
Scalable Web Services Interface for SD-SQL Server
Soror Sahri

CERIA, Université Paris-Dauphine
Place de Lattre de Tassigny

75016 Paris, France

Soror.sahri@dauphine.fr

Witold Litwin
CERIA, Université Paris-Dauphine

Place de Lattre de Tassigny
75016 Paris, France

witold.litwin@dauphine.fr

Thomas Schwarz
Santa Clara University
500 El Camino Real

California, USA

tjschwarz@scu.edu

ABSTRACT
SD-SQL Server is a scalable distributed database system. Its
original feature is dynamic and transparent repartitioning of
growing tables. It avoids the cumbersome manual repartitioning
necessary with current technology. SD-SQL Server re-partitions a
(distributed) table when an insert overflows existing segments. To
its user, SD_SQL offers the comfort of a single node, while
allowing the larger tables and faster response time made possible
by dynamic parallelism. We present the architecture of our
system and its command interface. We present the Extended Web
Services (EWS) Interface we have recently added to SD-SQL
Server. We study the relative EWS query speed. It remains
insufficient for larger data sets to be retrieved.

Keywords
Scalable table, scalable database, dynamic partitioning, scalable
Web services.

1. INTRODUCTION
Today, many databases contain fast growing tables that ultimately
become very large. The current state-of-the-art DBMSs (DB2,
Oracle, SQL Server, Postgress, MySQL…) accommodate large
tables by partitioning and distributing them over several sites.
These systems allow only static partitioning [1, 4, 5, 15].
Whenever an adjustment is needed, the database administrator
needs to manually repartition. Our proposal, SD-SQL Server,
avoids this cumbersome task by dynamically adjusting table
growth through autonomous splitting of table segments [9, 11, 12,
13, 14]. SD-SQL is a distributed system that uses the services of
SQL server. The transparent growth of SD-SQL’s central data
structure is the defining feature of a Scalable Distributed Data
Structures (SDDS) [6, 7, 8].

The salient features of an SD-DBS are scalable tables. Each table
consists of distributed segments that are relational tables. As in
any SDDS, the application (client) is aware of neither the number
of segments nor their locations. Instead, the client has a local view
(its image) of the scalable table.

The image is sufficient to manipulate the table successfully.
During internal processing, an incoming query might use an

outdated image at a client. However, the system checks the
accuracy of the image and adjusts it if necessary as part of the
query execution.

Our implementation uses SQL Server as the underlying DBMS
since SQL Server allows updating partitioned views using check
constraints. To our knowledge, SQL Server is the only
mainstream database with this capability. For every standard SQL
command under SQL Server, we provide an SD-SQL Server
command for the corresponding action on a scalable table or a
scalable view.

Recently, we have extended SD-SQL Server to support an
Enhanced Web Services (EWS) interface. We call it the EWS-
SDSQL Server interface. To implement it, we mapped each SD-
SQL Server command to a Web service using the SQL endpoints
new feature of SQL Server 2005. In this article, we report on its
impact on SD-SQL.

We first recall the architecture of SD-SQL Server and its
interface. Related papers [10, 13, 16] discuss the implementation.
We then present the EWS SDSQL Server. Scalable table
processing creates an overhead and our design challenge was to
minimize it. The performance analysis we report proves that this
overhead is negligible for practical purpose. We then discuss the
EWS-SDSQL Server performance. We observed that it is several
times slower when we retrieve large data sets. The slowdown of
the EWS interface is so large that it seems hardly useful for
practical purposes. The problem seems to be rooted deep within
the SQL Server implementation. We expect that our interface will
offer much better performance once SQL Server has overcome
this limitation. Future work will prove or disprove our
expectation.

The remainder of the paper is organized as follows: Section 2
presents the SD-SQL Server architecture. The first part of Section
3 recalls the basics of the user interface. The second one presents
EWS-SDSQL, the scalable Web services interface upon SD-SQL
Server. Section 4 shows the experimental performance analysis.
Section 5 concludes the presentation.

2. SD-SQL SERVER ARCHITECTURE
Figure 1 shows the current SD-SQL Server architecture, adapted
from the reference architecture for an SD-DBS in [8]. The system
is a collection of SD-SQL Server nodes. An SD-SQL Server node
is a linked SQL Server node that in addition is declared as an SD-
SQL Server node. This declaration is made as an SD-SQL Server
command or is part of a dedicated SQL Server script run on the
first node of the collection. We call the first node the primary
node. The primary node registers all other current SD-SQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ziglio
Typewritten Text
INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3517

nodes. We can add or remove these dynamically, using specific
SD-SQL Server commands. The primary node registers the nodes
in a specific, local SD-SQL Server database called the meta-
database (MDB). An SD-SQL Server database is an SQL Server
database that contains an instance of SD-SQL Server specific
manager component. A node may carry several SD-SQL Server
databases.

We call an SD-SQL Server database in short a node database
(NDB). NDBs at different nodes may share a (proper) database
name. Such nodes form an SD-SQL Server scalable (distributed)
database (SDB). The common name is the SDB name. One of
NDBs in an SDB is primary. It carries the meta-data registering
the current NDBs, their nodes at least. SD-SQL Server provides
the commands for scaling up or down an SDB, by adding or
dropping NDBs. For an SDB, a node without its NDB is (an SD-
SQL Server) spare (node). A spare for an SDB may already carry
an NDB of another SDB. Figure 1 shows an SDB, but does not
show spares.

Each manager takes care of the SD-SQL Server specific
operations and in particular of the user/application command
interface. The procedures constituting the manager of an NDB are
themselves kept in the NDB. They apply various SQL Server
commands internally. The SQL Servers at each node handle the
inter-node communication and the distributed execution of SQL
queries entirely. In this sense, each SD-SQL Server runs on top of
its linked SQL Server, without any specific internal changes of the
latter.

An SD-SQL Server NDB is a client, a server, or a peer. The client
manages only the SD-SQL Server node user/application interface.
This consists of the SD-SQL Server specific commands and from
the SQL Server commands. As for the SQL Server, the SD-SQL
specific commands address the schema management or issue
queries to scalable tables. Such a scalable query may invoke a
scalable table through its image name, or indirectly through a
scalable view of its image, involving also, perhaps, some static
tables, i.e., SQL Server only.

Internally, each client stores the images, the local views and
perhaps static tables. It also contains some SD-SQL Server meta-
tables constituting the catalog C at Figure 1. The catalog registers
the client images, i.e., the images created at the client.

When a scalable query comes in, the client checks whether it
actually involves a scalable table. If so, the query must address the
local image of the table. It can do so directly through the image
name, or through a scalable view. The client searches therefore for
the images that the query invokes. For every image, it checks
whether it conforms to the actual partitioning of its table, i.e.,
unions all the existing segments. We recall that a client view may
be outdated. The client uses C, as well as some server meta-tables
pointed to by C that define the actual partitioning. The manager
dynamically adjusts any outdated image. In particular, it changes
internally the scheme of the underlying SQL Server partitioned
and distributed view, representing the image to the SQL Server.
The manager executes the query, when all the images it uses
prove up to date.

A server NDB stores the segments of scalable tables. Every
segment at a server belongs to a different table. At each server, a
segment is internally an SQL Server table with specific properties.
First, SD-SQL Server refers to in the specific catalogue in each
server NDB, called S in the figure. The meta-data in S identify the

scalable table each segment belongs to. They indicate also the
segment size. In addition, they give the servers in the SDB that
remain available for the segments created by the splits at the
server NDB. Finally, for a primary segment, i.e., the first segment
created for a scalable table, the meta-data at its server provides the
actual partitioning of the table.

Each segment has an AFTER trigger attached, not shown in the
figure. After each insert, the trigger checks whether the segment
overflows. If this is the case, then the server splits the segment by
range partitioning it with respect to the table (partition) key. It
moves enough upper tuples out so that the remaining (lower)
tuples fit into the splitting segment. To accommodate the
migrating tuples, the server creates one or more new segments
that are each half-full. (Notice the difference to a B-tree split
creating a single new segment.) Furthermore, every segment in a
multi-segment scalable table carries an SQL Server check
constraint. Each constraint defines the partition (primary) key
range of the segment. The ranges partition the key space of the
table. These conditions allows updates to the SQL Server
distributed partitioned and in particular inserts and deletions. This
is a necessary and sufficient condition for a scalable table under
SD-SQL Server to be updateable as well.

Finally, a peer NDB is both a client and a server NDB. Its node
DB carries all the SD-SQL Server meta-tables. It may carry both
the client images and the segments. The meta-tables at a peer node
form logically the catalog (called P in the figure). This catalogue
is operationally the union of the C and S catalogs.

Every SD-SQL Server node is client, server or peer node. The
peer accepts every type of NDB. The client nodes only carry
client NDBs and server nodes accept server NDBs only. Only a
server or peer node can be the primary node or may carry a
primary NDB. To illustrate the architecture, Figure 1 shows the
NDBs of some SDB, on nodes D1…Di+1. The NDB at D1 is a
client NDB that thus carries only the images and views, especially
the scalable ones. This node could be the primary one, provided it
is a peer. It interfaces the applications. The NDBs on all the other
nodes until Di are server NDBs. They carry only the segments and
do not interface (directly) any applications. The NDB at D2 could
be here the primary NDB. Nodes D2…Di could be peers or (only)
servers. Finally, the NDB at Di+1 is a peer, providing all the
capabilities. Its node has to be a peer node.

The NDBs carry a scalable table called T. The table has a scalable
index I. We suppose that D1 carries the primary image of T,
named T at the figure. This image name is also as the SQL Server
view name implementing the image in the NDB. SD-SQL Server
creates the primary image at the node requesting the creation of a
scalable table, while creating the table. Here, the primary segment
of table T is supposed at D2. Initially, the primary image included
only this segment. It has evolved since, following the expansion
of the table at new nodes, and now is the distributed partitioned
union-all view of T segments at servers D2…Di. We symbolize
this image with the dotted line running from image T till the
segment at Di. Peer Di+1 carries a secondary image of table T.
Such an image interfaces the application using T on a node other
than the table creation one. This image, named D1_T, for reasons
we discuss below, differs from the primary image. It only includes
the primary segment. We symbolize it with the dotted line
towards D2 only. Both images are outdated. Indeed, server Di just
split its segment and created a new segment of T on Di+1. The
arrow at Di and that towards Di+1 represent this split. As the

result of the split, server Di updated the meta-data on the actual
partitioning of T at server D2 (the dotted arrow from Di to D2).
The split has also created the new segment of the scalable index I.
None of the two images refers as yet to the new segment. Each
will be actualized only once it gets a scalable query to T. At the
figure, they are getting such queries, issued using respectively the
SD-SQL Server sd_select and sd_insert commands. We discuss
the SD-SQL Server command interface in the next sections.

Notice finally that the segments of T in the figure are all named
_D1_T. This represents the couple (creator node, table name). It is
the proper name of the segment as an SQL Server table in its
NDB. Similarly for the secondary image name, except for the
initial ‘_’. The image name is the local SQL Server view name.

Figure 1. SD-SQL Server Architecture

3. APPLICATION INTERFACE

3.1 Overview
TThe application manipulates SD-SQL Server objects essentially
through new SD-SQL Server dedicated commands. Some
commands address the node management, including the
management of SDBs, NDBs. Other commands manipulate the
scalable tables. These commands perform the usual SQL schema
manipulations and queries that can however now involve scalable
tables (through the images) or (scalable) views of the scalable
tables. We call the SD-SQL Server commands scalable. A
scalable command may include additional parameters specific to
the scalable environment, with respect to its static (SQL Server)
counterpart. Most of scalable commands apply also to static tables
and views.
Details of all the SD-SQL Server commands are in [12, 13, 14].
The rule for an SD-SQL Server command performing an SQL
operation is to use the SQL command name (verb) prefixed with
‘sd_’ and with all the blanks replaced with ‘_’. Thus, e.g., SQL
SELECT became SD-SQL sd_select, while SQL CREATE TABLE
became sd_create_table. The standard SQL clauses, with perhaps
additional parameters follow the verb, specified as usual for SQL.
The whole specification is however within additional quotes ‘ ’.
The rationale is that SD-SQL Server commands are implemented
as SQL Server stored procedures. The clauses pass to SQL Server
as the parameters of a stored procedure and the quotes around the
parameter list are mandatory.

The operational capabilities of SD-SQL Server should suffice for
many applications. The SELECT statement in a scalable query
supports the SQL Server allowed selections, restrictions, joins,
sub-queries, aggregations, aliases…etc. It also allows for the
INTO clause that can create a scalable table. However, queries to
the scalable multi-database views are presently not possible. The

reasons are the limitation of the SQL Server meta-tables that SD-
SQL Server uses for the parsing. Moreover, the sd_insert
command over a scalable table lets for any insert accepted by
SQL Server for a distributed partitioned view. This can be a new
tuple insert, as well as a multi-tuple insert through a SELECT
expression, including the INTO clause. The sd_update and
sd_delete commands offer similar capabilities. In contrast, some
of SQL Server specific SQL clauses are not supported at present
by the scalable commands; for instance, the CASE OF clause.

We recall the SD-SQL Server command interface modelled upon
our benchmark application , namely SkyServer DB, [2].

From now on, a Dell3 user opens Skyserver SDB. The Skyserver
users are now able to create scalable tables. The Dell3 user starts
with a PhotoObj table modelled on the static table with the same
name, [2]. The user sets a segment capacity of 10000 tuples. S/he
chooses this parameter for the efficient distributed query
processing. S/he also sets the objid key attribute to be the partition
key. In SD-SQL Server, a partition key of a scalable table has to
be a single key attribute. The requirement comes from SQL
Server, where it has to be the case of a table, or tables, behind a
distributed partitioned updatable view. The key attribute of
PhotoObj is its objid attribute. The user issues the command:

Split

User/ApplicationUser/Application

D1 NDBs D2 Di Di+1

_D1_T

SD-SQL
server

SD-SQL
server

SD-SQL
client

S S P C
 I I D1_T

_D1_T
 I

D1
T

sd_select

SD-SQL
peer

sd insert

SD-SQL
Managers

Linked

SQL Servers

sd_create_table ‘PhotoObj (objid BIGINT PRIMARY
KEY…)’, 10000

We did not provide the complete syntax, using ‘…’ to denote the
rest of the scheme beyond the key attribute. The objid attribute is
the partition key implicitly, since it is here the only key attribute.
The user creates furthermore a scalable table Neighbors, modelled
upon the similar one in the static Skyserver. That table has three
key attributes. The objid is one of them and is the foreign key of
PhotoObj. For this reason, the user wishes it to be the partition
key. The segment capacity should now be 500 tuples.
Accordingly, the user issues the command:

sd_create_table ‘Neighbors (htmid BIGINT, objid BIGINT,
Neighborobjid BIGINT) ON PRIMARY KEY…)’, 500,
‘objid’

The user indicated the partition key. The implicit choice would go
indeed to htmid, as the first one in the list of key attributes. The
Dell3 user decides furthermore to add attribute t to PhotoObj and
prefer a smaller segment size:

sd_alter_table ‘PhotoObj ADD t INT, 1000
Next, the user decides to create a scalable index on run attribute:

sd_create_index ‘run_index ON Photoobj (run)'
Splits of PhotoObj will propagate run_index to any new segment.

The PhotoObj creation command created the primary image at
Dell3. The Dell3 user creates now the secondary image of
PhotoObj at Ceria1 node for the SkyServer user there:

sd_create_image ‘Ceria1’, ‘PhotoObj’
The image internal name is SD.Dell3_Photoobj, as we discuss in
[10]. Once the Ceria1 user does not need its image anymore, s/he
may remove it through the command:

sd_drop_image 'SD.Dell3_Photoobj'
Assuming that the image was not dropped however yet, our Dell3
user may open Skyserver SDB and query PhotoObj:

sd_insert ‘INTO PhotoObj SELECT * FROM
Ceria5.Skyserver-S.PhotoObj
sd_select ‘TOP 5000 * INTO PhotoObj1 FROM PhotoObj’,
500

The first query loads into our PhotoObj scalable table tuples from
some other PhotoObj table or view created in some Skyserver DB
at node Ceria5. This DB could be a static, i.e., SQL Server only,
DB. It could alternatively be an NDB of “our” Skyserver DB. The
second query creates a scalable table PhotoObj1 with segment
size of 500 and copies there 5000 tuples from PhotoObj, having
the smallest values of objid. See [10] for examples of other
scalable commands.

3.2 SCALABLE WEB SERVICES
INTERFACE
Here, we present the SD-SQL Server commands through a full
extended Web services (EWS) interface. The WS-SDSQL is our
generic name for such interface. Through its methods, WS-
SDSQL interface would act as document repository protocol for
data storage and retrieval. The messaging should thus use EWS
compatible SOAP specs and the service description should be
available through WSDL. The EWS-SDSQL methods could be
called from a more extensive interface, using also EWS protocols.

As SD-SQL Server is implemented upon SQL Server, we use the
new feature of SQL Server 2005 to create the EWS-SDSQL
interface. SQL Server 2005's HTTP/SOAP endpoints provide
SQL Server with new capabilities for using Web services within
SQL Server. An endpoint is a service that listens for requests
natively within the server. Each endpoint supports a protocol,
which can be TCP or HTTP, and a payload type, which can
include support for database mirroring, service broker, T-SQL, or
SOAP.

To set up a Web service, we create an HTTP endpoint on the
server. That endpoint can expose a stored procedure as a Web
method. As the SD-SQL Server commands are SQL stored
procedures, so we map these stored procedures to web methods by
creating an SQL endpoint. To do so, we use the SkyServer
database benchmark presented as a scalable database on SD-SQL
Server. We map all its SD-SQL Server commands to web
methods as in Erreur ! Source du renvoi introuvable.. For
example, we map the sd_select command to SdSelect Web
method.

Once the SD-SQL Server commands are mapped into Web
methods through the SkyServer endpoint above, we can call each
of the corresponding command as a Web service from a user
interface. We have developed this interface using C# language.

The limitation with Web services, in this context, is the use of
distributed partitioned views. The call of a Web service functions
only when a partitioned view addresses local segments. If a
partitioned view addresses distributed segment, the Web service
call fails.

CREATE ENDPOINT SkyServer
 STATE = STARTED
AS HTTP
(PATH = '/SkyServer,
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR),
 SITE = 'localhost')
FOR SOAP
(WEBMETHOD 'SdCreateTable'
 (NAME='eGovBus.dbo.sd_create_table'),
 WEBMETHOD 'SdAlterTable'
 (NAME=SkyServer.dbo.sd_alter_table'),
 WEBMETHOD 'SdCreateIndex'
 (NAME= SkyServer.dbo.sd_create_index'),
 WEBMETHOD 'SdDropIndex'

 (NAME= SkyServer.dbo.sd_drop_index'),
 WEBMETHOD 'SdDropTable' (NAME= SkyServer.dbo.sd_drop_table'),
 WEBMETHOD 'SdSelect'
 (NAME= SkyServer.dbo.sd_select'),

 WEBMETHOD 'SdInsert'
 (NAME= SkyServer.dbo.sd_insert'),
 WEBMETHOD 'SdUpdate'

 (NAME= SkyServer.dbo.sd_update'),
 WEBMETHOD 'SdDelete'
 (NAME= SkyServer.dbo.sd_delete'),

 BATCHES = DISABLED,
 WSDL = DEFAULT, DATABASE = ' SkyServer ',
 NAMESPACE = 'http://SkyServer/SkyServer')

Figure 2. Mapping of the SD-SQL Server commands to
Web Services

4. PERFORMANCE ANALYSIS
To validate the SD-SQL Server architecture, we evaluated its
scalability and efficiency over some SkyServer DB data [2]. Our
hardware consisted of 1.8 GHz P4 PCs with either 785 MB or 1
GB of RAM, linked by a 1 Gbs Ethernet. We used the SQL
Profiler to take measurements.

The query measures included the overhead of the image checking
alone, of image adjustment and of image binding for various
queries, [12, 13]. Here, we discuss this query:

(Q) sd_select ‘COUNT (*) FROM PhotoObj’

We have measured (Q) on our PhotoObj scalable table as it grows
under inserts. It had successively 2, 3, 4 and 5 segments,
generated each by a 2-split. The query counted at every segment.
The segment capacity was 30K tuples. We aimed at the
comparison of the response time for an SD-SQL Server user and
for the one of SQL Server. We supposed that the latter (i) does not
enter the manual repartitioning hassle, or, alternatively, (ii) enters
it by 2-splitting manually any time the table gets new 30K tuples,
i.e., at the same time when SD-SQL Server would trigger its split.
Case (i) corresponds to the same comfort as that of an SD-SQL
Server user. The obvious price to pay for an SQL Server user is
the scalability, i.e., the worst deterioration of the response time for
a growing table. In both cases (i) and (ii) we studied the SQL
Server query corresponding to (Q) for a static table. For SD-SQL
Server, we measured (Q) with and without the LSV option.

Figure 2 displays the result. The curve named “SQL Server
Centr.” shows the case (i), i.e., of the centralized PhotoObj. The
curve “SQL Server Distr.” reflects the manual reorganizing (ii).
The curve shows the minimum that SD-SQL Server could reach,
i.e., if it had zero overhead. The two other curves correspond to
SD-SQL Server.

We can see that SD-SQL Server processing time is always quite
close to that of (ii) by SQL Server. Our query-processing
overhead appears only about 5%. We can also see that for the
same comfort of use, i.e., with respect to case (i), SD-SQL Server
without LZV speeds up the execution by almost 30 %, e.g., about
100 msec for the largest table measured [3]. With LZV the time
decreases there to 220 msec. It improves thus by almost 50 %.
This factor characterizes most of the other sizes as well. All these
results prove the immediate utility of our system.

Notice further that in theory SD-SQL Server execution time could
remain constant and close to that of a query to a single segment of
about 30 K tuples. This is 93 ms in our case. The timing observed
practice grows in contrast, already for the SQL Server. The result
seems to indicate that the parallel processing of the aggregate
functions by SQL Server has still room for improvement. This
would further increase the superiority of SD-SQL Server for the
same user’s comfort.

93
156

220
250

326

106

164
226

256

343

283

203
93

356

436

220203
123

76
160

100

200

300

400

500

1 2 3 4 5

Number of Segments

E
xe

cu
tio

n
Ti

m
e

(m
s)

SQL Server-Distr SD-SQL Server

SQL Server-Centr. SD-SQL Server LSV

Figure 3. Query (Q) execution on SQL Server and SD-SQL

Server

4.1 PERFORMANCE ANALYSIS OF EWS-
SDSQL INTERFACE

We have measured the time of the SdSelect Web service
corresponding to the scalable query (Q) where PhotoObj scalable
table contained only one segment. We recall that we cannot
address distributed segments in a partitioned view if we query it
from a Web service.

The execution time of this Web service presents about three times
the execution time of the query (Q) directly on SD-SQL Server
whatever the scalable table size.
We have also measured the time of the Web service that
corresponds to the query below:

(Q1) sd_select ‘TOP N * FROM PhotoObj’
In the TOP clause, we vary N to have the values 50, 100,
1000…tuples.

If N=50 tuples, the execution time of the Web service, that
corresponds to (Q1) is about two times longer than the execution
time of (Q1) directly on SD-SQL Server.

If N=100 tuples, the execution time of the Web service is about
four times longer than the execution time of (Q1) directly on SD-
SQL Server.
If N=1000 tuples, the execution time of the Web service is about
forty times more important than the execution time of (Q1)
directly on SD-SQL Server.
Each time we increase the number of tuples in the TOP clause, the
overhead resulted from the call of the Web service is very
noticeable.

Table 1 below shows the measurements pf the execution of (Q1)
over the SD-SQL Server interface and the EWS-SDSQL interface
when N= 50, 100 and 1000 in the TOP clause of (Q1).

 on SD-SQL
Server directly

over EWS-
SDSQL Interface

N = 50 2.1648 5.278

N = 100 2.5076 9.664

N = 1000 2.3125 90

Table 1. Execution Time (sec) of (Q1) on SD-SQL Server and
on EWS-SDSQL interface

5. CONCLUSION
The proposed syntax and semantics of SD-SQL Server commands
make the use of scalable tables about as simple as that of the static
ones. It lets the user/application to easily take advantage of the
new capabilities of our system. Through the scalable distributed
partitioning, they should allow for much larger tables or for a
faster response time of complex queries, or for both. A video
demonstration of our system is available in our Web site [17, 18].
We believe that the proposed SD-SQL Server capabilities should
become a standard feature of a modern DBMS.

The current design of our interface is geared towards a “proof of
concept” prototype. It is naturally simpler than a full-scale system.
We have extended the SD-SQL Server interface to be accessed
upon a scalable Web services.

The performance measurements of the SD-SQL Server interface
show that the overhead related to the additional processing of SD-
SQL Server is negligible. However, the preliminary
measurements related to the Web services interface to SD-SQL
Server show that the overhead of the processing of Web services
is very pronounced.

Our performance analysis should be expanded. The measurements
we took for Web services upon SD-SQL Server remain
preliminary. We should extend them and study the performances
of EWS-SDSQL more in dept. If the resulted overhead remains
important, we should perform our measurements method of Web
services and find ways to improve them. Further work will also
concern the application of Web services on scalable partitioned
views. This should work on partitioned views with distributed
scalable table segments.

Finally, while SD-SQL Server acts at present as an application of
SQL Server, the scalable table management could alternatively
become part of the SQL Server core code. Obviously, we could
not do it, but the owner of this DBS can. Our design could apply
almost as is to other DBSs, once they offer the updatable
distributed partitioned (union-all) views.

6. REFERENCES

[1] Ben-Gan, I., and Moreau, T. Advanced Transact SQL for

SQL Server 2000. Apress Editors, 2000.
[2] Gray, J. & al. Data Mining of SDDS SkyServer Database.

WDAS 2002, Paris, Carleton Scientific
[3] Gray, J. The Cost of Messages. Proceeding of Principles Of

Distributed Systems, Toronto, 1989.
[4] Guinepain, S. and Gruenwald, L. Research Issues in

Automatic Database Clustering. ACM-SIGMOD, 2005.
[5] Lejeune, H. Technical Comparison of Oracle vs. SQL Server

2000: Focus on Performance, 2003.
[6] Litwin, W., Neimat, M.-A., Schneider, D. LH*: A Scalable

Distributed Data Structure. ACM-TODS, Dec. 1996.
[7] Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for

Distributed Files. ACM-SIGMOD International Conference
on Management of Data, 1993

[8] Litwin, W., Rich, T. and Schwarz, Th. Architecture for a
scalable Distributed DBSs application to SQL Server 2000.
2nd Intl. Workshop on Cooperative Internet Computing
(CIC 2002), August 2002, Hong Kong

[9] Litwin, W & Sahri, S. Implementing SD-SQL Server: a
Scalable Distributed Database System. Intl. Workshop on
Distributed Data and Structures, WDAS 2004, Lausanne,
Carleton Scientific (publ.).

[10] Litwin, W., Sahri, S., Schwarz, T. SD-SQL Server: Scalable
Distributed Database System. CERIA Research Report 2005-
12-13, December 2005.

[11] Litwin, W., Sahri, S., Schwarz, T. Scalable Command
Processing in SD-SQL Server: a Scalable Distributed
Database System. 7th Intl. Workshop on Distributed Data and
Structures (WDAS-7) Santa Clara, CA, 2006.

[12] Litwin, W., Sahri, S., Schwarz, T. Architecture and Interface
of Scalable Distributed Database System SD-SQL Server.
The Intl. Ass. of Science and Technology for Development
Conf. on Databases and Applications, IASTED-DBA,
Insbruck, 2006.

[13] Litwin, W., Sahri, S., Schwarz, T.: An Overview of a
Scalable Distributed Database System SD-SQL Server. In:
Flexible and Efficient Information Handling: 23d British
National Conference on Databases, BNCOD 23, Belfast,
Northern Ireland, UK, July 2006 Proceedings, Bell, D. and
Hong, J. (Eds.), Lecture Notes in Computer Science 4942,
Springer-Verlag, Berlin, Heidelberg, and New York, 2006, p.
16-35.

[14] Litwin, W., Sahri, S. & Schwarz, Th. New Features for a
Scalable Distributed Databases Management in SD-SQL
Server. The 3rd Biennial Conference on Innovative Data
Systems Research, CIDR 2007, January 7-10, Asilomar.

[15] Loney, K & Bryla, B. Oracle Database10g DBA Handbook,
Oracle Press, 2005.

[16] Sahri, S. SD-SQL Server : Conception de Bases de Données
Distribuées et Scalables. Phd Thesis, June 2006.

[17] SD-SQL Server Video demo. http://ceria.dauphine.fr

[18] SD-SQL Server installation Readme. http://ceria.dauphine.fr
(submitted to DBWorld).

	1. INTRODUCTION
	2. SD-SQL SERVER ARCHITECTURE
	3. APPLICATION INTERFACE
	3.1 Overview
	3.2 SCALABLE WEB SERVICES INTERFACE
	4. PERFORMANCE ANALYSIS
	4.1 PERFORMANCE ANALYSIS OF EWS-SDSQL INTERFACE

	5. CONCLUSION
	6. REFERENCES

