
A Content-Addressable Network for Similarity Join in
Metric Spaces ∗

Claudio Gennaro
ISTI - CNR
Pisa - Italy

gennaro@isti.cnr.it

ABSTRACT
Similarity join is an interesting complement of the well-
established similarity range and nearest neighbors search
primitives in metric spaces.

However, the quadratic computational complexity of sim-
ilarity join prevents from applications on large data col-
lections. We present MCAN+, an extension of MCAN (a
Content-Addressable Network for metric objects) to support
similarity self join queries. The challenge of the proposed ap-
proach is to address the problem of the intrinsic quadratic
complexity of similarity joins, with the aim of limiting the
elaboration time, by involving an increasing number of com-
putational nodes as the dataset size grows. To test the scal-
ability of MCAN+, we used a real-life dataset of color fea-
tures extracted from one million images of the Flickr photo
sharing website.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

Keywords
Similarity Join, Content-Addressable Network, Metric Space

1. INTRODUCTION
Similarity join is a database primitive that finds all pairs

of records within a predefined distance threshold of each
other. The similarity join has been successfully applied to
a large class of applications, data analysis, data mining,
location-based applications, and time-series analysis. This
search paradigm has recently been generalized into a model

∗This work was partially supported by the SAPIR (Search
In Audio Visual Content Using Peer-to-Peer IR) project,
funded by the European Commission under IST FP6 (Sixth
Framework Programme) and by the NeP4B project (Net-
worked Peers for Business), funded by the Italian govern-
ment.

Infoscale2008, June 4-6, 2008, Vico Equense, Napoli, Italy
Copyright 2008 ICST

in which a set of objects can only be pair-wise compared
through a distance measure d satisfying the metric space
properties (i.e, the positivity, symmetry, and triangle in-
equality) [4].

The problem of similarity join emerges naturally in a va-
riety of applications where the user is not only interested in
the properties of single data objects but also in the prop-
erties of the data set as a whole, as, for instance, in data
mining applications. Considering the typical clustering task
of data mining, many of the state-of-the-art algorithms re-
quire to process all pairs of data items which have a distance
not exceeding a user-given parameter ε. Consequently, many
data mining algorithms can be directly performed on top of
a similarity join as proposed in [3].

However, the quadratic computational complexity of sim-
ilarity joins prevents from applications on large data collec-
tions. To give an idea, let us consider a database of one
million records. For computing the similarity self join, we
need a number of distance evaluations of the order of one
thousand billions. This is the main focus of our paper, in
which we extend the existing metric distributed data struc-
ture, MCAN [6, 7], to efficiently support similarity self join
searches.

The remainder of our paper is organized as follows: In
Section 2, we introduce and discuss our new approach to
similarity self join based on the extension of the distributed
data structure MCAN . The experimental evaluation of our
approach is presented in Section 3. Section 4 concludes the
article.

2. THE MCAN+

The MCAN+ is an extension of the MCAN distributed
data structure [6, 7] a Content-Addressable Network [8] for
metric space objects.

Since in metric spaces only distance among objects is
known and it is not possible to exploit any knowledge of
coordinate information, we use the pivot paradigm for pro-
jecting objects of the metric space into n-dimensional vectors
(please refer to [6] for details).

We use the lower case letter for indicating a metric space
objects x ∈ D, the overlined small letter for denoting its cor-
responding vector in the coordinate space x = F (x) ∈ Rn.
Moreover, we denote a peer of MCAN by the bold sym-
bol p. Since there is no possibility of confusion, we use the
same symbol d(.) for indicating the distance between met-
ric objects and for indicating the d∞ distance between the
corresponding points in the coordinate space, e.g., d(x, y) =
d∞(F (x), F (y)), where x = F (x) and y = F (y). It is impor-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3526

tant to note that, the distance d(x, y) is contractive, there-
fore d(x, y) ≤ d(x, y) always holds.

Each peer p maintains its region (a hyper-rectangle) in-
formation referred as p.R and stores all objects x such that
x ∈ p.R. The peer p also maintains the set of the neighbor
peers’ information p.M = {m1, . . . ,mh}. Moreover, during
the creation of the structure of MCAN , we assign a unique
numeric identifier i with each peer, which we denote as p.id.
While p(i) denotes the peer corresponding to the identifier i.

The similarity join is a search primitive that combines ob-
jects of two sets X = {x1, ..., xN} and Y = {y1, ..., yM} into

one set such that X
sim
./ Y = {〈xi, yj〉 ∈ X × Y | d(xi, yj) ≤

ε},. Where the threshold ε is a non negative real number.
If the sets X and Y coincide, we talk about the Similarity
Self Join (SSJ). in this article, we only concentrate on this
version of similarity joins.

The idea behind the MCAN+ is to enlarge by µ peers’
bounding regions p.R equally in all directions so that they
overlap their neighbors’ regions. This principle ensures that
there always exists a region of a peer for every qualifying
pair 〈x, y〉 (with d(x, y) ≤ µ) where the pair occurs. How-
ever, unlike MCAN the peer maintains a bounding region
that overlaps of µ the regions of its neighbors. The peers of
MCAN+ keep track of this region, which we refer to as core
region, and denote by p.R (exactly as in MCAN). More-
over, we call the overlapping rectangle extended region and
we denote it by the symbol p.E. As explained above, since
in MCAN+ the regions may overlap, some objects are repli-
cated on more peers. As it easy to understand, the greater is
µ the greater is the replication. This aspect implies that the
insertion algorithm of MCAN+ is more sophisticated than
the one of standard CAN structures, as explained in the next
section.

2.1 Similarity Self Join Algorithm
The outline of the SSJ algorithm is as follows: each peer

executes the join query (on its subset) independently. The
partial results from all peers are then concatenated and form
the final answer. Note that, since MCAN+ works in a con-
tractive (d∞) space, when we find a pairs of objects 〈x, y〉
for which d(x, y) ≤ ε, in order to know if the pair belongs to
the result, we must also check if d(x, y) ≤ ε.

A naive implementation of SSJ could simply exploit the
sliding window algorithm introduced in [5] on the local sub-
set of objects maintained by the peer. Note that, the sliding
window requires the objects to be ordered with respect to
an extra pivot t, typically (but not necessarily) distinct from
the ones used for creating the MCAN+ structure. However,
an important issue arises in the application of this simple
algorithm: the problem of duplicate pairs in the result of
the join query. This fact is caused by the copies of objects
which are stored into distinct peers. Precisely, during the
construction of MCAN+ we append extra information with
each indexed object. This information keeps track of peers
that maintain a copy of the object itself. In particular, each
metric object x of MCAN+ has the following two attributes:

• x.own: it stores the id of the peer that holds the object
x in the core region (there can be only one of such a
peer, since core regions do not overlap). We refer the
peer of id = x.own as owner of x.

• x.rep: it stores a boolean flag telling us if the objects
x is replicated on more than one peer (true) or not

x.own x.rep region
= k false A
6= k false –
= k true B
6= k true C

core region p.E

A
B

C

extended region p.R

µ

µ
µ

µ

Figure 1: Illustration of the various zones of a peer
of MCAN+.

(false).

Note that, when x.rep = false, the peer of id = x.own ex-
clusively owns x.

Algorithm 2.1 includes the function SimilaritySelfJoin,
which takes the id k of a peer and the threshold ε as input
parameters and returns the qualifying pairs of the peer i. We
use a procedural approach to present MCAN+ algorithms,
by implicitly assuming that the parameters of functions and
procedures are sent via a message-passing interface. Al-
gorithm 2.1 simply starts invoking the function Similari-
tySelfJoin on all peers of MCAN+, and collects the results
coming from them. Function SimilaritySelfJoin invokes in
turn the SlidingWindowSearch function, which takes as in-
put the threshold ε and returns the set of the pairs that
potentially belong to the result set and which have to be
checked using the metric distance d.

However, before evaluating the distance of each pair re-
turned, it assesses if other peers have a replica of it. To
achieve this task, SimilaritySelfJoin exploits the attributes
own and rep described above.

To better understand the behavior of SimilaritySelfJoin,
please see Figure 1, which illustrates the zones of a peer
where an object can lay. The innermost rectangular zone
A, is the portion of the core region p.R that does not over-
lap with other peer regions. The surrounding zone B corre-
sponds to core region minus A, i.e., B = p.R−A, and C the
extended region minus the core region, i.e., C = p.E− p.R.
We can infer the position of an object x in a peer, with re-
spect those zones, by examining its attributes own and rep.,
The principle of the algorithm is simple if we observe that
the problem of replication occurs when the objects of a pair
are owned by distinct peers, e.g., x ∈ B and y ∈ C. The idea
here is to exploit the ids of the peers to decide which one
must consider the pair, for instance, by allowing the peer
with the lowest id to consider the pair (however, any other
determinist scheme based on ids would work as well).

More specifically, let x and y be two objects of a pair
returned by SlidingWindowSearch function, and let k the id
of the peer p currently executing the algorithm. In order to
avoid duplicates the algorithm exploits the knowledge of the
attributes of x and y, as in the following:

1. If both x and y are in zone A, the pair 〈x, y〉 is not
replicated and will be considered (first if statement of
SlidingWindowSearch function).

2. If x ∈ B (y ∈ B) and y ∈ B
⋃

C (x ∈ B
⋃

C), then
there is a chance that the pair 〈x, y〉 is also reported
by another peer. If also y ∈ B (x ∈ B), the pair
is considered. If instead y ∈ C (x ∈ C), then y.id
6= x.id. We allow only the peer with lowest id to con-
sidered the pair (i.e., id = min(x.id, y.id)), and force
the other peer to ignore the pair. The second and the
third if statements of SlidingWindowSearch function
accomplish this part of the algorithm.

3. If none of these conditions occur, we ignore the pair
〈x, y〉. In fact, in this case, it can be x ∈ A and y ∈ C
(or vice versa y ∈ A and x ∈ C), therefore the distance
d(x, y) ≥ d(x, y) > µ ≥ ε. Otherwise, both x and y are
in C, therefore the pair will be considered by another
peer.

Since all peers of MCAN+ respect this same scheme, there
is no risk to produce duplicate pairs.

Algorithm 2.1. Similarity Self Join

S := ∅;
for each p ∈ MCAN+

S := S + SimilaritySelfJoin(p.id, ε)
end for each

function SimilaritySelfJoin(k, ε): set
P := SlidingWindowSearch(ε);
R := ∅;
for each 〈x, y〉 ∈ P

CheckDist := false;
if (not x.rep) and (not y.rep) then

both x and y are in zone A
CheckDist := true;

end if
if x.own = k and x.rep then

x is in zone B
if y.own ≥ k then

y is in zone B
⋃

C
CheckDist := true;

end if
end if
if y.own = k and y.rep then

y is in zone B
if x.own ≥ k then

x is in zone B
⋃

C
CheckDist := true;

end if
end if
if CheckDist then

if d(x, y) ≤ ε then
R := R + 〈x, y〉;

end if
end if

end for each
return R;

end function

2.2 Insertion Algorithm
In order to exploit the SSJ algorithm presented in the pre-

vious section, MCAN+ must employ an insertion algorithm
more sophisticated than the one used in MCAN . The inser-
tion operation can start from any peer p of the MCAN+,
and initiates by mapping the object x to insert into the
virtual coordinate space using function F (). Then, if x =
F (x) ∈ p.R x is stored in p. On the contrary, if x /∈ p.R
the peer must forward the insertion request to its neighbor
peer closer to the point x. The objective is to find the peer
m for which x ∈ m.R, minimizing the number of messages.

So far, the insertion algorithm works exactly as in MCAN .
However, after this preliminary phase the peer that stores
the object must start a second phase that implements the
replication principle of MCAN+, as described in Algorithm
2.2. The algorithm includes procedure Insert and function
Replicate. Procedure Insert accomplishes the first phase of
the insertion operation and has two input parameters: the id
i of the peer that takes care of the insertion and the object
x to be inserted. The peer checks if the object belongs to its
core region. If so, it sets x.own to i, stores the object, and
sends a copy of it to its neighbors (by mean of the Replicate
function). If at least one of the neighbors informs the peer
that the object x has been replicated, than it sets the at-
tribute x.rep to true. If the core region of the peer does not
contain x, the peer forwards x to the closest neighbor peer
to the point x, by recursively invoking the Insert procedure.

Replicate function accomplishes the second phase of the
insertion operation, which deals with replication and has the
same input parameters of Insert plus the id j of the sender
(the function caller). The returned value indicates if the
object has been replicated by the peer (true) or not (false).
The receiving peer first checks if the object x belongs to its
extended region (i.e., if x ∈ p(i).E), if so, it sets x.rep to
true, stores x (ignore for now the if statement), recursively
invokes Replicate function on its neighbors, and, finally, re-
turns true to the peer from which it received the object
x. On the contrary if x /∈ p(i).E, the peer simply does
nothing and returns false. All the neighbor peers involved
in the replication phase, performs the same algorithm. To
guarantee algorithm termination, if a peer receives multi-
ple invocations of Replicate for the same object x it ignores
the following invocations. Moreover, a peer does not invoke
Replicate more than once on the same peer for the same
object x.

The reason for checking the condition x.own > i (in func-
tion Replicate) before storing the object x, has to do with
a mere optimization issue. We exploit the fact that we can
discard a replicated object if it will be never tested for sim-
ilarity during the SSJ. In fact, the condition for not storing
x is that the object is replicated (x.rep = true) and that x is
owned by another peer (x.id 6= i). This exactly corresponds
to the case x ∈ C (see the table of the previous section). In
this case, during the SSJ evaluation, as explained in the pre-
vious section, only the peer with the lowest id will consider
this object when occurring in a pair. Therefore, the peers
that have id i greater than x.id can safely omit to store it.
Exploiting this optimization we save more or less half space
due to replication and some distance computations.

Algorithm 2.2. Insertion

procedure Insert(i, x)
if x ∈ p(i).R then

x.own := i;
Store(x);
x.rep := false;
for each m ∈ p(i).M

IsReplicated := Replicate(m.id, x, i);
if IsReplicated then

x.rep := true;
end if

end for each
else

m := GetNearestNeighbor(p.M, x);
Insert(m.id, x);

end if
end procedure

function Replicate(i, x, j): boolean
if x ∈ p(i).E then

x.rep := true;
if x.own > i then

Store(x);
end if
for each m ∈ p(i).M

if m.id 6= j then
Replicate(m.id, x, i);

end if
end for each
return true;

else
return false;

end if
end function

The advantage of keeping the two phases of the MCAN+

construction (insertion and replication) distinct is that we
can defer the replication phase indefinitely. In practice,
MCAN+ construction without replication is identical to an
MCAN or an MCAN+ with µ = 0. Whenever we need to
deal with SSJ queries with ε > 0, we can force all peers to
start the replication phase for any µ ≥ ε.

3. PERFORMANCE EVALUATION
In order to demonstrate the suitability of MCAN+ to the

problem of SSJ, we have conducted several experiments us-
ing a large real-life dataset of MPEG-7 Scalable Color De-
scriptors extracted from one million images of Flickr photo
sharing website [2]. The distance used for this visual descrip-
tor is the L1, as suggested by the MPEG-7 standard [1].

The time complexity of the Nested Loop (NL) algorithm

(i.e., the exhaustive search) is N·(N−1)
2

. However, to make a
fair assessment of the magnitude of the SSJ problem, we first
tested the sequential implementation of the Sliding Window
algorithm on the Flickr dataset. The values of the thresholds
ε produce a number of pairs that range from 0.00005% (for
ε = 0) to 0.0029% (for ε = 10) of the five hundred billions of
possible pairs. The cost in terms of distance computations
grows linearly from about one billion for ε = 0 to 21.7 billions
for ε = 10, which correspond to 15 minutes and 5 hours and
20 minutes (using a machine equipped with an Intel 2.13GHz
processor), respectively.

Note that, since Sliding Window algorithm exploits the
triangle inequality property of metric spaces, it produces a
strong performance improvement with respect the NL. In-
deed, consider that the time estimated for the simple NL
algorithm is more than five days.

3.1 Scalability of MCAN+

We analyze the behavior of a MCAN+: involving 2 piv-
ots for mapping the metric space in a 2–dimensional vector
space and another pivot for employing the Sliding Window
algorithm inside the peers. Since in this work we concen-
trate our attention on scalability issues, we fix the storage
space available for each peer and then, starting from a single
peer, we add objects into the system. When a peer reaches
its storage space limit, it splits. We partition the dataset
in 32 blocks of 31,250 objects (i.e., SC descriptors), and
we double the dataset size until we reach the total size of
1,000,000 objects. Before inserting the dataset in MCAN+,
we have randomly mixed it to prevent influence of the or-
der of images acquisition on the performance of scalability
experiments. The objective of this research is to try to ap-
proach this problem by exploiting the parallelism of peer
computations, in order to limit the parallel similarity join
computation time. However, as explained above, when we
double the problem size, the computational demand is qua-
druplicated. For this reason the number of computational

0

2

4

6

8

10

12

31.25 62.5 125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

Dataset size × 1000

Parallel cost for MCAN+ µ = 5

ε = 0

ε = 5

0

5

10

15

20

25

31.25 62.5 125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

Dataset size × 1000

Parallel cost for MCAN+ µ = 10

ε = 0

ε = 10

Figure 2: Parallel cost of two MCAN+ settings (µ = 5
and µ = 10) for growing dataset for increasing values
of ε.

0

20

40

60

80

100

120

31.25 62.5 125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

Dataset size × 1000

Total cost for MCAN+ µ = 5

ε = 0

ε = 5

0

50

100

150

200

250

300

350

31.25 62.5 125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

Dataset size × 1000

Total cost for MCAN+ µ = 10

ε = 0

ε = 10

Figure 3: Total cost of two MCAN+ settings (µ = 5
and µ = 10) for growing dataset for increasing values
of ε.

peers is quadruplicated accordingly, as the following table
shows:

Dataset Size ×1000 31.25 62.5 125 250 500 1,000
Number of Peers 1 4 16 64 256 1024

It is important to remark that, in a real scenario as the
one we are evaluating, the calculation of the distance func-
tion d has typically a high computational cost. Therefore,
the main objective of a metric-based data structure is to
reduce the number of distance computations at query time.
The number of distance computations is typically consid-
ered as an indicator of the structure efficiency. In practice,
we assume that the costs of other operations are negligible
compared to the distance evaluation time.

Concerning the distributed environment, we use the fol-
lowing two characteristics to measure the computational costs
of a query:

• total distance computations – the sum of the number
of distance computations on all peers,

• parallel distance computations – the maximal number
of distance computations among the local SSJ per-
formed by peers in parallel.

To give an example, consider an MCAN+ with just three
peers executing a SSJ with number of distance computa-
tions being respectively 200, 300, and 500. In this case, the
total distance computations would be 1,000 and the parallel
distance computations would be 500.

As discussed above, an MCAN+ with replication µ is able
to perform SSJ with ε ≤ µ. For this reason we study the
performance of two different MCAN+ settings: one with µ =
5 and one with µ = 10. We believe that a SSJ with ε > 10 is

0

1

2

3

4

5

2 4 8 16 32 64 128 256 512 1024

R

Number of peers

Replication factor for µ = 5

1

1.5

2

2.5

3

3.5

4

4.5

31.25 62.5 125 250 500 1000

R

Dataset size × 1000

Replication factor scalability

MCAN+with µ = 10

3 3
3

3

3

3
3

MCAN+ with µ = 5

+ +
+ +

+

+

+

Figure 4: Replication factor R for different number
of peers and with µ = 5 (left) and for two MCAN+

settings (µ = 5 and µ = 10) for growing dataset
(right).

not very significant in a real application scenario, since for
ε = 10 we have already more than 14 millions of pairs.

In Figure 2 we report the parallel distance computations
for increasing values of ε as function of dataset size. As ex-
plained above, this performance figure can be considered as
the parallel cost of the operation. From this experiment, we
can see that the algorithm scales well. Note that, the paral-
lel cost of the algorithm remains bounded as the dataset size
grows, because, as explained, we correspondingly increment
the number peers.

Figure 3 reports the total number of distance computa-
tions during the SSJ operation for increasing values of ε
as function of dataset size. These experiments reflect the
intuition that the total number of distance computations
is quadratic in the size of dataset. Note also that the to-
tal number of distance computations for MCAN+ is much
smaller than that for the sequential implementation of the
Sliding Window for the same threshold ε. For instance, for
ε = 10, we have about 320 millions of distances for MCAN+

in contrast to more than 21 billions of distances for the se-
quential Sliding Window (i.e., about 66 times). This means
that even if we computed the SSJ sequentially (e.g., as we
had all peers in the same physical machine), MCAN+ would
take much less time. This should not surprise, since in any
case MCAN+ uses a more sophisticated technique to parti-
tion the problem (besides the use of the Sliding Window). To
give an idea of the computational cost, MCAN with µ = 10
takes about 9.5 sec for completing a SSJ of ε = 10.

4. CONCLUSION
Although several research efforts have recently proposed

distribute data structures to support similarity range and
nearest neighbors queries, there are only few studies that
aim at supporting similarity joins. In this article, we have
analyzed an implementation strategy for similarity self join
based on the MCAN+. This work is inspired by prior work
[5] for similarity self joins in metric spaces using a central-
ized indexing technique called eD-Index. We borrowed from
the approach of eD-Index the idea of overlapping partitions,
although our approach is extended to a distributed envi-
ronment. To the best knowledge of the author, MCAN+

represents the first distributed data structure specifically
designed to approach the problem of similarity self join in
metric spaces.

The price that we must pay to obtain the results of the
SSJ in few seconds instead of waiting hours, is the space
occupation. We define the replication factor R of MCAN+

as the ratio N∗/N , where N is the size of the dataset and
N∗ the number of objects (comprising also replicas) stored
in MCAN+. Therefore, it is R = 1 for µ = 0 (corresponding
with the standard MCAN) and it is R > 1 for µ > 0.

Experiments of Figure 4 studies how R grows as we in-
crease the number of peers for a fixed dataset size and same
µ = 5. It must be highlighted that the extra space due to
replication does not grow significantly as we increases the
number of peers. In fact, for an MCAN+ with 1,024 peers
the replication factor is more or less the double of the one
with only two peers. A worst behavior is instead shown by
scalability experiments of Figure 4, which shows as R grows
when we increase the number of peers to meet increasing
sizes of the dataset. It is clear that if we would like to guar-
antee the scalability of the SSJ response time, we have to
tolerate a strong impact in terms of space occupation. How-
ever, note that the increment in space is distributed in more
peers, for instance, for 1,024 peers we have in average about
4,350 objects for µ = 10 against about 1,000 for µ = 0. The
storage cost of this approach is acceptable in a distributed
environment such as the one we propose.

An interesting aspect is the high number of results of the
similarity self join. As said above, for the most selective
query ε = 0, we obtain about 2.5 millions of pairs. In a
scenario of photo sharing such as the one we propose, it
would be helpful to exploit more visual descriptors to re-
duce the number of matchings. This approach could exploit
more MCAN+ overlays, one for each visual descriptor, by
intersecting the result sets coming from the execution of the
similarity self join on each overlay. The intersection process
would not be so expensive, since each object has a unique
identifier and therefore it is possible to generate a unique
identifier to each pair, which simplifies the intersection pro-
cess. This is an interesting subject of future work.

5. REFERENCES
[1] Mpeg requirements group, mpeg-7 overview, 2003. Doc.

ISO/IEC JTC1/SC29/WG11N5525.

[2] CoPhIR (content-based photo image retrieval), 2008.
http://cophir.isti.cnr.it/.

[3] C. Böhm, B. Braunmüller, M. Breunig, and H.-P.
Kriegel. High performance clustering based on the
similarity join. In CIKM ’00, pages 298–305, 2000.

[4] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
Marroqúın. Proximity searching in metric spaces. To
appear in ACM Computing Surveys, 1999.

[5] V. Dohnal, C. Gennaro, and P. Zezula. Similarity Join
in Metric Spaces Using eD-Index. In Proc. of the14th
International DEXA Conference, volume 2736 of
LNCS, pages 484–493. Springer, May 2003.

[6] F. Falchi, C. Gennaro, and P. Zezula. A
Content-Addressable Network for Similarity Search in
Metric Spaces. In Proc. of the the 2nd International
DBISP2P Workshop, Trondheim, Norway, volume 4125
of LNCS, pages 98–110. Springer, August 2005.

[7] F. Falchi, C. Gennaro, and P. Zezula. Nearest neighbor
search in metric spaces through content-addressable
networks. Inf. Process. Manage., 43(3):665–683, 2007.

[8] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM ’01, pages 161–172, 2001.

