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ABSTRACT
Biomedical and bioinformatics applications manage and pro-
cess huge datasets and are characterized by complex work-
flows involving the application of different algorithms and
tools. In the last years the application of high-throughput
technological platforms, such mass spectrometry or medical
imaging, and the combined use of different databases (e.g.
disease-specific databases), is producing an ever increasing
volume of data that need to be processed in an efficient way.
Thus, the need for scalable solutions at the different layers
of biomedical/bioinformatics applications arises. The pa-
per discusses some emerging scalable solutions for relevant
biomedical and bioinformatics applications.
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1. INTRODUCTION
Biomedical and bioinformatics applications manage and

process huge datasets and are characterized by complex work-
flows involving the application of different algorithms and
tools. In the last years the application of high-throughput
technological platforms, such mass spectrometry or Com-
puted tomography medical imaging, and the combined use
of different databases (e.g. disease-specific databases con-
taining images like mammography, or biological databases),
is producing an ever increasing volume of data that need to
be processed in an efficient way. Thus, the need for scalable
solutions at the different layers of biomedical/bioinformatics
applications arises.
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Bioinformatics regards the application of advanced algo-
rithms and computational platforms to solve problems in bi-
ology and medicine. Important tasks are the methods used
for acquiring, storing, retrieving and analyzing biological
data produced by technological platforms such as mass spec-
trometry, micro-array, computational tomography, magnetic
resonance imaging, positron emission technology, etc.

Another important issue is the access and eventually the
integration of different biological databases relevant for the
specific problem. For instance, applications studying the se-
quence and structure of proteins usually access to protein se-
quence and structure databases (e.g. UniProt, PDB), while
many biomedical applications access images databases.

Another common issues in the bioinformatics and biomed-
ical fields is the distribution of data and users. For instance,
many bioinformatics laboratories or health centers are more
and more interested in sharing their data to improve quality
of research and allow cross-validation, so analysis requires
the remote and distributed collection of data and the shar-
ing of results.

Moreover, emerging applications such as the large scale
screening of population may be based on the distributed
collection and analysis of biological samples.

Thus, the need for providing scalable solutions at the
different layers of bioinformatics and biomedical applica-
tions arises. At the data layer, biological and biomedical
databases need to support both an increasing number of
queries, as well as complex data integration functions. Fol-
lowing a trend observed in commercial applications, also bi-
ological databases and query services starts to be provided
in a parallel fashion (e.g. Mascot Server [18]). Moreover,
many bioinformatics applications need to find different infor-
mation about proteins that are stored in different databases.
Other than using static links and naming conventions among
databases, ontologies (e.g. GeneOntology [21]) and con-
trolled taxonomies/vocabularies are more and more used for
broad access to information.

At the computing layer, different applications can be mod-
eled through workflows of basic tools (e.g. data filtering,
data preprocessing, data classification and results interpre-
tation) that are often implemented as web-based applica-
tions and more recently as web services. Different comput-
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ing platforms facing the requirements of scientific workflows
or e-science applications have emerged. They are often avail-
able on the Internet but high-performance solutions are more
and more implemented on the Grid. In fact, issues such
as transparent data replication and high-performance data
transfer are not faced by current web applications but are
solved in Grid middleware.

In summary, many bioinformatics/biomedical applications
(i) are naturally distributed, due to the high number of in-
volved data sets; (ii) require high computing power, due to
the large size of data sets and the complexity of basic compu-
tations; (iii) may access heterogeneous data, where hetero-
geneity is in data format, access policy, distribution, etc.;
(iv) and require a secure software infrastructure, because
they could access private data owned by different organiza-
tions.

The rest of the paper describes some emerging scalable
solutions for relevant biomedical and bioinformatics appli-
cations. Section 2 describes a software platform for the dis-
tributed collection and analysis of voice samples for screen-
ing of diseases. Section 3 introduces interactomics and de-
scribes a distributed protein complexes meta-prediction tool
based on the integration of different predictors. Section 4
discusses a software platform for the design and distributed
execution of computational proteomics applications modeled
as workflows of services. Finally, Section 5 concludes the pa-
per and outlines future trends.

2. DISTRIBUTED BIOMEDICAL APPLICA-
TIONS

This section describes an example of a biomedical applica-
tion that is a possible template for different medical fields. It
involves the remote acquisition of biomedical data, their pre-
processing, transmission, storage and analysis. Moreover, to
accomplish comparative analysis, the extraction of key pa-
rameters from the samples and their coordinated analysis,
e.g. by using data mining techniques, is often performed.

The application considered here is the distributed collec-
tion and analysis of voice samples. Voice is the result of the
coordination of the whole pneumophonoarticulatory appa-
ratus. Dysphonia is one of the major symptoms of benign
laryngeal diseases, such as polyps or nodules, but it is often
the first symptom of neoplastic diseases such as laryngeal
cancer.

The analysis of the voice can allow the identification of
some diseases of the vocal apparatus and usually is carried
out from an expert doctor in a non automatic way. To over-
come this a distributed web-based system for the remote
collection and automatic analysis of vocal signals is pre-
sented. Vocal signals are submitted by the users through
a simple web-interface or may be collected by a portable
device and analyzed in real-time providing first-level infor-
mation on possible voice alterations.

REVA (Remote Voice Analysis) is a web based system
for the distributed collection and automatic analysis of vo-
cal signals [3]. The system consists of a client module (a
Java Applet loaded into the user’s browser) where a user
can register his/her voice by using some rules (e.g. the user
is asked to register a vowel and provide information about
sex and age, that are relevant to perform voice analysis), af-
ter a verification of some minimum hardware requirements
on microphone quality.

Figure 1: The REVA Interface

The voice signal, cleaned from noises, is sent through the
Internet to a remote server which is in charge of storing and
analyzing it. The server performs on the voice sample some
signal processing activities to extract relevant signal param-
eters and then attempt to classify the sample as healthy or
diseased. Then, it returns to the client the signal analysis
results and the possible voice anomalies are related to po-
tential diseases. Moreover, data are available to the doctors
for further analysis.

The interaction between the system and the users happens
through different phases.

In a first phase the subject/patient has to register to the
system; such registration has to be extremely simplified, but
at the same time has to allow the unambiguous identifica-
tion of the user, through his or her personal data, and the
acquisition of previous data (if existing) about his or her
clinical status.

The second phase will consist of assisting the user during
the registration of the voice signal, by using instruments for
the audio acquisition available on the local computer (i.e.
audio card and microphone of average quality). The voice
signal, conveniently cleaned from possible external distur-
bances, will be sent to the remote server which will analyze
it and will return to the client system the outcome of the
elaboration. The rules that will allow to distinguish in an
automatic way the healthy signal from a pathological one,
are based on the analysis of voice samples through signal
processing techniques [19]. The system is currently tested
on data coming from adult patients provided by the Univer-
sity of Catanzaro Hospital.

From the web server side, the system will make use of the
know-how of the medical components for a deeper analysis of
the signal. In those cases for which the automatic analysis of
the parameters returns an uncertain result, the software will
be set so to commit the result evaluation to a human oper-
ator. As an example, Figure 1 shows the interface of REVA
accessible to the doctors which can visualize and perform
deep analysis of the voice samples that are classified in an
uncertain way by the automatic procedure.

The system described so far adopt a quite classical cen-
tralized architecture, but different extensions are possible.



First of all, the acquired data are collected into a lo-
cal database to allow a further analysis via classification
and clustering procedures, by using data mining method-
ologies. Such analysis will allow to verify the correctness of
the screening rules of the vocal signals, and to identify possi-
ble further indicators of pathologies to be submitted to the
attention of the medical components. In fact, performing
measures on a large control group, will allow the definition
of objective ”normality” parameters. Any measure outside
such values, will allow defining pathological vocal folds vi-
bration and level of dysphony. As a consequence, precise
indexes could be defined, to classify different nosological el-
ements, and evaluate any modification due to logopaedic
and/or surgical treatment within different pathologies.

Second, the availability of a database will allow the con-
trolled sharing of voice samples, to perform multi-centric
studies, or to compare, by analysing the voice quality, the
follow-up of different interventions. The storage and sharing
of voice samples requires scalable solutions at the data layer.

Third, by embedding the analysis software on hand-held
portable devices, the collection and first analysis of the voice
sample could be performed directly near the body of the
patients, to monitor in a continuous way the voice of patients
that had surgical interventions, or to allow monitoring also
when the patients is disconnected.

3. PROTEIN-COMPLEXES PREDICTION
Proteins within a cell interact composing a very broad

network of interactions, also known as Protein-Protein In-
teraction (PPI) [12]. If two or more proteins interact for
a long time forming a stable association, their interaction
is known as protein complex. Interactomics focuses on the
determination of all possible interactions and on the iden-
tification of a meaningful subset of interactions. Protein
complexes play a biological relevant role and many of them,
such as proteasomes, are central components of vital cellu-
lar tasks. Recently, different studies have shown relevance
of protein complexes in the development of diseases [15].

Due to the high number of proteins within a cell, manual
investigation and analysis of protein interactions is unfea-
sible, so computational methods to model and investigate
interactions are needed [24].

The most natural way to model PPIs network is by us-
ing graphs [11], where proteins are represented as nodes and
interactions as edges linking them. The simplest represen-
tation is an undirected graph in which the nodes are labeled
with the protein identifiers, while the edges are simple con-
nections (i.e. no labels or directions).

The biological investigation of a PPI network consists in
studying the structural properties of the graph [16], for in-
stance highly connected subgraphs may represent biological
relevant and meaningful proteins interactions [4].

The possibility to find protein complexes in a PPI network
searching for highly interconnected regions has been demon-
strated in the early work of Bader [4]. Predicted complexes
can be already known, i.e. their composition is known, or
can denote a new protein complex. In this case, if the ex-
periments confirm this relation, the algorithms can be used
as predictors. These algorithms, also called complex predic-
tion tools (or simply predictors), belong to the general class
of graph clustering algorithms, where each cluster is defined
as a set of nodes of the graph with their connections. Thus,
clustering algorithms aim to identify subgraphs. The quality

Figure 2: Structure of the Metaprediction

of predictors is measured in terms of percentage of complexes
biologically meaningful with respect to the meaningless ones.

Clustering algorithms take as input a graph representing
an interaction network among a set of proteins and an ini-
tial configuration (i.e. algorithms parameters such as the
number of clusters). While initial configurations mostly de-
pends on clustering algorithms, the initial interaction graph
mostly depends on known protein interactions.

Recently, a number of algorithms that predict protein
complexes (predictor) starting from graphs have been de-
veloped [24],[14],[4], [17], [2]. The available predictors are
usually implemented in a centralized and sequential way.

Recently, a system based on the integration of different
prediction tools to improve quality has been developed. Such
a system, named IMPRECO (IMproving PREdiction of Com-
plexes), combines different predictor results using an inte-
gration algorithm able to gather (partial) results from dif-
ferent predictors, to improve the biological relevance of the
protein complexes associated to the output identified clus-
ters [8].

An advantage of the meta-predictor approach is the pos-
sibility to increase the scalabilty of the system: whenever
partial results coming from different predictors are avail-
able, integration can be carried out producing results in a
pipeline fashion. The rest of the section presents an inter-
nally parallel service oriented architecture IMPRECO.

3.1 Algorithm and Architecture
The IMPRECO meta-predictor combines different predic-

tor results using an integration algorithm able to gather
(partial) results from different predictors invoked in parallel,
as depicted in Figure 2.

The integration algorithm starts by integrating results
(i.e. clusters) obtained by running different available pre-
dictors. Three different cases are considered by evaluating
the topological relations among clusters coming from the
considered predictors:

1. equality : the same clusters are returned by all (or by
a significant number of) predictors,

2. containment : it is possible to identify a containment
relation among (a set of) clusters returned by all (or
by a significant number of) predictors;



Figure 3: Architecture of IMPRECO

3. overlap: it is possible to identify an overlap relation
among (a set of) clusters returned by all (or by a sig-
nificant number of) predictors;

The proposed algorithm works in three phases: i) it firstly
parses results coming from different predictors, then (ii) tries
to associate them in one of the three possible considered
configurations and finally (iii), it performs the integration
phase among clusters. The latter phase is performed by
selecting clusters from the set obtained during the second
phase. All phases are integrated into an on line available
tool1.

Main modules of the system are:

Data manager module. It collects the outputs of the dif-
ferent predictors and translates them into a a single
formalism known to IMPRECO. Currently, three ex-
isting predictors are used, which are MCODE [4], RNSC
[14] and MCL [10].

Integration Module. It implements the integration strat-
egy. The first version of IMPRECO verifies the three
relations in a sequential way.

Evaluation Module. It evaluates the predictions with re-
spect to a reference database, i.e. a catalog of veri-
fied complexes .

The service oriented architecture of IMPRECO is depicted
in Figure 3. It allows: (i) to wrap each predictor as a
web/grid service; (ii) to realize an internally parallel inte-
gration service wrapping it as web/grid service; (iii) to wrap
the evaluation module as a web/grid service.

The core of the architecture is represented by the data
manager module. It receives as input a network, a list of
predictors (and relative parameters) that have to be used,
and a set of parameters of the integration. Then it builds
an execution plan and executes it. Then it invokes each
prediction service using a replica of input network for input.
Finally it has to merge together the results and to invoke
the integration service with the resulting set of predictions.

3.2 Prediction Services
The first step is to obtain the partial prediction results by

using the existing prediction tools. To parallelize the com-
putation of each independent prediction we wrapped the ex-
isting predictors as web/grid services. The main issue in
the development of these service is to face with the differ-
ent syntaxes used by predictors to format both input and

1http://bioingegneria.unicz.it/˜guzzi

Figure 4: Parallel Integration

output. In such a way the resulting service has to trans-
late the input network into a format readable by predictors.
The resulting predictions are finally translated in a common
format readable by subsequent modules of IMPRECO.

3.3 Integration Service
The integration module of IMPRECO implements the in-

tegration strategy. The first prototype of IMPRECO verified
the three relations in a sequential way. Initially, it builds the
set of all clustering outputs starting from data parsed from
the data manager. Then it tries to verify the equality re-
lation. After this first phase, IMPRECO considers clusters
bigger than a threshold TD. Initially it finds those that ver-
ify the Containment relation. Finally, the clusters that do
not satisfy this relation are considered. IMPRECO searches
for those that satisfy the Overlap relation. At the end of
each phase, found clusters are inserted into the integrated
set.

The service implementation of IMPRECO wraps this mod-
ule as a service that internally executes three phases in a
parallel way as depicted in Figure 4. Data coming from Pre-
diction services can be partitioned in two groups. The first
group includes clusters whose dimension are lower than TD
and is processed by a module verifying the equality relation.
The second group constitutes the input for a module that
verifies the containment and overlap relation in a sequential
way.

3.4 Validation Service
To estimate the integration quality, IMPRECO uses an

evaluation module based on a reference database, i.e.
a catalog of verified complexes. IMPRECO actually uses
the MIPS catalog [20], but a user can build IMPRECO’s
database autonomously. The evaluation module calculates
the measurements of sensitivity, positive predictive values
(PPV) and accuracy for each cluster. The first measure is
an average representing the fraction of proteins of a complex
that are found in a common cluster. When only a big cluster
is found, the sensitivity tends to one. The second measure



represents the fraction of members of a cluster that belong
to a given complex. When each protein belongs to one clus-
ter, PPV is 1, conversely to the previous measure. Thus, the
third measure, being the geometric average of sensitivity and
PPV represents a trade-off.

As the reference for each clustering, we considered a weighted
average of both measures for each cluster as defined in [5],
and we calculated the accuracy over these. These measure-
ments are calculated with respect to a reference database
storing the verified protein complexes. Currently, only a few
such databases exist, including the MIPS catalog [20], the
Mammalian Protein Complex Database (MPCDB) [20] and
the CORUM Complexes Database [23]. We used the first
one, a manually annotated catalog of complexes determined
in yeast.

4. SERVICES FOR COMPUTATIONAL PRO-
TEOMICS

Computational Proteomics is about the computational meth-
ods, algorithms, databases, and methodologies used to pro-
cess, manage, analyze and interpret the data produced in
proteomics experiments [6].

Mass spectrometry, a main experimental technique used
in proteomics, is an analytical tool used for measuring the
molecular mass of a sample. Mass Spectrometry-based pro-
teomics is a powerful technique for identifying molecular tar-
gets in different pathological conditions [1]. Mass Spectrom-
etry output can be represented, at a first stage, as a (large)
sequence of value pairs, said spectrum. Each pair contains a
measured intensity, which depends on the quantity of the de-
tected biomolecule, and a mass to charge ratio (m/z ), which
depends on the molecular mass of the detected biomolecule.
Files dimensions range from a few kilobytes per spectrum
to a few gigabytes. This variability depends on the type of
spectrometer and the bin dimension, that is the total num-
ber of measurements. Increasing either the resolution of the
spectrometer or the number of analyzed biological samples
may lead to very huge datasets that require large storage
systems and high computing power.

Finally, the measurements contained in a spectrum may
be affected by noise, so spectra preprocessing aims to correct
intensity and m/z values in order to reduce noise, reduce the
amount of data, and make spectra comparable [7].

In summary, main requirements for the analysis of spec-
tra data are: (i) efficient spectra representation and man-
agement to enable the high throughput and large scale anal-
ysis required in clinical studies; (ii) effective and efficient
preprocessing algorithms for noise cleaning and data size
reduction; (iii); flexible and semantic-based composition of
software tools, to face heterogeneous instruments and data
formats, and to enable different analysis techniques.

4.1 MS-Analyzer
MS-Analyzer is a Grid-based Problem Solving Environ-

ment for the design and execution of proteomics applica-
tions [9]. It uses domain ontologies to model software tools
and spectra data, and workflow techniques to design data
analysis applications (in silico experiments). In particular,
ontologies model bioinformatics knowledge about: (i) bio-
logical databases; (ii) experimental data sets (e.g. a set of
spectra); (iii) bioinformatics software tools (e.g. preprocess-
ing tools, peptide identification tools, etc.); and (iv) bioin-

formatics processes (e.g. a workflow of a classification ex-
periment).

MS-Analyzer glues distributed proteomic facilities and data
analysis tools through a specialized spectra database and a
set of pre-processing and data mining services. In particular
it supports: (i) interfacing remote and heterogeneous pro-
teomics facilities; (ii) storing and managing MS proteomics
data; (iii) integrating data mining and visualization software
tools.

MS-Analyzer adopts the Service Oriented Architecture: it
provides a collection of specialized spectra management ser-
vices and integrates public available off-the-shelf data min-
ing and visualization software tools. Composition and exe-
cution of such services is carried out through an ontology-
based workflow designer and scheduler, whereas services are
discovered with the help of the ontologies. MS-Analyzer
provides the following services.

1. Spectra management services implement different
spectra management functions and support the differ-
ent stages of spectra. They allow loading of raw spec-
tra produced by different kind of mass spectrometers
(e.g. MALDI-TOF, LC-MS/MS) and their storing in
a specialized spectra database named SpecDB [25]. To
face the huge volumes of mass spectra data, that could
not be analyzed only in main memory, and to allow an
easy and efficient access to single spectrum, to multiple
spectra, and to relevant portions of spectra, a hybrid
XML-relational database for spectra data has been de-
veloped. The SpecDB database implements the spec-
tra repositories described so far by using a relational
data model to store spectra values (couples), and a
XML-based data model [22], to store metadata infor-
mation about proteomics experiments. The relational
model allows fast access to portions of spectra, while
the XML model allows easy querying of information
and remote sharing of datasets.

2. Spectra pre-processing services load raw spectra,
apply pre-processing algorithms, and store data back
in the spectra database. Pre-processing can be applied
to one spectrum or contemporarily to many spectra.

3. Spectra preparation services load pre-processed
spectra and prepare them to be given in input to differ-
ent kind of data mining tools. E.g. Weka [27] requires
spectra being organized in a unique file named ARFF
(Attribute-Relation File Format).

4. Data Mining services implement common data min-
ing tasks (e.g. classification, clustering, pattern anal-
ysis).

5. Data Visualization services allow to visualize raw
and preprocessed spectra, as well as the knowledge
models produced by data mining analysis.

4.2 Ontology-Based Workflow Designer
Ontologies are used in MS-Analyzer to link knowledge

about experimental research (e.g. wet lab) and bioinformat-
ics applications. They model the key domains of interest:
data mining and mass spectrometry-based proteomics. A
first ontology, named WekaOntology, models concepts and
relations of the data mining domain. In particular its in-
stances represent the features of the data mining tools of



the WEKA suite [27]. A second ontology, named ProtOn-
tology (Proteomics Ontology), models concepts, methods,
algorithms, tools and databases relevant to the proteomics
domain (e.g. spectra, preprocessing, etc).

The ontology-based workflow editor of MS-Analyzer al-
lows to improve the design of a computational application
by using the previous ontologies. In particular it supports
the following steps:

1. Ontology-based component selection. The main
tasks of a proteomics analysis can be seen by browsing
the ontologies, then the dataset to be analyzed, the
proper preprocessing techniques, and the kind of data
mining task and related software tools can be selected.

2. Workflow design. Selected components are com-
bined producing a graphic workflow schema that is
further translated into a workflow language.

3. Application execution. The workflow is scheduled
(e.g. on the Internet or on the Grid) by a workflow
scheduler. In particular, the MS-Analyzer scheduler
takes care of data movement and communication be-
tween services.

4. Results visualization and storing. Both spectra
data and data mining results can be visualized and
eventually annotated.

A working prototype of MS-Analyzer has been currently
implemented. Preprocessing algorithms have been imple-
mented as Web Services in Java, while the data mining ser-
vices are provided by the Weka data mining suite [27]. The
spectra database has been fully implemented on the top of
an open source DBMS. Ontologies have been implemented
using the OWL Web Ontology Language [26].

The graphical user interface of MS-Analyzer (see Figure
5) comprises the Dataset Manager and the Ontology-based
Workflow Editor. The former manages the experiment spec-
tra data available as raw, preprocessed and prepared spectra.
The latter allows browsing, searching and selection of bioin-
formatics tools through the ontologies in order to compose
services through a workflow. The workflow is designed by
using a UML-based notation, providing basic control blocks
such as fork/join, etc. Constraints expressed by the on-
tologies (e.g. the type of data to be given in input to a
service) are enforced at composition time. For instance all
data mining services require an ARFF file as input, that can
be obtained from a (pre-processed) dataset through a proper
transformation. The produced abstract workflow schema is
translated into a schedulable concrete workflow using a sub-
set of the BPEL4WF workflow language [13].

5. CONCLUSIONS
The huge production of biological data in the so called

omics sciences (genomics, proteomics, interactomics, etc.)
and the need to validate experiments and analysis of data,
makes the sharing of data a key issue for future applications.
Biological databases, containing both primary data such as
protein sequences and structures, as well as derived informa-
tion produced in local laboratories, will be more and more
made available through the network.

A similar trend, but more slow, will certainly be observed
in biomedical applications. Here the focus is mainly devoted

Figure 5: MS-Analyzer Graphical User Interface

to the high-performance analysis of huge volume of data,
especially images, but there are also many projects that work
on the sharing of biomedical data. In such field, data sharing
and computer supported cooperative working can be used
to support the discussion of medical cases (e.g. for second-
opinion consultancy). But the sharing of biomedical data
will also allow the comparative analysis of health procedures
at different layers, e.g. the monitoring of medical protocols
applied in different health centers and the analysis of follow-
up.

To allow interoperability at the application level and to
improve scalability, the service oriented architecture approach
starts to be used in such field, while XML is more and
more used as a neutral, portable data format. Grid is used
both to support high-throughput applications as well as ef-
ficient data movement through specialized protocols (e.g.
GridFTP) and efficient management of data files and their
distributed replicas.
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