundamentally execute two different kinds
of grip [10]: a power grip and a precision grip (cf. Fig. 1).

This paper is organized as follows. We first devote a more
rigorous analysis of the literature which looks at remote con-
trols from a tangible interfaces point of view (section 2).
Motivating and implementing our own design is covered in
section 3, presenting usability and interaction related design
issues, and section 4, presenting physical implementation de-
tails of the design in hard- and software. Finally, qualitative
results are presented in section 5.

2. RELATED WORK
Tangible interfaces have a broad coverage in the human com-
puter interaction literature, and various concepts as well as
prototypes of tangible interfaces have been presented. While
tangible objects such as augmented toys incorporate both
form and function and therefore clarify the interaction style
[6], it is much harder to design tangible artifacts for abstract
tasks such as controlling a media center. In [3], for instance,
so called “navigational blocks” (wooden cubes containing a
microprocessor and labeled with a unique ID) are proposed
to be flipped to either of their six sides in order to query
information about certain elements in a virtual gallery. In
[14] a commercial mobile phone is enhanced with near field
communication capabilities and an accelerometer in order to
control a personal computer using simple gestures. A cylin-
drical tangible user interface with embedded displays and
sensors, TUISTER, is presented in [1]: upper and lower half
of the cylinder can be twisted against each other, enabling
interaction with respect to the absolute space orientation in
order to infer which one of the two halfs was twisted (to dif-
ferentiate between fine grained and coarse browsing in hier-
archical structures). [4] gives an example on how to control a
PC’s media player using a tangible artifact incorporating ac-
celerometers, magnetometers and gyroscopes, with respect
to a pairing mechanism (the artifact allowed to sequentially
control more than one actuator using RFID tags). A tangi-
ble media control system is also presented in [13], allowing
to control objects (such as a cube that can be flipped to
each of its sides) augmented with RFID tags and a tracking
system to control e.g. a software midi synthesizer. [2] shows
the results towards remote control in a living room through
tangible user interfaces. One of the projects, Flip’n’Twist,
uses a cube and a dial for media control by flipping the
cube to its different sides and turning the dial. Each side

of the cube sets the media control system in a distinct state
(such as play, seek and volume control) and lets the user
utilize the dial for fine grained operations. [15] classifies
13 different computational toys that can be considered tan-
gible user interfaces. The five cube shaped artifacts allow
various interaction styles, such as stacking, shaking, turn-
ing, flipping and touching, regarding adjacency, sequence
and network topology of multiple devices if applicable. In
[9], a cube comprising accelerometers and a proximity sen-
sor is presented that can determine which side is facing up,
whether one of three predefined gestures was performed and
if the side facing up has changed (transition). Our prototype
can distinguish more then these states and transitions as it
incorporates an additional gyroscope in order to track rota-
tions around the vertical axis. To keep power consumption
low, the gyroscope is powered only when it is needed (see
section 4.1). A similar approach regarding the underlying
technology was taken in [16] where two accelerometers were
used to distinguish which side of a cube shaped tangible user
interface was facing up. The cube comprised a display on
each side and a speaker so that it was well suited for ap-
plications such as quizzes, a math/vocabulary trainer and a
letter matching game.

Observations of our previous prototypes for media control
using (amongst others) a cube as the tangible artifact [5],
we have realized that a system relying on a cube that can
be flipped to its sides to distinguish among different modes
of operation requires the user (a) to be very skilled in the
usage of the cube or (b) to have a look at the cube each
time interaction occurs in order to find out where to flip
it, if the cube has corresponding annotations. It is easy
to get confused and lose track of the current state and on
which side to flip next. Additionally, it is hard to find a
certain side of the cube if it is currently facing down or away
from the user. By turning or flipping the cube to find the
corresponding side, unintentional interaction could occur,
leading to disaffection and desperation.

Thus it appears useful to use other gestures for cube interac-
tion than flipping—we have therefore implemented a gesture
library for media control using a cube with a labeled but-
ton on top. That way, the cube has a base orientation with
the button facing up and the label being readable by the
user. The possible gestures include tilting the cube to the
front/back/left/right, pressing the button and turning the
cube around the z-axis (the one heading upwards “through”
the button). Each gesture leads back to the base orientation
thus providing the user a known situation to start from.

In [8] an accelerometer based gesture control for a design
environment is presented that allows users to map arbitrary
gestures to certain functions (personalization). Besides con-
trolling a VCR by supporting commands such as on, off,
play, stop, forward and many more the gesture control sys-
tem is also suited to navigate in a 3D design software. An
enclosed user study shows that different users use different
gestures for a certain command—for instance at least 20
gestures were mapped to the VCR record task by the test
persons. While personalization is an important issue, our
prototype defines a fixed set of gestures for simplicity’s sake:
users can execute the tasks they want to accomplish (con-
trolling a TV set) instead of personalizing their tangible user



interface. Furthermore our cube is a remote control that is
probably used by more than one person, thus it is easier to
provide only one gesture set instead of forcing the users to
identify themselves somehow to load their specific gesture
sets. Nevertheless, personalization will be addressed in fur-
ther projects, starting with personalizing the graphical user
interfaces of IPTV set-top box menus according to users’
behaviors.

3. DESIGN
Aside aesthetical and haptical issues, the design of a tangi-
ble remote control has to address the aspects of simplicity,
affordance and focused functionality. As for the appearance
related issue of a remote control, we follow the well estab-
lished norm of product design proposed by Norman in [12].

3.1 Simplicity
Simplicity means that the usage of a product, an artifact, a
tangible remote control should be easy and quick [12]. Every
user should be able to handle the interface intuitively and
without any training time. There shouldn’t be any barri-
ers taking an interface and using it. To avoid such barriers
we observed people in public places and other familiar envi-
ronments, focused on physical objects that people play with
when they work, relax, talk or think.

We chose a cafe as such public place because it unifies the
situations of working, relaxing, talking and thinking in one
room. Our observations revealed that people tend to grasp
and play with handy objects decorating their table. We ob-
served that they perform different gestures with the can of
their drink (cf. Fig. 2(a)). They turn it horizontally, verti-
cally or shake it. Turning distinguishes itself as a smooth
and endless movement corresponding to continuous input.
But people also take cigarette packets or mobile phones and
flip them on their different sides, rotate them or shake them
(cf. Fig. 2(b)). These movements corresponds to discrete
input which is typical for cuboids.

(a)

(b)

Figure 2: Experimental studies of handling well-
known objects: (a) can, (b) cigarette packet.

Based on our observations we decided that users should han-
dle our tangible user interface as intuitively as if it was a can
or a pack of cigarettes—the user should be able to easily per-
form basic gestures such as rotation or flipping. To support
this, the interface needs an affordance similar to a can or a
cigarette packet.

3.2 Affordance
Affordance is a main concept in the industrial design process,
as it is in many other disciplines. It means that an object

which should be used by a human must invite to be taken
and handled it in a purposeful way. The object design should
force the user to employ it correctly [11].

To observe the affordance of different shapes, we developed
a number of 3D printed prototypes (cf. Fig. 3). Experiments
with adults and children demonstrated which shapes lead to
which gestures: The cube has a pleasant size for a hand and
encourages the user to grab, flip and rotate it. During our
tests we also found that people pressed their fingertips into
the holes at the cube’s edges. The two red knobs animate
the user to turn and drag them across the surface of a table.
The two knobs distinguish only from how they were touched.
Knob (b) was touched and moved with forefinger and thumb,
knob (d) with the whole hand. The green cuboid forces test
persons to press on the integrated touch screen, rotate it
around the rounded vertical edges or flip it.

(a) (b) (c) (d)

Figure 3: Prototypes for experimental affordance
studies [4].

Our next step was defining the target group of our interface.
We specified the typical remote control operator as an ordi-
nary user of an entertainment system without any technical
knowledge and motivation to handle a button glutted remote
control. Also, the user is probably confronted with the chal-
lenge of finding the proper remote control (between all the
others) for controlling the entertainment center. We thus de-
cided to add another requirement: our artifact should grab
the user’s attention in order to be preferred over a standard
remote control and it must have a size so that it can be eas-
ily grabbed with one hand to further increase the affordance
of taking it into one’s hand.

We studied appearances with different interface designs to
determine how discrete and continuous motions could be
mapped to 3D primitives. Fig. 4(a) shows an equilateral
cube with rounded edges and corners. The cube can be
flipped to every face as discrete motion and turned around
every axis as continuous motion. Fig. 4(b) depicts a cylindric
shape like a can which can be continuously rotated around
the x- and the z-axis. It is also possible to flip it over the
horizontal edge as a discrete movement. The hexagon, as
illustrated in Fig. 4(c), has an arched bottom with six faces.
The user topples the interface by tipping it on the top as
discrete move limited to six states. A rotation about the z-
axis is possible, but the edgy form forces a gradual rotation
and not a continuous one.

Tests with the cube, the can and the hexagon determined
that the cube is the best shape for our intentions. The cir-
cumcircle of the cube faces provides the constant radius for
the turning motion, the rounded edges support the user to
flip the object. In order to find out more about the affor-
dance and ease of use of cubes we designed a set of cube
versions. Fig. 5 (a) shows a cube which can be twisted in
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(a) (b)

(c)
.

Figure 4: Gestures alphabets for tangible artifacts:
(a) cube, (b) can, (c) hexagonal.

the middle. Version (b) is a cube with holes at the vertical
edges for a safer grip and orientation. Model (c) has a flat
corner which lets the cube be positioned in stable state, in-
dicating the initial system state. As forth design concept we
created a cube with a sash positioned at the golden section
of the cube as orientation support (cf. Fig. 6) and a pedestal
for bringing the cube to its “standby”-state (cf. Fig. 7).

After developing several virtual cube models we have pro-
duced physical models to analyze usability and technical re-
alizability. The next step was excluding the counter-rotating
cube design (fig. 5(a)) because it affords bi-manual handling
which conflicts with the single-hand grip-kinematic of a hu-
man hand. The grasp supporting form in fig. 5(b) confused
the users orientation, because it’s hard to distinguish top
and bottom. Finally the cube design in fig. 6 stood up
to cube (c) because it was most adequate to the defined
functionality (cf. Fig. 7), supported the single-hand grip-
kinematic and is based on one orientation possibility.

(a) (b) (c)

Figure 5: Cube designs highlighting individual de-
sign aspects: (a) counter rotation, (b) grasp support,
(c) stable initial state.

(a) (b)

Figure 6: Final artifact design.

3.3 Focused Functionality
Having in mind a tangible remote control that is supplemen-
tary to a vendor provided remote control control, with the
aim to quickly invoke the most frequently demanded com-
mands, an analysis of a minimum meaningful set of com-
mands revealed to focus on changing volume, switching the

channel or navigating the menu, switching ON and OFF and
bring the system to its origin state.

These functions were mapped to gestures which can be ef-
fected by the final cube design (cf. Fig. 7): flipping up
and down, turning left and right, shaking and resting. As
additional function and orientation support the cube was
equipped with a push-button to switch between the set-up
mode and the operation mode of the set-top box. Operating
mode functions are volume and channel change which are ac-
tivated by pressing the mode push-button. To change the
volume the user has to rotate the cube horizontally. A clock-
wise rotation increases the volume, an anticlockwise reduces
it. Switching the channel is caused by flipping the cube up
and down. These gestures are also used in the set-up mode
without pressing the push-button to navigate through the
menu. To set the set-top box in standby mode the cube
must be put on the pedestal. Shaking the cube left-right
navigates to the menu home.

Figure 7: The operating alphabet of the TA cube.

4. HW/SW DESIGN
The cube platform consists of two different hardware com-
ponents: The cube itself, which is responsible for gesture
detection, and a converter box, which converts the gesture
commands into infrared signals compatible with standard
home entertainment equipment. We have designed a simple
but flexible protocol to transmit gestures from the cube to
the converter box, which maps these commands to IR codes
using a lookup table. We use the protocol to transport data
for other applications as well, like the pairing process be-
tween cube and converter, or for monitoring a stream of raw
sensor data.

4.1 Cube Platform
After an analysis of the necessary gestures, we have assem-
bled an initial prototype to test the set of sensors we have
intended to use by extending a MicaZ-board, which we se-
lected as our first platform after evaluating the power re-
quirements and the radio subsystem. (cf. Fig. 8)

Figure 8: Initial Cube Hardware Prototype.

While we have found that this board is the right system
in principle, it actually offers too many features along with



a too large board footprint. We have therefore selected a
smaller Atmel CPU (an ATMega168 in a 32-pin package)
as our system core. The final PCB we have produced needs
less space, hosting all components on a single-side, dual-layer
38x48mm board (cf. Fig. 9).

Figure 9: The final PCB—power supply and sensors
are in the top left corner.

The board size has been determined by the cube design,
which has provided us with enough slack to place all compo-
nents on a single side. As can also be seen in the schematics
(cf. Fig. 10), the board consists of four functional blocks:
The microcontroller and expansion bus section, the sensors,
the radio subsystem and the power supply.

4.1.1 Microcontroller Subsystem
We use an ATMega168 with an external 32kHz oscillator
as the core, the firmware uses a little bit more than 9 of
the available 16 kB of program memory. When running,
the core operates on the internal RC-oscillator, at about 7.7
MHz. As this frequency changes widely with temperature,
we have equipped the board with a mount option for differ-
ent crystals, so it can be used securely when communication
over a serial line is needed.

The 16-pin connector visible on the bottom left of Fig. 9
board provides an interface to the CPU for the in-system-
programmer and features all supply voltages as well as a
number of unused pins for future sensor- or interface boards.
As the microcontroller has a limited pin-count, the connec-
tor shares some of its pins with the gyroscope, which may
be omitted if the board is used for other applications.

4.1.2 Radio Subsystem
When we initially considered the requirements for a gesture-
based control, it became clear very soon that integrating in-
frared emitters into the cube would not be a good solution:
In order to reach the TV set, it would take at least one
LED on every side of the cube, which results in considerable
power-drain on the batteries on every command issued; fur-
thermore, the LEDs would require holes in the cube surface,
which would have a negative impact on the object design.

After an evaluation of available radio protocols and hard-
ware (Bluetooth, ZigBee, wireless USB, telemetry solutions),
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Figure 10: Cube platform layout.

we have decided to use a IEEE 802.15.4 compatible radio
solution (a Chipcon CC2420) as they matched our system
requirements best: Quick power-on times and low memory
footprint for the radio stack keep system complexity down
while pairing the requirements for an “interactive” feeling,
we can send packets after a few milliseconds after powering
up.

4.1.3 Sensors
In order to detect the gestures we have defined, and possi-
bly others as well, we have decided to use a triple-axis ac-
celerometer based on the Analog Devices ADXL330, which
provides acceleration data on three analog outputs, which we
connected directly to the ADC pins of the CPU. The data
acquired lets us extract accelerations and the orientation of
the cube with respect to gravity.

For the volume control commands, we use an additional gy-
roscope to detect rotations around the cube’s z-axis which is
heading from bottom to button (top). The ADXRS 300 that
we use provides the angular rate as a voltage level similar
to the accelerometer and includes a temperature sensor (for
internal drift compensation) which could also be read out.

4.1.4 Power Subsystem
Minimizing power consumption was a major issue in the sys-
tem design, which influenced hardware decisions as well as
the software architecture, but we had to cope with some
unknown parameters for this prototype, like the size and
type of battery that would be available. Therefore, we de-
cided to use a step-up converter that can cope with input
voltages between 0.8 and 5.5V, which enables us to oper-
ate the board with a single cell or rechargeable packs alike.
While the CPU and radio chip would work at 1.8V, the ac-
celerometer needs at least 2V so we decided to use a more
common supply voltage of 3.3V for these components; the
gyroscope needs a 5V supply, therefore we had to introduce
a dedicated converter for this sensor. In order to minimize
standby power consumption, we switch on the components
only when they are needed: The accelerometer consumes
only 330uA at 3.3V and can be powered directly by an out-
put pin of the CPU. The gyroscope consumes a considerable
amount of power (over 2mA in operation) and is switched



on and off using a MOS-switch to cope with the different
input voltage.

With a duty-cycle of 60ms between measurements, the board
consumes 600 µA on average, peaking at 24 mA when the ra-
dio receiver is on and 48 mA when the radio chip is transmit-
ting a packet. In a test-setup where we performed the usual
axes-readout and monitored battery voltage additionally, we
transmitted over 120.000 packets (sending every three sec-
onds) using a single AAA cell. Performance could be opti-
mized further by drastically reducing sleep-state power con-
sumption via a redesign of the power path and by using the
new nano-power class of Atmel processors that use around
0.6 µA in sleep mode. Unfortunately, these have not been
available at project time.

4.2 Cube Firmware
The firmware that operates on the microcontroller consists
of two main blocks: One part is responsible for reading out
the sensor values, while the other part consists of the radio
stack. The whole system is driven by a timer interrupt that
wakes up the CPU from deep sleep every 60 milliseconds.
The firmware then starts the sensor data acquisition, ana-
lyzes the data via a finite state machine, optionally sends a
packet over radio and goes back to sleep again.

4.2.1 Gesture Data Acquisition Loop
When the device wakes up, it turns on the accelerometer
supply and the ADC block and reads out the values on the
axes before switching everything off again. Using a set of
thresholds, we convert the raw acceleration readout of each
axis to one of three values—idle, low and high—indicating
that there is either no force on an axis (idle—equivalent
to VDD/2), or that it is either positively (high) or nega-
tively (low) accelerated. The finite state machine (FSM)
uses these values as its input to switch between detection
states. We have mapped each state to one function that
handles the temporal behavior of the system (the up super-
state in Fig. 11 is implemented as one function) in favor of a
table-based approach due to the (RAM) memory constraints
of the processor. Adding new gestures can easily be done
by adding a new state enumeration and an accompanying
function.

4.2.2 Navigating—Cursor Mode
When the cube is in an upright position, it is in the idle
state, which is the start of every gesture.

If a user tilts the cube around an axis over a certain angle
(≥ 40◦, again defined by the threshold), the corresponding
axis reaches a threshold and one of the states right, left, up
or down is entered. When the user returns the cube to its
initial position, the corresponding command (right, left, up,
down) is sent via radio and the state machine returns to its
idle state.

Informal user tests have shown us that many people use this
“tilt-and-back”-behavior, while others were confused—they
tilted the cube and waited for a reaction, which eventually
came when they gave up and returned the cube to an upright
position. To cope with this user group, we have introduced
an additional timeout, so a command is emitted if the cube

is tilted longer than 500ms. We have also experimented
with an auto-repeat function, but we found that our testers
would need more time to get used to this additional func-
tionality while they were getting accustomed to the gestures
themselves.

idle

up

idling

acc_y <= ub
/ i=0

acc_y >ub && t<14
/ t++

up

shake acc_y <db

standby

acc_y > ub && 
(acc_x < lb || acc_x > rb)

acc_y >ub

i>2 && acc_y <= ub
/ <up>

fired

t>=14 && acc_y > ub
/<up>

i>2 && acc_y <= ub

acc_y
> ub

i++

i++

Figure 11: Gesture FSM: Detailed view of the up
super state.

Furthermore, we try to minimize accidental triggering of
commands by using time thresholds as well—a state needs
to be active for at least three cycles before it is allowed to
start the radio subsystem. Likewise, we ignore a return to
idle for up to two time slots to eliminate unintended returns.
Fig. 11 presents a detailed view of the resulting super state
for the up gesture: The FSM enters the up state when the
acceleration on the y-axis ( acc y ) has exceeded the upper
threshold ub. It stays there as long as this condition holds
on, up to 14 iterations (equivalent to 800 ms), thereafter the
<up>

¯
gesture is sent over radio and the state machine stays

in fired until the user returns the cube into idle state. The
FSM enters the idling sub-state when acceleration drops be-
low the threshold, and fires a packet as well if this is detected
at least three times. When an acceleration in the opposite
direction is detected, shake state is entered, or when the
user starts to tilt the cube on the other axis as well the
state machine enters standby.

4.2.3 Button Use
The cube button serves a dual purpose. Obviously, it acts
as a button: when it is pressed and released again, an “ok”-
command is emitted—internally the state machine enters
and leaves the button state. In addition, the button serves
as a mode switch that overlays the navigation gestures de-
scribed above. The up and down commands are replaced
by channel+ and channel− commands. If either of these
two is detected, the state machine switches only between
the channel+ and channel− states according to the y-axis
readout to let people zap through channels until the button
is released.

In addition, we turn on the gyroscope when entering the
button state and analyze the current readings to detect an-
gular movement. If the cube has not been tilted yet and
we find rotation, the FSM enters a volume control mode:
whenever the cube is turned to the left, volume− is entered,



analogously volume+ to the right. In these two modes, the
cube sends volume commands at regular intervals until the
button is released. We have experimented with other ap-
proaches as well, like sending the volume commands as long
as rotation is detected, but made our test users spin around
themselves, which could be used for gaming, but not for
casual TV interaction.

4.2.4 Special Commands
When the cube is set in its deposit, the thresholds of all
three axes trigger. Whenever such a situation is detected, we
wait for approximately two seconds until sending a power-off
command and entering the standby state. When the cube is
removed and held upright again, we instantly send a power-
on command. During standby, we reduce the sensing duty
cycle to 600ms to save more power.

Finally, we have implemented shaking gestures for seldom-
used commands: When the cube is shaken horizontally, the
state machine detects this by alternating between left and
right states. After three direction changes a gesture is rec-
ognized and the home-command is sent. As this command
forces the IPTV portal to jump to its main page no matter
where the user has been navigating before, we have selected
this longer interaction so that it cannot be triggered by ac-
cident.

4.2.5 Radio Subsystem
The software stack to control the radio subsystem has been
built around the ChipCon driver library which consists of
a small set of functions to initialize the radio chip, send a
packet and to enter receiving mode, which triggers a callback
function when data has been received.

For addressing, we use 16-bit addresses for the cube and con-
verter to communicate as well as a manually chosen PAN id
(0x2420). We have decided against implementing the PAN
association procedures that are defined in the IEEE802.15.4
standard (cf. [7]), as the remote controls should mimic the
usability of infrared remote controls: You can take any de-
vice compatible with your TV to control it, denying access
would confuse users.

When the converter is powered on, it scans every channel
to measure the current RF noise and switches to the most
quiet channel for operation. When the cube is powered on,
it looks for a converter box by sending a “ping” packet on
every channel, which must be answered by the cube under
50ms. When an answer is received in time, this channel is
marked active and used to send gesture commands. The
channel search is entered again, if packets have been sent
for more than three times without getting an acknowledge
by the converter box.

4.3 IR Converter
The converter box serves as an interface to the home enter-
tainment world. Unlike the cube, this box is always powered
and waits for radio packets. As the hardware platform for
the converter, we have extended MicaZ-boards with infrared
LED transmitters connected to the supply voltage via power
switches.

Whenever a packet matching the converter address is re-
ceived, a callback function is triggered that examines the
packet contents. If the software detects a correct command
packet, it performs a lookup in a table where it retrieves in-
formation about the infrared protocol and the IR command
value to emit. Using the timing data that we keep for each
infrared device family, it sets up a system timer that triggers
the sending function. The converter supports the protocols
for Sony, Samsung, Philips (RC5), NEC and Grundig TV
sets as well as a custom set-top box protocol (Amino).

We have hard-coded the lookup table for this prototype, but
it could be easily overwritten with new values via a configu-
ration program that lets users adapt it to their system envi-
ronment. Alternatively, as we use only commands that are
common to all protocols, every infrared protocol could be
triggered when a gesture command is received, but this has
a noticeable effect on overall reactivity, as each command
takes several milliseconds.

4.4 Gesture Command Protocol
The communication between cube and converter is encap-
sulated in a versatile protocol to transmit a large variety of
commands and protocol information. It makes use of lower-
layer mechanisms like packet transmission numbers to keep
track of lost or duplicate packets, so only the small payload
defined in Tab. 1 remains.

Byte 0 hi low 1 2 3..3+len
flags domain cmd len param0

Table 1: RF protocol structure.

The first byte defines a set of flags in the upper nibble, in-
dicating if the command is a button-press or -release event
and if a keyboard-like or mouse-like pointing device is used.
The lower nibble defines a domain of commands: We use 0
to indicate that we transmit gesture commands, 0xf is used
for protocol-control messages like the converter-scan mes-
sages or to transmit debug information. Byte 1 indicates
the command, which can optionally have up to 255 bytes
of parameters (but limited by the IEEE 802.15.4 maximum
packet size of 127). If the parameters are not used, the
length byte is set to zero.

The protocol is flexible enough to transport all usual remote
control commands, can operate in both directions for induc-
ing state changes in the rc device and can be easily extended
for other purposes: We have used it in development versions
of the cube to transport battery level measurements or raw
sensor data for gesture analysis by adding new command
codes and defining their parameters.

5. CONCLUSION
We discussed the problem of cognitive overload induced by
remote controls in daily life situations to design an alter-
native control interface with restricted functions and an af-
fording design like a tangible artifact. With our interface
design, we focused on the control of an IPTV set-top box.
First we studied human hand kinematics and types of grips,
gestures and forms which support the 3-step-usage of a re-
mote control (grabbing, switching, putting away). Finally



a cube form with rounded edges has emerged as the perfect
design for our tangible interface. This cube form allows a
rotating motion for continuous input and a flipping motions
for discrete input. So we reduced the functions of a stan-
dard remote control to the most often used like switching
ON/OFF, volume-change, channel-change and menu navi-
gation (up, down, left, right, ok and home) and mapped
them to the possible cube gestures. As mode control and
additional orientation help we integrated a push-button on
the top of the cube. The implemented hardware for gesture
recognition comprises an accelerometer and a gyroscope con-
nected to a converter box by IEEE 802.15.4. The converter
box transforms the radio signal to an infrared signal and
transmits it to the set-top box.
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[8] J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio,
G. Savino, L. Jozzo, and D. Marca.
Accelerometer-based gesture control for a design
environment. Personal Ubiquitous Comput.,
10(5):285–299, 2006.

[9] K. V. Laerhoven, N. Villar, A. Schmidt, G. Kortuem,
and H. Gellersen. Using an autonomous cube for basic
navigation and input. In ICMI ’03: Proceedings of the
5th International Conference on Multimodal
Interfaces, pages 203–210, New York, NY, USA, 2003.
ACM.

[10] J. R. Napier. The prehensile movements of the human
hand. The Journal of Bone and Joint Surgery. British
Volume, 38-B(4):902–913, November 1956.

[11] D. A. Norman. Affordance, conventions, and design.
Interactions, pages 38–43, May 1999.

[12] D. A. Norman. The Invisible Comptuer. MIT Press,
Cambridge, Massachusetts, London, 1999.

[13] S. Oh and W. Woo. Manipulating multimedia contents
with tangible media control system. In M. Rauterberg,
editor, ICEC 2004: Proceedings of the Third
International Conference on Entertainment
Computing, Lecture Notes in Computer Science, pages
57–67, Berlin, Heidelberg, 2004. Springer.

[14] T. Pering, Y. Anokwa, and R. Want. Gesture connect:
Facilitating tangible interaction with a flick of the
wrist. In TEI ’07: Proceedings of the 1st International
Conference on Tangible and Embedded Interaction,
pages 259–262, New York, NY, USA, 2007. ACM
Press.

[15] E. Schweikardt and M. D. Gross. A brief survey of
distributed computational toys. Digitel, 0:57–64, 2007.

[16] L. Terrenghi, M. Kranz, P. Holleis, and A. Schmidt. A
cube to learn: a tangible user interface for the design
of a learning appliance. Personal Ubiquitous Comput.,
10:153–158, 2006.


