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ABSTRACT
A perfect hash function (PHF) h : S → [0, m − 1] for a key
set S ⊆ U of size n, where m ≥ n and U is a key universe,
is an injective function that maps the keys of S to unique
values. A minimal perfect hash function (MPHF) is a PHF
with m = n, the smallest possible range. Minimal perfect
hash functions are widely used for memory efficient storage
and fast retrieval of items from static sets.

In this paper we present a distributed and parallel version
of a simple, highly scalable and near-space optimal perfect
hashing algorithm for very large key sets, recently presented
in [4]. The sequential implementation of the algorithm con-
structs a MPHF for a set of 1.024 billion URLs of average
length 64 bytes collected from the Web in approximately 50
minutes using a commodity PC.

The parallel implementation proposed here presents the
following performance using 14 commodity PCs: (i) it con-
structs a MPHF for the same set of 1.024 billion URLs in
approximately 4 minutes; (ii) it constructs a MPHF for a set
of 14.336 billion 16-byte random integers in approximately
50 minutes with a performance degradation of 20%; (iii)
one version of the parallel algorithm distributes the descrip-
tion of the MPHF among the participating machines and
its evaluation is done in a distributed way, faster than the
centralized function.
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1. INTRODUCTION
Perfect hashing is a space-efficient way of creating com-

pact representation for a static set S of n keys. Perfect
hashing methods can be used to construct data structures
storing S and supporting queries to locate a key “x ∈ S” in
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one probe. For applications with only successful searches,
the representation of a key x ∈ S is simply the value of a
perfect hash function h(x), and the key set does not need to
be kept in main memory.

A perfect hash function (PHF) maps the elements of S
to unique values (i.e., there are no collisions), which can be
used, for example, to index a hash table. Since no collisions
occur, each key can be retrieved from the table with a single
probe. A minimal perfect hash function (MPHF) produces
values that are integers in the range [0, n − 1], which is the
smallest possible range.

Minimal perfect hash functions are used for memory ef-
ficient storage and fast retrieval of items from static sets,
such as words in natural languages, reserved words in pro-
gramming languages or interactive systems, item sets in data
mining techniques, routing tables and other network appli-
cations, sparse spatial data, graph compression and large
web maps representation [1, 6, 7, 8, 10, 11].

The demand to deal in an efficient way with very large
key sets is growing. For instance, search engines are nowa-
days indexing tens of billions of pages and algorithms like
PageRank [5], which uses the web graph to derive a measure
of popularity for web pages, would benefit from a MPHF to
map long URLs to smaller integer numbers that are used as
identifiers to web pages, and correspond to the vertex set of
the web graph.

The objective of this paper is to present a distributed and
parallel version of a perfect hashing algorithm for very large
key sets presented in [4]. In this algorithm, the construction
of a MPHF or a PHF requires O(n) time and the evaluation
of a MPHF or a PHF on a given element of an input S
requires constant time. The space necessary to describe the
functions takes a constant number of bits per key, depending
only on the relation between the size m of the hash table and
the size n of the input. For m = n the space usage for the
MPHF is in the range 2.62n to 3.3n bits, depending on the
constants involved in the construction and in the evaluation
phases. For m = 1.23n the space usage for the PHF is in the
range 1.95n to 2.7n bits. In all cases, this is within a small
constant factor from the information theoretical minimum
of approximately 1.44n bits for MPHFs and 0.89n bits for
PHFs, something that has not been achieved by previous
algorithms, except asymptotically for very large n.

The algorithm presented in [4] is highly scalable. The
algorithm increases one order of magnitude in the size of
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the greatest key set for which a MPHF was obtained in the
literature [2]. This improvement comes from a combination
of a novel, theoretically sound perfect hashing scheme that
greatly simplifies previous methods, and the fact that it is
designed to make good use of the memory hierarchy, using a
divide-to-conquer technique. The basic idea is to partition
the input key set into small buckets such that each bucket
fits in the CPU cache. For this reason this algorithm was
called External Cache-Aware (ECA) algorithm.

The ECA algorithm presented in [4] allows the genera-
tion of PHFs or MPHFs for sets in the order of billions of
keys. For instance, if we consider a MPHF that requires 3.3
bits per key to be stored, for 1 billion URLs it would take
approximately 400 megabytes. Considering now the time to
generate a MPHF, taking the same set of 1.024 billion URLs
as input, the algorithm outputs a MPHF in approximately
50 minutes using a commodity PC. It is well known that big
search engines are nowadays indexing more than 20 billion
URLs. Then, we are talking about approximately 8 giga-
bytes to store a single MPHF and approximately 1,000 min-
utes to construct a MPHF. Thus, two problems arise when
the input key set size increases: (i) the amount of time to
generate a MPHF becomes large for a single machine and
(ii) the storage space to describe a MPHF will be unsuitable
for a single machine.

In this paper we present a scalable distributed and par-
allel implementation of the ECA algorithm presented in [4],
referred to as Parallel External Cache-Aware (PECA) algo-
rithm from now on. The PECA algorithm addresses the two
aforementioned problems by distributing both the construc-
tion and the description of the resulting functions. For in-
stance, by using a 14-computer cluster the distributed and
parallel ECA version generates a MPHF for 1.024 billion
URLs in approximately 4 minutes, achieving an almost lin-
ear speedup. Also, for 14.336 billion 16-byte random inte-
gers evenly distributed among the 14 participating machines
the PECA algorithm outputs a MPHF in approximately 50
minutes, resulting in a performance degradation of 20%. To
the best of our knowledge there is no previous result in the
perfect hashing literature that can be implemented in a dis-
tributed and parallel way to obtain better scalability and
performance than the results presented hereinafter.

2. NOTATION
In this section we present the notation used throughout

this paper.

Definition 1. A key is made up by symbols from a finite
and ordered alphabet Σ of size |Σ|.

Definition 2. Let Φ denote the maximum key length. Then
L = Φ log |Σ| is the maximum key length in bits1. Then we
define a key universe U of size u = 2L.

Definition 3. Let S be a subset of U containing n keys,
where n ≪ u.

Definition 4. Let h : U → M be a hash function that
maps the keys from U to a given interval of integers M =
[0, m − 1] = {0, 1, . . . , m − 1} (i.e., given a key x ∈ U , the
hash function h computes an integer in [0, m − 1]).

1Throughout this paper we denote log
2
x as log x.

Definition 5. A perfect hash function PHF : S → M is
an injection on S ⊆ U (i.e., for all pair s1, s2 ∈ S such that
s1 6= s2, then PHF (s1) 6= PHF (s2), where m ≥ n).

Definition 6. A minimal perfect hash function MPHF :
S → M is a bijection on S ⊆ U (i.e., each key in S is
mapped to a unique integer in M and m = n).

To evaluate the performance of the PECA algorithm pre-
sented in Section 4 we use two metrics: speedup and scale-up.
By fixing the problem size, the speedup refers to how much a
parallel algorithm is faster than a corresponding sequential
algorithm and is defined as:

Definition 7. The speedup Sp of a parallel algorithm using
p processors is:

Sp =
T1

Tp

, (1)

where T1 is the execution time of the sequential algorithm
and Tp is the execution time of the parallel algorithm with
p processors.

Definition 8. The efficiency Ep of a parallel algorithm us-
ing p processors is:

Ep =
Sp

Smax

, (2)

where

Smax =
p

1 + f × (p − 1)
(3)

is the maximum speedup a parallel algorithm can achieve
and 0 < f < 1 corresponds to the sequential portion of the
parallel algorithm (i.e., the fraction that cannot be improved
using parallelism). This comes from the Amdahl’s law [12].

By increasing the problem size proportionally to the num-
ber of processors p, the scale-up refers to the ability of solv-
ing a problem p times larger in the same amount of time the
corresponding sequential algorithm would solve a problem
1/p times lower and is defined as:

Definition 9. The scale-up Up of a parallel algorithm us-
ing p processors is:

Up =
Tp

T1

, (4)

where T1 is the execution time of the sequential algorithm
to solve a problem of size X and Tp is the execution time of
the parallel algorithm with p processors to solve a problem
of size pX.

3. SEQUENTIAL ALGORITHM
In this section we describe the sequential algorithm pre-

sented in [4]. It is a two-step algorithm. In the first step,
it partitions the input key set into small buckets. This step
is equivalent to an external multi-way merge sort carefully
engineered to make it work in linear time. In the second
step, it generates a MPHF for each bucket.

Figure 1 illustrates the two steps of the algorithm: the
partitioning step and the searching step. The partitioning
step takes a key set S ⊆ {0, 1}L of size n and uses a hash
function h0 : S → {0, 1}b to partition S into Nb = 2b buck-
ets for some integer b ≤ log n + log log log n − log ℓ + O(1),



where ℓ = Ω(log n log log n). The searching step generates a
MPHF for each bucket i, 0 ≤ i ≤ Nb − 1, and computes the
offset array. The evaluation of the MPHF generated by the
algorithm for a key x is:

MPHF (x) = MPHF i(x) + offset [i] (5)

where i = h0(x) is the bucket where key x is, MPHF i(x)
is the position of x in bucket i, and offset [i] gives the total
number of entries before bucket i in the hash table.
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Figure 1: The two steps of the algorithm.

As mentioned before, the algorithm uses external memory
to allow the construction of MPHFs for sets in the order
of billion keys. The basic idea to obtain scalability is to
partition the input key set into small buckets such that each
bucket fits in the CPU cache – that is why it was called
External Cache-Aware (ECA) algorithm.

Splitting the problem into small buckets has both theoret-
ical and practical implications. From the theoretical point
of view, Botelho, Pagh and Ziviani [3, 4] have shown how
to simulate fully random hash functions on the small buck-
ets, being able to prove that the ECA algorithm will work
for every key set with high probability. From the practical
point of view they have shown how to make buckets that are
small enough to fit in the CPU cache, resulting in a signif-
icant speedup in processing time per element compared to
other methods known in the literature.

The ECA algorithm is a randomized algorithm of Las Ve-
gas type2 because it uses in its second step the algorithm pre-
sented in [3] that works on random 3-partite hypergraphs3,
which is also a randomized algorithm of Las Vegas type. The
ECA algorithm first scans the list of keys and computes the
hash function values that will be needed later on in the algo-
rithm. These values will (with high probability) distinguish
all keys, so the original keys are discarded.

To form the buckets the hash values of the keys are sorted
according to the value of h0. In order to get scalability for
large key sets, this is done using an implementation of an
external memory mergesort [9] with some nuances to make
it work in linear time. The total work on disk consists of
reading the keys, plus writing and reading the hash function
values once. Since the h0 hash values are relatively small

2A random algorithm is Las Vegas if it always produces
correct answers, but with a small probability of taking long
to execute.
3A hypergraph is the generalization of a standard undirected
graph where each edge connects r ≥ 2 vertices.

(less than 15 decimal digits) the radix sort is used to do the
internal memory sorting of the runs.

Figure 2 presents a pseudo code for the ECA algorithm.
The detailed description of the partitioning and searching
steps are presented in Sections 3.1 and 3.2, respectively.

function ECA (S ,H ,{MPHF0, . . . ,MPHFNb−1} ,offset )
Partitioning (S ,H ,Files )
Searching (Files ,{MPHF0, . . . ,MPHFNb−1} ,offset )

Figure 2: The ECA algorithm.

3.1 Partitioning Step
The partitioning step performs two important tasks. First,

the variable-length keys are mapped to γ-bit signatures,
which from now on will be called as fingerprints, by us-
ing a linear hash function h′ : S → {0, 1}γ taken uniformly
at random from the family H of linear hash functions (see
[4] for details on H). That is, the variable-length key set
S ⊆ {0, 1}L is mapped to a fixed-length key set F of finger-
prints. To succeed with high probability γ was set to 96 bits
or 12 bytes. Second, the set S of n keys is partitioned into
Nb buckets, where b is a suitable parameter chosen to guar-
antee that each bucket has at most ℓ = Ω(log n log log n)
keys with high probability (see [4] for details). It outputs a
set of Files containing the buckets, which are merged in the
searching step when the buckets are read from disk. Figure 3
presents the partitioning step.

function Partitioning (S , H , Files )
◮ Let β be the size in bytes of the fixed-length key

set F
◮ Let µ be the size in bytes of an a priori reserved

internal memory area
◮ Let Nf = ⌈β/µ⌉ be the number of key blocks that

will be read from disk into an internal memory area

1. select h′ uniformly at random from H
2. for j = 1 to Nf do

3. DiskReader (Sj) {read a key block Sj from disk}
4. Hashing (Sj , Bj) {store h′(x), for each x ∈ Sj ,

into Bj , where |Bj | = µ}
5. BucketSorter (Bj) {cluster Bj into Nb buckets using an

indirect radix sort algorithm that
takes h0(x) for x ∈ Sj as sorting key
(i.e, the b most significant bits of
h′(x)) and if any bucket Bi has more
than ℓ keys restart partitioning step}

6. BucketDumper (Bj , Files[j]) {dump Bj to disk into
Files[j]}

Figure 3: Partitioning step.

Figure 4(a) shows a logical view of the Nb buckets gener-
ated in the partitioning step. In reality, the γ-bit fingerprints
belonging to each bucket are distributed among many files,
as depicted in Figure 4(b). In the example of Figure 4(b),
the γ-bit fingerprints in bucket 0 appear in files 1 and Nf ,
the γ-bit fingerprints in bucket 1 appear in files 1, 2 and Nf ,
and so on.

This scattering of the γ-bit fingerprints in the buckets
could generate a performance problem because of the po-
tential number of seeks needed to read the γ-bit fingerprints
in each bucket from the Nf files on disk during the second
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Figure 4: Situation of the buckets at the end of the
partitioning step: (a) Logical view (b) Physical view.

step. But, as showed in [4], the number of seeks can be kept
small by using buffering techniques.

3.2 Searching Step
Figure 5 presents the searching step. The searching step

is responsible for generating a MPHF i for each bucket and
for computing the offset array.

function Searching (Files ,{MPHF0, . . . ,MPHFNb−1} ,offset )
◮ Let H be a minimum heap of size Nf
◮ Let the order relation in H be given by

i = x[γ − b + 1, γ] for x ∈ F

1. for j = 1 to Nf do { Heap construction }
2. Read the first γ-bit fingerprint x from Files[j]

on disk
3. Insert (i, j, x) in H
4. for i = 0 to Nb − 1 do

5. BucketReader (Files, H, Bi) {Read bucket Bi from disk
driven by heap H}

6. i f MPHFGen (Bi, MPHF i) fails then

Restart the partitioning step
7. offset [i + 1] = offset [i] + |Bi|
8. MPHFDumper (MPHF i, offset [i]) {Write the description

of MPHF i and
offset [i] to the disk}

Figure 5: Searching step.

Statement 1 of Figure 5 constructs a heap H of size Nf ,
which is well known to be linear on Nf . The order relation in
H is given by the bucket address i (i.e., the b most significant
bits of x ∈ F ). Statement 4 has four steps. In statement 5, a
bucket is read from disk, as described below. In statement 6,
a function MPHF i is generated for each bucket Bi using an
algorithm based on 3-partite random hypergraphs presented
in [3]. In statement 7, the next entry of the offset array
is computed. Finally, statement 8 writes the description of
MPHF i and offset [i] to disk. Note that to compute offset [i+
1] we just need |Bi| (i.e., the number of keys in bucket Bi)
and offset [i]. So, we just need to keep two entries of the
offset array in memory all the time.

The algorithm to read bucket Bi from disk is presented
in Figure 6. Bucket Bi is distributed among many files and
the heap H is used to drive a multiway merge operation.
Statement 2 extracts and removes triple (i, j, x) from H,
where i is a minimum value in H. Statement 3 inserts x in
bucket Bi. Statement 4 performs a seek operation in Files[j]

on disk for the first read operation and reads sequentially
all γ-bit fingerprints x ∈ F that have the same index i and
inserts them all in bucket Bi. Finally, statement 5 inserts
in H the triple (i′, j, x′), where x′ ∈ F is the first γ-bit
fingerprint read from Files[j] (in statement 4) that does not
have the same bucket address as the previous keys.

function BucketReader (Files , H , Bi )
1. while bucket Bi is not full do

2. Remove (i, j, x) from H
3. Insert x into bucket Bi

4. Read sequentially all γ-bit fingerprints from Files[j]
that have the same i and insert them into Bi

5. Insert the triple (i′, j, x′) in H, where x′ is the first
γ-bit fingerprint read from Files[j] that does not
have the same bucket index i

Figure 6: Reading a bucket.

4. DISTRIBUTED AND PARALLEL ALGO-
RITHM

In this section we describe our Parallel External Cache-
Aware (PECA) algorithm. As mentioned before, the main
motivation for implementing a distributed and parallel ver-
sion of the ECA algorithm is scalability in terms of the size of
the key set that has to be processed. In this case, we must
assume that the keys to be processed will be distributed
among several machines. Further, both the buckets and the
construction of the hash functions for each bucket are also
distributed among the participating machines. In this sce-
nario, the partitioning and the searching steps present differ-
ent requirements when compared to the sequential version,
as we discuss next.

In Section 4.1 we discuss how to speedup the construction
of a MPHF by distributing the buckets (during the parti-
tioning phase) and the construction of the MPHFi for each
bucket (during the searching phase) among the participat-
ing machines. In Section 4.2 we present a version of the
PECA algorithm where both the description and the evalu-
ation of the MPHF obtained is centralized in one machine,
from now on referred to as PECA-CE. In Section 4.3 we
present another version of the PECA algorithm where both
the description and the evaluation of the MPHF obtained is
distributed among the participating machines, from now on
referred to as PECA-DE.

4.1 Distributed Construction of MPHFs
In this section we present the steps that are common to

both PECA-CE and PECA-DE algorithms. We employed
two types of processes: manager and worker. This scheme
is shown in Figure 7.

The manager is responsible for assigning tasks to the work-
ers, determining global values during the execution, and
dumping the resulting MPHFs received from the workers
to disk. This last task is different for the PECA-CE and
PECA-DE algorithms, as we will show later on.

The worker stores a partition of the key set, its buck-
ets and the related MPHF of each bucket. Each worker
sends and receives data from other workers whenever nec-
essary. The workers are implemented as thread-based pro-
cesses, where each thread is responsible for a task, allow-
ing larger overlap between computation and communication
(disk and network) in both steps of the algorithm.
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Figure 7: The manager/worker scheme.

Our major challenge in producing such a distributed ver-
sion is that we do not know in advance which keys will be
clustered together in the same bucket. Our strategy in this
case is to migrate data whenever necessary. On the other
hand, once we have the buckets, we are able to generate the
MPHFs.

The manager starts the processing by sending the overall
assignment of buckets to workers before each worker starts
processing its portion of the keys, so that each worker be-
comes aware of the worker to which keys (actually, finger-
prints) must be sent. For that verification, the manager
sends the following information: (i) the function h′ ∈ H
used to compute the fingerprints; (ii) the worker identifier
i, where 0 ≤ i < p and p is the number of workers; and
(iii) the number of buckets per worker, which is given by
Bpw = ⌈Nb/p⌉ (recall that Nb is the number of buckets).
Therefore, each worker i is responsible for the buckets in
the range [iBpw, (i + 1)Bpw − 1].

Each worker then starts reading a key k ∈ S, applies
the received hash function h′ and verifies whether it be-
longs to another worker. For that each worker i computes
w = h0(k)/Bpw and checks if w 6= i (recall that h0(k) cor-
responds to the b most significant bits of h′(k).) If it is the
case, it sends the corresponding fingerprint to the worker w,
otherwise, it stores the fingerprint locally for further pro-
cessing.

Figure 8 illustrates the partitioning step in each worker.
The partitioning step of the sequential algorithm presented
in Figure 3 is divided into four major tasks: data reading
(line 3), hashing (line 4), bucket sorting (line 5), and bucket
dumping (line 6).

As depicted in Figure 8, the worker is divided into the
following six threads:

1. Disk Reader : it reads the keys from the worker’s por-
tion of the set S and puts them in Queue 1. When
there are no more keys to be read, then an end of file
marker is put in Queue 1.

2. Hashing : it gets the keys from Queue 1 and gener-
ates the fingerprints for the keys, as mentioned in Sec-
tion 3. This thread then checks whether the key be-
ing currently analyzed is assigned to another worker.
If it is, its fingerprint is passed to the Sender thread
through Queue 5, otherwise its fingerprint is placed in
Queue 2. When there are no more keys to be processed
in Queue 1, then an end of file marker is put in both
Queue 2 and 5.

Disk
Net

Disk

Reader
Receiver

Hashing
Bucket

Sorter

Bucket

DumperDiskNet

Queue 1

Queue 2

Queue 3

Queue 4Queue 5

Sender

Figure 8: The partitioning step in the worker.

3. Sender : it sends a fingerprint taken from Queue 5 to
the worker that is responsible for it. When there are
no more fingerprints in Queue 5, then an end of file
marker is sent to all other workers.

4. Receiver : it receives fingerprints sent from other work-
ers through the net, and puts them in Queue 3. It
finishes its work when an end of file marker is received
from all other workers.

5. Bucket Sorter : it takes fingerprints from Queues 2 and
3 until a buffer of size µ/2 bytes is completely full (re-
call that µ is the amount of internal memory avail-
able), organizing them into buckets, and puts them in
Queue 4. The process is repeated until an end of file
marker is obtained from both Queues 2 and 3. In this
case, it also places an end of file marker in Queue 4.

6. Bucket Dumper : it takes the buckets from Queue 4
and writes them to disk, for further processing by the
searching step. It finishes when an end of file marker
is taken from Queue 4.

After each worker finishes the partitioning step, it sends
the size of each bucket to the manager, which then calculates
the offset array. This does not depend on the searching step,
so the manager may compute the offset array whereas the
workers are performing the searching step.

Figure 9 illustrates the searching step in each worker. It
consists of generating the functions MPHF i for each bucket
i. The searching step of the sequential algorithm of Figure 5
is divided into three tasks: bucket reading (line 5), MPHF
construction (lines 6 and 7), and MPHF dumping (line 8).
Notice that, in this step, there is no need for communication
between workers, since the generation of the MPHF i for each
bucket does not depend on keys that are in other buckets.

Again, the worker is divided into threads of execution,
each thread being responsible for a task. Following Figure 9,
the worker is divided into the following two threads:

1. Bucket Reader : it reads the buckets from disk, and
puts them in Queue 1. When there are no more buckets
to be read, then an end of file marker is put in Queue 1.

2. MPHF Gen: it gets buckets from Queue 1 and gener-
ates the functions for them until no more bucket re-
mains. It can be instantiated t times, where t can be
thought of as the number of processors of the machine.
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Figure 9: The searching step in the worker.

4.2 Centralized Evaluation of the MPHF
In this section we present the PECA-CE algorithm, where

both the description and the evaluation of the MPHF is
centralized in a single machine (the one running the manager
process).

After each worker finishes the partitioning step, it sends
the size of each bucket to the manager, which then calcu-
lates the offset array. This does not depend on the searching
step, so the manager may compute the offset array whereas
the workers are performing the searching step. After each
worker finishes the construction of the MPHFs of their buck-
ets, it sends them to the manager, that will then write se-
quentially the final MPHF to disk, and the algorithm re-
sumes.

The task of writing the final MPHF to disk corresponds
to the sequential part of the algorithm and represents ap-
proximately 0.5% of the execution time. Thus, there is a
fraction of 99.5% of the execution time from which we can
exploit parallelism. That is why the PECA-CE algorithm
can be considered an embarrassingly parallel algorithm.

The evaluation of the resulting MPHF is done in the same
way as it is done in the sequential algorithm presented in
Section 3 (see Eq. (5)).

4.3 Distributed Evaluation of the MPHF
In this section we present the PECA-DE algorithm, where

both the description and the evaluation of the MPHF are
distributed and stored locally in each worker. The PECA-
DE algorithm calculates a localoffset array in each worker,
in the same way as it is done in the searching step of the
sequential algorithm shown in Figure 5 (see line 7). At the
end of the partitioning step, each worker sends the number
of keys assigned to it to the manager, which calculates a
globaloffset , whereas the workers are performing the search-
ing step.

To evaluate a key k using the resulting MPHF, the man-
ager first discovers the worker w that generated the MPHF
for the bucket in which k is (recall that this is done by cal-
culating w = h0(k)/Bpw). Then, the key k (actually, its
fingerprint) is sent to the worker w, which calculates locally
a partial result

MPHFpartial(k) = MPHF i(k) + localoffset [i],

where i = h0(k) mod Bpw is the local bucket address where
k belongs and localoffset [i] gives the total number of keys
before bucket i. Once this partial result is calculated, it is
sent back to the manager, which calculates the final result

MPHF (k) = MPHFpartial(k) + globaloffset [w],

where globaloffset [w] has p entries and gives the total num-
ber of keys handled by the workers before worker w.

The downside of this is that the evaluation of a single
key is harmed, due to the communication overhead between
the manager and the workers. However, if the system is
being fed by a key stream, the average performance will
improve because p keys can be evaluated in parallel by p
workers. This will indeed happen because the keys are uni-
formly placed in the buckets by using a hash function, which
will balance the key stream among the p workers. The ex-
perimental results in Section 5 confirm this fact.

Other advantage of the PECA-DE algorithm is that the
workers do not need to send the MPHFs generated locally for
the buckets they are responsible for to the manager. Instead,
they are written in parallel by the workers. Therefore, in this
case, the fraction of parallelism we can potentially exploit
corresponds to 100% of the execution time.

Therefore, as shown in Section 5, the PECA-DE algorithm
provides a slightly better construction time than the PECA-
CE algorithm. But the main advantage of the PECA-DE
algorithm is that it distributes the resulting MPHF among
several machines. When the number n of keys in the key
set S grows, the size of the resulting MPHF also grows lin-
early with n. For very large n, it may not be possible to
represent the resulting MPHF in just one machine, whereas
the PECA-DE algorithm addresses this by distributing uni-
formly the resulting MPHF.

4.4 Implementation Decisions
In this section we present and discuss some implementa-

tion decisions that aim to reduce the overhead of the dis-
tributed algorithms we just described.

A very first decision is to exploit multiprogramming in
the worker, motivated not only by the characteristics of the
execution platform, but also by the complementary profiles
of the steps, which are either CPU or I/O-intensive. As a
result, we are able to maximize the overlap between compu-
tation and communication, represented by disk and network
traffic.

Further, in order to reduce the overhead due to context
changes we grouped steps (described in Section 4) into fewer
threads, as detailed next. This strategy speeds up the ex-
ecution time, even on a single core machine, which is our
case.

In the partitioning step, the Hashing and Bucket Sorter
threads were grouped together into a single thread, as shown
in Figure 10. Notice that these two steps are the most CPU-
intensive and the merge would prevent them to contend for
the CPU. As a result, one thread is almost always keep-
ing the CPU busy, while the remaining threads are usually
waiting for system calls to resume (Disk Reader reading data
from disk, Net Reader receiving messages from the net, and
Bucket Dumper writing buckets back to disk whenever nec-
essary).

In the searching step, the structure replicates the step-
based division presented, but instantiating just one MPHF
Gen thread (i.e., t = 1), as shown in Figure 11.
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We also coalesced messages for both reducing the number
of system calls associated with exchange messages and better
exploiting the available bandwidth. That is, we group the
fingerprints that were going to be sent from one to another
worker in buffers of a fixed size.

5. EXPERIMENTAL RESULTS
The purpose of this section is to evaluate the performance

of both the PECA-CE and PECA-DE algorithms in terms
of speedup and scale-up (see Definitions 7 and 9), consid-
ering the impact of the key size in both metrics. We also
verify whether the load is balanced among the workers. To
compute the metrics we use the time to construct a MPHF
in the distributed algorithms.

The experiments were run in a cluster with 14 equal single
core machines, each one with 2.13 gigahertz, 64-bit architec-
ture, running the Linux operating system version 2.6, and 2
gigabytes of main memory.

For the experiments we used three collections: (i) a set of
URLs collected from the web, (ii) a set of randomly gener-
ated 16-byte integers, and (iii) a set of randomly generated
8-byte integers. The collections are presented in Table 1.
The main reason to choose these three different collections
is to evaluate the impact of the key size on the results.

Collection Average key size n (billions)
URLs 64 1.024

Random 16 1.024
Integers 8 1.024

Table 1: Collections used for the experiments.

In Section 5.1 we discuss the impact of key size on speedup
and scale-up. In Section 5.2 we study the communication

overhead. In Section 5.3 we discuss the load balance among
workers. In Section 5.4 we discuss the distributed evaluation
of a MPHF when the MPHF is being fed by a key stream.

5.1 Key Size Impact
In this section we evaluate the impact of the key size and

how it changes as we increase the number of processors. We
use both speedup and scale-up as metrics for performing
such evaluation.

In order to compute the speedup we need the execution
time of the sequential ECA algorithm. Table 2 shows how
much time the ECA algorithm requires to build a MPHF
for 1.024 billion keys taken from each collection shown in
Table 1.

n (billion) Collection time (min.)
64-byte URLs 50.02

1.024 16-byte integers 39.35
8-byte integers 34.58

Table 2: Time in minutes of the sequential algorithm
(ECA) to construct a MPHF for 1.024 billion keys.

We start by evaluating the speedup of the distributed al-
gorithm and perform three sets of experiments, using the
three collections presented in Table 1 and varying the num-
ber of machines from 1 to 14.

Table 3 presents the maximum speedup (Smax), the speed-
up Sp and the efficiency Ep for both the PECA-CE and
PECA-DE algorithms for each collection. In almost all cases,
the speedup was very good, achieving an efficiency of up to
93% using 14 machines, confirming the expectations of that
not only there is a parallelism opportunity to be exploited,
but also it is significative enough that allows good efficien-
cies even for relatively large configurations. The compari-
son between PECA-CE and PECA-DE also shows that the
strategy employed in PECA-DE was effective.

It is remarkable that the key size impacts the observed
speedups, since the efficiency for the 64-byte URLs is greater
than 90% for all configurations evaluated, but for 16-byte
and 8-byte random integers it is greater than or equal to
90% only for p ≥ 12 and p ≥ 6, respectively. This hap-
pens because when we decrease the key size, the amount
of computation decreases proportionally in the partitioning
step, but the amount of communication remains constant
since the γ-bit fingerprints will continue with the same size
γ = 96 bits (or 12 bytes.) The size γ of a fingerprint depends
on the number of keys n, but does not depend on the key
size [4]. Therefore, the smaller is the key size, the smaller
is the value of p to fully exploit the available parallelism,
resulting in eventual performance degradation. A graphical
view of the speedups can also be seen in Figure 12.

We performed similar sets of experiments for evaluating
the scale-up and the results are presented in Table 5 and
Figure 13, where we may confirm the good scalability of the
algorithm, which allows just 17% of degradation when us-
ing 14 machines to solve a problem 14 times larger. These
results show that not only the algorithm proposed is effi-
cient, but also is very effective dealing with larger datasets.
For instance, in Table 4 it is shown that the performance
degradation is up to 20% even for 14.336 billion keys evenly
distributed among 14 machines. Again, the key size has a
definite impact on the performance.



Smax
64-byte URLs 16-byte random integers 8-byte random integers

p PECA-CE PECA-DE PECA-CE PECA-DE PECA-CE PECA-DE
PECA-CE PECA-DE Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.99 2.00 1.96 0.98 1.99 1.00 1.89 0.95 1.90 0.95 1.91 0.96 1.91 0.96
4 3.94 4.00 3.85 0.98 3.90 0.98 3.76 0.95 3.81 0.95 3.54 0.90 3.63 0.91
6 5.85 6.00 5.62 0.96 5.78 0.96 5.68 0.97 5.70 0.95 5.27 0.90 5.42 0.90
8 7.73 8.00 7.73 1.00 8.00 1.00 7.41 0.96 7.78 0.97 6.74 0.87 6.98 0.87
10 9.57 10.00 9.21 0.96 9.61 0.96 9.01 0.94 9.57 0.96 8.03 0.84 8.33 0.83
12 11.37 12.00 10.85 0.95 11.37 0.95 10.61 0.93 11.05 0.92 9.07 0.80 9.30 0.78
14 13.15 14.00 12.18 0.93 13.06 0.93 11.59 0.88 12.44 0.89 9.97 0.76 10.48 0.75

Table 3: Speedup obtained with a confidence level of 95% for both the PECA-CE and PECA-DE algorithms
considering 1.024 billion keys (73,142,857 keys in each machine).
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(b) 16-byte random integers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14

S
pe

ed
up

Number of machines

Linear
PECA−CE
PECA−DE

(c) 8-byte random integers

Figure 12: Speedup obtained with a confidence level of 95% for both the PECA-CE and PECA-DE algorithms
considering 1.024 billion keys (73,142,857 keys in each machine).

n Random integer Construction time (min)
(billions) collections ECA PECA-DE Up

14.336
16-byte 41.17 49.5 1.20

8-byte 34.58 58.00 1.68

Table 4: Scale-up obtained with a confidence level of
95% for the PECA-DE algorithm considering 14.336
billion keys (1.024 billion keys in each machine).

5.2 Communication Overhead
We now analyze the communication overhead. There is a

significant overhead associated with message traffic among
workers in the net. Since the hash function h0 is a linear
hash function [4] that behaves closely to a fully random hash
function, the chance of a given key in the key set S belonging
to a given bucket is close to 1

Nb
. Since each worker has Nb

p

buckets, the chance that a key it reads belongs to another
worker is close to p−1

p
. Since each worker has to read n

p
keys

from disk, it will send through the net approximately

n(p − 1)

p2
.

Thus, the total traffic τ of fingerprints through the net is
approximately

τ ≈
n(p − 1)

p
. (6)

Table 6 shows the minimum and maximum amount of
keys sent to the net by a worker. It also shows the expected
amount computed by using Eq. (6). As it shows, the em-
pirical measurements are really close to the expected value.

p Keys sent by a worker to the net

Max (%) Min (%) τ (%)
2 50.005 49.996 50.000
4 75.008 74.994 75.000
6 83.339 83.327 83.333
8 87.506 87.492 87.500
10 90.009 89.991 90.000
12 91.673 91.657 91.667
14 92.864 92.849 92.857

Table 6: Worst, best and expected percentage of
keys sent by a worker to the net.

That results in a relevant overhead due to communication
among the workers, and as the number of workers increases,
the speedup can be penalized if the network bandwidth is
not enough for the traffic. In our 1 gigabit ethernet network
this was not a problem for at most 14 workers.

5.3 Load Balancing
In this section we quantify the load imbalance and corre-

late it with the results. An important issue is how much the
load is balanced among the workers. The load depends on
the following parameters: (i) the number of keys each worker
reads from disk in the partitioning step; (ii) the number of
buckets each worker is responsible for; (iii) the number of
keys in each bucket.

The first two parameters are fixed by construction and are
evenly distributed among the workers. The only parameter
that could present some variation in each execution is the



64-byte URLs 16-byte random integers 8-byte random integers
p PECA-CE PECA-DE PECA-CE PECA-DE PECA-CE PECA-DE

time (min) Up time (min) Up time (min) Up time (min) Up time (min) Up time (min) Up

1 3.71 1.00 3.68 1.00 2.68 1.00 2.70 1.00 2.00 1.00 2.00 1.00
2 3.76 1.01 3.71 1.01 2.74 1.02 2.69 1.00 2.16 1.08 2.11 1.06
4 3.84 1.03 3.77 1.03 2.77 1.03 2.71 1.00 2.44 1.22 2.35 1.17
6 3.91 1.05 3.81 1.04 2.82 1.05 2.73 1.01 2.68 1.34 2.58 1.29
8 3.96 1.07 3.82 1.04 2.94 1.10 2.76 1.02 3.04 1.52 2.82 1.41
10 4.02 1.08 3.83 1.04 3.10 1.15 2.86 1.06 3.25 1.62 3.10 1.55
12 4.02 1.08 3.84 1.05 3.23 1.20 3.02 1.12 3.48 1.74 3.29 1.64
14 4.11 1.11 3.85 1.05 3.40 1.27 3.16 1.17 3.47 1.73 3.30 1.65

Table 5: Scale-up obtained with a confidence level of 95% for both the PECA-CE and PECA-DE algorithms
considering 1.024 billion keys (73,142,857 keys in each machine).
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(a) 64-byte URLs
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(b) 16-byte random integers
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Figure 13: Scale-up obtained with a confidence level of 95% for both the PECA-CE and PECA-DE algorithms
considering 1.024 billion keys (73,142,857 keys in each machine).

last one. However, as we use the hash function h0 to split the
key set into buckets, it was shown in [4] that each key goes
to a given bucket with probability close to 1/Nb and there-
fore the distribution of the bucket sizes follows a binomial
distribution with average np/Bpw, where np =

PBpw−1

i=0
|Bi|

is the number of keys each worker has stored in the buckets
it is responsible for and Bpw is the number of buckets per
worker.

It is also shown in [4] that the largest bucket is within a
factor O(log log np) of the average bucket size. Therefore,
np has a very small variation from worker to worker, which
makes the load balanced among the p machines. Table 7
presents experimental results confirming this, as the differ-
ence between the execution time of the fastest worker (tfw)
and the slowest worker (tsw) was less than or equal to 0.1
minutes.

p PECA-CE PECA-DE

tfw tsw tsw−tfw tfw tsw tsw−twb

2 25.27 25.37 0.10 25.01 25.06 0.05
4 12.94 13.04 0.10 12.78 12.86 0.09
6 8.58 8.69 0.11 8.53 8.65 0.11
8 6.19 6.26 0.07 6.18 6.25 0.07
10 5.14 5.22 0.08 5.11 5.20 0.09
12 4.31 4.39 0.08 4.32 4.40 0.07
14 3.81 3.88 0.07 3.76 3.84 0.08

Table 7: Fastest worker time (tfw), slowest worker
time (tsw), and difference between tsw and tfw to
show the load balancing among the workers for 1.024
billion 64-byte URLs distributed in p machines. The
times are in minutes.

5.4 Distributed Evaluation
In this section we show that the distributed evaluation

of a MPHF is worth when compared to the ones generated
by both the sequential and PECA-CE algorithms. These
results assume that the distributed function is being fed by
a key stream, instead of one key at a time.

Table 8 shows the times that both the ECA algorithm
and PECA-DE algorithm needs to evaluate one billion keys
taken at random. As expected, the distributed evaluation
was faster because p keys of the key stream can be evaluated
in parallel by p participating machines. Here we also used
the message coalescing technique.

Collection
Evaluation time (min)

ECA PECA-DE
64-byte URLs 33.11 21.68

16-byte random integers 24.54 11.47
8-byte random integers 18.2 10.1

Table 8: Evaluation time in minutes for both the
sequential algorithm ECA and the parallel algorithm
PECA-DE algorithm, considering 1 billion keys.

6. CONCLUSIONS
In this paper we have presented a parallel implementa-

tion of the External Cache-Aware (ECA) perfect hashing
algorithm presented in [4]. We have designed two versions.
The PECA-CE algorithm distributes the construction of the
resulting MPHFs among p machines and centralize the eval-
uation and description of the resulting functions in a single



machine, as in the sequential case. Then the goal in this
version is to speedup the construction of the MPHFs by ex-
ploiting the high degree of parallelism of the ECA algorithm.
The PECA-DE algorithm distributes both the construction
and the evaluation of the resulting MPHFs. In this version
the goal is to allow the descriptions of the resulting functions
be uniformly distributed among the participating machines.

We have evaluated both the PECA-CE and PECA-DE
algorithms using speedup and scale-up as metrics. Both
versions presented an almost linear speedup, achieving an
efficiency larger than 90% by using 14-computer cluster and
keys of average size larger than or equal to 16 bytes. For
smaller keys, e.g. 8-byte integers, we have shown that the ex-
istent parallelism between computation and communication
is captured with 90% of efficiency by using a smaller number
of machines (e.g, p = 6). This was as expected, because the
smaller is the key the smaller is the amount of computation,
but the amount of communication remains constant for a
given number n of keys, penalizing the speedup.

We have also shown that both the PECA-CE and PECA-
DE algorithms scale really well for larger keys. Smaller keys
also impose restrictions on the scalability due to the smaller
degree of overlap between computation and communication
aforementioned. To illustrate the scalability, the time to
generate a MPHF for 14.336 billion 16-byte random inte-
gers using a 14-computer cluster with 1.024 billion 16-byte
random integers in each machine is just a factor of 1.2 more
than the time spent by the sequential algorithm when ap-
plied to 1.024 billion keys.
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