
Key-Based Consistency and Availability in Structured
Overlay Networks

Tallat M. Shafaat
Royal Institute of Technology

(KTH)
Stockholm, Sweden

tallat@kth.se

Monika Moser, Thorsten
Schütt and Alexander

Reinefeld
Zuse Institute Berlin

Berlin, Germany
{moser,schuett,ar}@zib.de

Ali Ghodsi and Seif Haridi
Swedish Institute of Computer

Science
Stockholm, Sweden
{ali,seif}@sics.se

ABSTRACT
Structured Overlay Networks provide a promising platform
for high performance applications since they are scalable,
fault-tolerant and self-managing. Structured overlays pro-
vide lookup services that map keys to nodes that can be
used as processing or storage resources. The lookups for
a key may return inconsistent results. Consequently, it is
nontrivial to provide consistent data services on the top of
structured overlays that are built on key-based search. In
this paper, we study the frequency of occurrence of incon-
sistent lookups. We show that the effect of lookup incon-
sistencies can be reduced by assigning responsibility of key
intervals to nodes. We present our results as a trade-off
between consistency and availability of keys. Further, since
many distributed applications employ quorum techniques at
their core, we analyze the probability that majority-based
quorum techniques will function correctly in a structured
overlay with inconsistent lookups. Our analysis shows that
the probability of majority-based algorithms to function cor-
rectly despite lookup inconsistencies is high.

1. INTRODUCTION
Structured Overlay Networks, such as Chord [13] and DKS [3],

form a major class of peer-to-peer systems. Structured over-
lays provide lookup services for Internet-scale applications,
where a lookup maps a key to a node in the system. The
node mapped by the lookup can then be used for data stor-
age or processing. Distributed Hash Tables (DHTs) [3] use
an overlay’s lookup service to store data and provide a put/get
interface for distributed systems. Since structured over-
lays are “best-effort”, DHTs built on these overlays typi-
cally guarantee eventual consistency. In contrast, many dis-
tributed systems, such as distributed file systems and dis-
tributed databases , require stronger consistency guarantees.
These systems generally rely on services such as consensus
and atomic commit.

DHTs are designed to cope with high rates of churn (node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Infoscale2008, June 4–6, 2008, Vico Equense, Napoli, Italy.
Copyright 2008 ACM ICST xxx-xxx-xx-xxxx-x ...$5.00.

joins and leaves). Due to consistent hashing [6] in a DHT,
existing nodes take over key responsibilities of inaccessible
nodes, and newly joined nodes take over a fraction of the
responsibilities of existing nodes. Similarly, DHTs tolerate
partitions in the underlying network by creating multiple
independent DHTs and provide availability for all keys in
each DHT.

It has been proved that it is impossible for a web service
to provide the following three guarantees at the same time:
consistency, availability and partition-tolerance [5]. These
three properties have also been proved to be impossible to
guarantee by a DHT working in an asynchronous network
such as the Internet [3]. Thus, choosing to provide guar-
antees for two properties will violate the guarantee for the
third. In this work, we focus on availability and consistency
while assuming there is no network partition.

As we discuss in section 3, inconsistent data in DHTs
mainly arises due to inconsistent lookups. In this paper, we
study the causes and frequency of occurrences of lookup in-
consistencies under different scenarios in a DHT. We discuss
and evaluate techniques that can be used to decrease the ef-
fect of lookup inconsistencies. We show how decreasing the
effect of lookup inconsistencies affects availability. Based
on our simulation results, we give an analytical model that
gives the probability under which a majority-based quorum
technique works correctly. Using techniques to decrease the
effect of lookup inconsistency, we show that we can achieve
key consistency with high probability.

Outline: First, we define the DHT model that our work
is based on in Section 2. Section 3 introduces lookup consis-
tency and explains how it can be violated. Section 4 explains
techniques that can be used to reduce consistency violation.
Simulations which study the probability of a violation of
lookup consistency and the affect of techniques to reduce
inconsistency are presented in Section 5. In Section 6 we
discuss related work. Finally, Section 7 presents the conclu-
sion of our work.

2. BACKGROUND
Ring-based DHT: A DHT makes use of an identifier

space, which for our purposes is defined as a set of integers
{0, 1, · · · ,N − 1}, where N is some apriori fixed, large, and
globally known integer. This identifier space is perceived as
a ring that wraps around atN−1. Every node in the system,
has an unique identifier from the identifier space. Each node
keeps a pointer succ to its successor (first node met going
clockwise) and a pointer pred to its predecessor (first node

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008  978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3537



met going anti-clockwise) on the ring. Ring-based DHTs
also maintain additional routing pointers on top of the ring
to enhance routing.

We choose Chord [13] for our analysis, which is one of
the most popular ring-based overlay. Chord handles joins
and failures using a protocol called periodic stabilization.
The protocol works such that each node n should eventually
point to the first node clockwise from n as succ and the first
node anti-clockwise from n as pred.

Failure Detectors: DHTs provide a platform for Internet-
scale systems, aimed at working on an asynchronous net-
work. Informally, a network is asynchronous if there is no
bound on message delay. Since timing assumptions can not
be made in asynchronous networks, it is difficult to deter-
mine if a node has crashed or is very slow to respond. This
gives rise to inaccurate suspicion of node failure. Thus, fail-
ure detectors - modules used by a node to determine if an-
other node is alive of dead - work probabilistically.

Failure detectors are defined based on two properties: com-
pleteness and accuracy [2]. In a crash-stop process model,
completeness requires the failure detector to eventually de-
tect all crashed nodes. Accuracy relates to the mistake a
failure detector can make to decide if a node has crashed or
not.

3. CONSISTENCY VIOLATION
In this section, we show how lookup inconsistencies may

arise and discuss how lookup inconsistencies can lead to data
inconsistency. Unless specified, the term consistency refers
to lookup consistency, otherwise, we explicitly say data con-
sistency. A configuration of the DHT is a set of all nodes
and their pointers to neighboring nodes. A DHT evolves by
either changing a pointer, or adding/removing a node.

Definition 1. A configuration of the system is consistent if,
in that configuration, lookups made for the same key from
different nodes, return the same node.

In a configuration where consistency is violated, we have
inconsistent lookups i.e. multiple lookups for the same key
may return different nodes in that configuration. Lookup
consistency can be violated if some node’s successor point-
ers do not reflect the current ring structure. Figure 1(a)
illustrates such a configuration where lookups for key k can
return inconsistent results. This configuration arises when,
due to inaccuracy of the failure detector, N1 falsely sus-
pects N2 and N3 as failed. Thus, N1 believes that the next
(clockwise) alive node on the ring in N4, so it points its
successor pointer to N4. Subsequently, a lookup for key k
ending at N1 will return N4 as the responsible node for k,
whereas a lookup ending in N2 would return N3.

In the scenario depicted in figure 1(a), an update for the
data stored under key k will be stored at either N3 or N4.
A read for data at k will return inconsistent/old results if it
reaches the node that didn’t receive the update.

4. REDUCING INCONSISTENCIES
In this section, we discuss two techniques to reduce lookup

inconsistencies: (1) Local responsibilities (2) Quorum-based
algorithms. These techniques can be used separately, or
together to get the best results.

4.1 Local Responsibilities

Definition 2. A node n is said to be locally responsible for
a certain key, if the key is in the range between its predeces-
sor and itself, noted as (n.pred, n]. We call a node globally
responsible for a key, if it is the only node in the configura-
tion that is locally responsible for the key.

The responsibility of a node changes whenever its prede-
cessor is changed. As can be noted, a configuration is con-
sistent if there is a globally responsible node for each key.
Similarly, the responsibility for a key k is consistent if there
is a node globally responsible for k.

We modify the lookup operation of a such that a lookup
always returns from the locally responsible node. Thus, be-
fore returning the result of a lookup, the node checks if it
is locally responsible for the key being looked up. In case
the node is not locally responsible, it can either forward the
request to its predecessor or ask the initiator of the lookup
to retry.

Although the configuration depicted in figure 1(a) is in-
consistent, yet it is consistent with respect to local responsi-
bilities. This is because, instead of replying, the lookup for
k at N1 will be forwarded to N4. Since N4 is not locally
responsible for k, it will not reply. On the other hand, the
lookup at N2 will be forwarded to N3 which will reply as
it is locally responsible for k. Thus, updates and reads for
data items stored under key k will give consistent results.

If a node has an incorrect predecessor pointer, the range
of keys it is responsible for can overlap with another node’s
key range. In such a case, there will be multiple nodes re-
sponsible for the same key leading to inconsistency. This
can be seen in figure 1(b). Here, both N3 and N4 are lo-
cally responsible for k. This situation may arise if N1 falsely
suspects N2 while both N2 and N4 falsely suspect N3.

Figure 1(b) shows that the method of local responsibilities
does not completely solve the problem of inconsistencies, but
it decreases inconsistencies. This is mainly because without
local responsibility, only one node doing inaccurate failure
detections is enough to introduce inconsistencies, while mul-
tiple nodes have to do simultaneous inaccurate failure detec-
tions to introduce responsibility inconsistencies

4.1.1 Key Availability
Unfortunately, as a side effect, local responsibilities give

rise to keys being unavailable.

Definition 3. In a configuration, a key k is available if there
exists a reachable node n such that n is locally responsible
for k.

Here, a node n is reachable in a configuration if there exists
a node m such that n is the successor of m, i.e. m.succ = n
and n 6= m.

Availability of a key is affected by both churn and inac-
curate failure detectors. When a node joins the system, it
changes the responsibilities of its successor. This leads to
temporary unavailability of some keys. Figure 1(c)(i) shows
a configuration when N2 joins the overlay. N3 points to
N2 as its predecessor thus making k1 unavailable. Key k1
remains unavailable until N1 runs periodic stabilization and
sets N1.succ = N2 and N2 sets N2.pred = N1.

Similarly, failure of a node leads to temporary unavailabil-
ity of keys until the failure is detected. Such a case is shown
in figure 1(c)(ii) where N2 crashes. Key k2 remains unavail-
able until N1 detects failure of N2 and sets N1.succ = N3
and N3 sets N3.pred = N1.



X
X
N3

N1

N4

N2
lo

ok
up

(k
)

lo
ok

up
(k

)

result: N3result: N4

k

(a)

X
X
N3

N1

N4

N2

lo
o
k
u
p
(k

)

lo
o
k
u
p
(k

) result: N4result: N3

k

(b)

XX

N3

N1

N2
k1

N3

N1

N2
k2

N3

N1

N2

k3

(i)                            (ii)                                   (iii)

(c)
Figure 1: (a) An inconsistent configuration. Due to imperfect failure detection, N1 suspects N2 and N3, thus pointing to N4 as successor. (b) An inconsistent configuration with respect to local

responsibilities. N1 falsely suspects N2 while N2 and N4 falsely suspect N3. (c) Unavailability of key when a node (i) N2 joins (ii) N2 fails (iii) N1 falsely suspects N2 and updates its successor.

Inaccuracy of failure detectors also leads to unavailability
of keys. This occurs when a node falsely suspects its succes-
sor and removes its pointer to the suspected node. Keys for
which the suspected node is responsible will temporarily be-
come unavailable. Such a scenario is shown in figure 1(c)(iii)
where N1 suspects N2 leading to unavailability of k3 as N2
becomes unreachable.

Systems that implement atomic join and graceful leaves
such as DKS [3] will alleviate the case in fig. 1(c)(i), but not
cases shown in fig. 1(c)(ii) and fig. 1(c)(iii).

4.2 Quorum-based Algorithms
Like most distributed systems, DHTs replicate data on

different nodes to increase availability and prevent loss of
data. Some examples of replication in DHTs include suc-
cessor list replication [13] and key-based replication such
as symmetric replication [3]. In what follows, we assume
key-based replication, where an item is stored under various
keys [3].

The basic idea of quorum-based algorithms is that con-
flicting operations acquire a sufficient number of votes from
different replicas such that they have at least one intersection
at one replica. Gifford introduced an algorithm for the main-
tenance of replicated data that uses weighted votes [4]. In
our work, we consider majority-based algorithms which are a
special case of quorum algorithms. The reason for choosing
majority-based quorum algorithms (MBQAs) is that they
are most robust and widely used form of quorum algorithms,
e.g. in group membership, concurrency control and non-
blocking atomic commit. In a MBQA, every replica is as-
signed exactly one vote and every operation has to collect
at least a majority of votes (called a majority set). Quorum
techniques can be used separately on the data-level as well
to reduce data inconsistencies, yet our focus is to show how
to use these techniques to reduce the affect of routing in-
consistencies which will in-effect reduce data inconsistencies
in DHTs. As we discuss shortly, using replicas and majori-
ties distributes the problem of lookup inconsistency over all
replicas.

4.2.1 Key-based Consistency with MBQAs
Consider a DHT with replication degree three. A data

item to be stored under key k is thus stored under keys
{k1, k2, k3}. Say nodes N1 and N3 are responsible for
k1 and k3, while due to lookup inconsistency, two nodes
N2, N2′ are responsible for k2 1. Any update or read for
k has to operate on a majority i.e. two nodes in this case.
Consistency in the afore-mentioned case depends on the way
we choose majorities. Figure 2(a) shows a case where ma-
jorities for multiple updates overlap, thus only one update

1just like N3 and N4 are responsible for k in figure 1(b)

(a)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  2  3  4  5  6  7  8  9  10

Pr
ob

ab
ilit

y 
of

 d
is

jo
in

t m
aj

or
iti

es

Number of replicas

1 Inconsistency
2 Inconsistencies
3 Inconsistencies
4 Inconsistencies
5 Inconsistencies
6 Inconsistencies

(c)
Figure 2: (a) Example with intersecting majority sets. (b) Example with non-intersecting

majority sets. (c) Probability of getting disjoint majority sets (Y-axis) for a replica set given replica

degree (X-axis) and the number of lookup inconsistencies for the keys in the replica set.

succeeds and the data remains consistent. On the other
hand, figure 2(b) shows a case where the majorities do not
overlap, hence updates will happen on different majority sets
thus creating data inconsistent. Using MBQAs in DHTs in-
creases the chances of consistency since even with lookup
inconsistencies, multiple majorities exist that will lead to
data consistency.

Probability model for disjoint majority sets: In
this section, we use the counting principle to analytically de-
rive the probability that two operations work on disjoint/non-
overlapping majority sets given the system configuration is
the same for the two operations. The probability of disjoint
majority sets is the ratio between the number of possible
disjoint majority sets and the number of all combinations of
majority sets that two operations in one configuration can
include. We assume that for a responsibility inconsistency
in the configuration, only two nodes are responsible for the
inconsistency.

Ai,r =

min(m,i)∑
j=max(m−r+i,0)

min(m,i−j)∑
k=max(2m+i−r−2j,0)

2k+j

( r − i

m− j

)(i

j

)
(1)(r −m− i + 2j

m− k

)(i− j

k

)

Ti,r =

 min(i,m)∑
j=max(m−r+i,0)

( r − i

m− j

)(i

j

)
2j

2

(2)

pir =
r∑

i=1

(1− p)r−ipi Ai,r

Ti,r
(3)

Consider a DHT with replication degree r (where r > 0), a
configuration with i number of responsibility inconsistencies
(where i > 0) and size of the smallest majority set m (where
m = b r

2
c+ 1). Ti,r (eq. (2)) gives the number of all possible

combinations for two majority sets. Here, j is the number



of inconsistencies j included in a majority set. Since each
inconsistency creates two possibilities to select a node, we
multiple with 2j .

Ai,r (eq. (1)) gives the number of possible combinations
for two disjoint majority sets mset1 and mset2. We com-
pute Ai,r by choosing mset1 and calculating every possible
mset2 that is disjoint to mset1. j denotes the number of in-
consistencies that are included by mset1. mset2 can share
a subset of these j inconsistencies and additionally include
up to i − j remaining inconsistencies. The derived formula
is similar to a hyper-geometric distribution.

Assuming inconsistencies are independent, pir calculates
the probability that two subsequent operations in one config-
uration work on disjoint majority sets, where p is the prob-
ability of an inconsistent responsibility.

Figure 2(c) plots the probability of having disjoint ma-

jority sets pr for two operations as it is calculated by
Ai,r

Ti,r
.

It shows how pr depends on the system’s replication factor
r and on the number of inconsistencies i in the replica set.
An important observation is that an even replication degree
reduces pr considerably. The reason for such a behaviour is
that for majority-based quorums with even replication de-
gree, any two quorums overlap over at least two replicas (say
r1 and r2). Due to lookup inconsistency, even if quorums
don’t overlap at r1, there is a significant chance that they
will overlap at r2. This reduces the probability of getting
disjoint majority sets.

As lookup consistency cannot be guaranteed in a DHT,
even with using local responsibilities and quorum techniques,
it is impossible to ensure data consistency. However the vio-
lation of lookup consistency when using the afore-mentioned
techniques is a result of a combination of very infrequent
events which is evaluated in the following section.

5. EVALUATION
In this section, we evaluate the frequency of occurrence of

lookup inconsistencies, overlapping responsibilities and un-
availability of keys resulting from unreliable failure detectors
and churn. The measure of interest is the fraction of nodes
that are correct, i.e. do not contribute to inconsistencies and
the percentage of keys available. The evaluations are done
for a network size of 1000 nodes in a stochastic discrete event
simulator in which we implemented Chord [13].

For our simulations, we employ failure detectors that are
complete but not accurate. The level of reliability of a fail-
ure detector is defined by its probability of working correctly.
For the graphs, the probability of a false positive (detect an
alive node as dead) is the probability of inaccuracy of failure
detectors. We implemented failure detectors in two styles:
independent and mutually-dependent. For independent fail-
ure detectors, two separate nodes falsely suspect the same
node as dead independently. For mutually-dependent fail-
ure detectors, if a node p is suspected dead, all nodes doing
detection on p will detect p as dead with higher probabil-
ity, representing a positive correlation between suspicions of
different failure detectors. This may be similar to a realistic
scenario where due to p or the network link to p being slow,
nodes do not receive ping replies from p thus detecting it as
dead. Unless specified, we use independent failure detectors.
For our experiments, we varied the accuracy of the failure
detectors from 95% to 100% which is a reasonable range [14].

Lookup inconsistencies: Figure 3(a) illustrates the
increase in lookup inconsistencies with inaccuracy of fail-

ure detectors and churn. As the figure shows, churn does
not effect lookup inconsistencies much. Even with a per-
fect failure detector (false positive=0), there will be a non-
zero though extremely low number of lookup inconsistencies
given churn. An inconsistency in such a scenario happens
if multiple nodes join between two old nodes m, n (where
m.succ = n) before m updates its successor pointer by run-
ning periodic stabilization.

Affect of local responsibilities: Next, we evaluate the
effect of unreliable failure detectors and churn on responsibil-
ity consistency. The results of our simulations (omitted due
to space constraints) show that responsibility consistency is
also not effected by churn. Our results for unreliable failure
detectors are shown in Figure 3(b) (Y2-axis).

Figure 3(b) also shows that given a lookup inconsistency,
the probability of overlapping responsibilities is only 0.01.
This can be seen by the scale of the lookup inconsistency
(Y-axis) and overlapping responsibility (Y2-axis).

Mutually-dependent failure detectors: Figure 3(c)
shows results for a scenario without churn using mutually-
dependent failure detectors, where if a node n is suspected,
the accuracy of all failure detectors detecting n falls to 70%.
In the scenario for the simulations, we suspect 32 random
nodes. Compared to independent failure detectors, mutually
dependent failure detectors produce higher lookup inconsis-
tencies.

Key availability: Next, we evaluated the percentage
of keys available in a system with churn and inaccurate fail-
ure detectors. Experimental studies [12] show that lifetime
of nodes staying in the system ranges from tens of min-
utes to more than an hour. Further, experiments show that
where node’s mean lifetime is 1 hour, the optimal freshness
threshold for periodic stabilization is about 72s [7]. Con-
sequently, for our experiments, we choose a stabilization
rate of 1 minute and varied the lifetime of nodes in tens
of minutes. The results for our experiments are shown in
figure 4(a), which shows that availability is effected by both
inaccuracy of failure detectors and churn. Also, even with
perfect failure detectors, churn results in unavailability of
keys.

The affect of churn on key availability can be reduced by
using atomic ring maintenance algorithms [3] [11]. These
algorithms give a consistent view of the ring in the presence
of node joins and leaves by transferring responsibilities of
keys before a join or leave completes.

Affect of MBQA: By substituting p in Equation 3 with
the simulation results using local responsibilities, we get the
results illustrated in Figure 4(b). Figure 4(b) shows the
probability for two non-disjoint majority sets in a certain
configuration of a DHT depending on the probability that
a failure detector makes false positives. Reflecting the re-
sults of figure 2(c), the probability that two majority sets
are disjoint in a system with an even number of replicas
is almost zero. However, in such as system, lesser number
of unavailable replicas can be tolerated for an operation to
succeed.

6. RELATED WORK
An important design goal for distributed systems is to pro-

vide data consistency. Since DHTs are aimed to work over
asynchornous networks with high rate of churn, providing
consistency in DHTs becomes an intersting and nontrivial
problem. The problem at hand can be attacked on two lev-
els: routing level and data level. We focus on the routing



 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06

Fr
ac

tio
n 

of
 C

on
si

st
en

t l
oo

ku
ps

Probability of false positives

No churn
Low churn

Moderate churn
High churn

(a)

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06
 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

Fr
ac

tio
n 

of
 c

on
si

st
en

t r
es

ul
ts

Fr
ac

tio
n 

of
 n

on
-o

ve
rla

pi
ng

 re
sp

on
si

bi
lit

ie
s

Probability of false positives

Non-overlapping responsibilities
Lookup consistencies

(b)

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0  0.01  0.02  0.03  0.04  0.05  0.06
 0.9995

 0.99955

 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

Fr
ac

tio
n 

of
 c

on
si

st
en

t l
oo

ku
ps

Fr
ac

tio
n 

of
 c

on
si

st
en

t r
es

po
ns

ib
ili

tie
s

Probability of false positives

Consistent lookups
Consistent responsibilies

(c)
Figure 3: (a) Evaluation of lookup inconsistency under churn, with only node joins. (b) Comparison of lookup inconsistency (Y-axis) and overlapping responsibilities (Y2-axis). (c) Comparison of lookup

inconsistency (Y-axis) and overlapping responsibilities (Y2-axis) with mutually dependent failure detectors.

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0  0.01  0.02  0.03  0.04  0.05

%
-a

ge
 k

ey
s 

av
ai

la
bl

e

Probability of false positives

No churn
30 mins
40 mins
50 mins

(a)

 0.99996

 0.999965

 0.99997

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 0  0.01  0.02  0.03  0.04  0.05

P
ro

ba
bi

lit
y 

fo
r 

no
n-

di
sj

oi
nt

 m
aj

or
ity

 s
et

s

Failure detector: Probability of false positives

r=1
r=2
r=3
r=4
r=5

(b)

Figure 4: (a) Evaluation of keys availability under churn generated by different lifetime of

nodes. (b) Probability of disjoint majority sets for two majority based operations in the same configu-

ration.

level by providing techniques to reduce the affect of lookup
inconsistencies. Solutions on the data level (e.g. [9]) might
have constraints or depend on the application and semantics
of data operations.

Atomic ring maintenance algorithms [3, 8, 11] provide
lookup consistency under joins and leaves, ignoring failures
and inaccurate failure detectors. As we have shown, the
main contributors to lookup inconsistency are inaccurate
failure detectors, which is the focus of our work.

There has been work done on studying lookup inconsis-
tencies under churn. Rhea et. al. [10] have explored lookup
inconsistencies for Chord. Their work overlooks the fact
that imperfect failure detectors mainly cause inconsistent
lookups.

Bhagwan et. al. [1] attack the problem of availability in
peer-to-peer systems. Contrary to our work, they focus on
availability of hosts and thus data stored at the hosts. Since
we are working on the routing level, we focus on availability
of keys and thus nodes responsible for keys.

7. CONCLUSIONS 2

We studied the frequency of lookup inconsistencies and
found that its main cause is inaccurate failure detectors.
Hence, choice of a failure detection algorithm is of crucial
importance in DHTs.

While effects of lookup inconsistencies can be reduced by
using local responsibilities, we show that using responsibility
of keys may affect availability of keys. This is a trade-off
between availability and consistency. Many data dependent
applications may prefer unavailability to inconsistency.

We show that using quorum-based techniques amongst
replicas of data items further reduce lookup inconsistencies.
Since majority-based quorum techniques require a majority
of the replicas to make progress, these algorithms may still

2
THIS WORK HAS BEEN FUNDED BY THE EUROPEAN UNION IN THE SELFMAN PROJECT (CON-

TRACT 034084) AND COREGRID NETWORK OF EXCELLENCE (CONTRACT 004265).

make progress even with unavailability of some keys/nodes.
Thus, using a combination of local responsibilities and quo-
rum techniques is attractive in scalable applications.

Due to the dynamics and decentralization of DHTs, it
is difficult to build abstractions with stronger consistency
guarantees on top of DHTs. We propose using techniques
on the routing level to decrease data inconsistencies. These
techniques can be used with techniques at the data level
to get best results. Our results show that it is reasonable
to build reliable services on top of a DHT. In our future
work, we plan to evaluate an implementation of a transac-
tional storage service on top of a DHT using routing-level
techniques described in this paper.

8. REFERENCES
[1] R. Bhagwan, S. Savage, and G. Voelker. Understanding

availability. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS), 2003.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43, 1996.

[3] A. Ghodsi. Distributed k-ary System: Algorithms for
Distributed Hash Tables. PhD thesis, KTH — Royal Institute
of Technology, Sweden, Dec. 2006.

[4] D. K. Gifford. Weighted voting for replicated data. In SOSP
’79: Proceedings of the seventh ACM symposium on
Operating systems principles, pages 150–162, New York, NY,
USA, 1979. ACM Press.

[5] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002.

[6] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proceedings of the 29th ACM Symposium
on Theory of Computing, 1997.

[7] J. Li. Routing tradeoffs in dynamic peer-to-peer networks.
PhD thesis, MIT — Massachusetts Institute of Technology,
Nov. 2005.

[8] P. Linga, A. Crainiceanu, J. Gehrke, and J. Shanmugasudaram.
Guaranteeing correctness and availability in p2p range indices.
In Proceedings of 2005 ACM SIGMOD, pages 323–334, 2005.

[9] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access
in distributed hash tables. In IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems,
pages 295–305, London, UK, 2002. Springer-Verlag.

[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. Technical report, EECS Department, University
of California, 2003.

[11] J. Risson, K. Robinson, and T. Moors. Fault tolerant active
rings for structured peer-to-peer overlays. lcn, 0:18–25, 2005.

[12] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study
of peer-to-peer file sharing systems. In In Proc. of MMCN,
2002.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup
service for internet applications. In Proc. of the ACM
SIGCOMM, 2001.

[14] S. Zhuang, D. Geels, I. Stoica, and R. Katz. On failure
detection algorithms in overlay networks. In Proc. of
INFOCOM, 2005.




