
Optimization Issues in Inverted Index-based Entity
Annotation

Ganesh Ramakrishnan
IBM India Research Lab

New Delhi, INDIA
ganramkr@in.ibm.com

Sachindra Joshi
IBM India Research Lab

New Delhi, INDIA
jsachind@in.ibm.com

Sanjeet Khaitan∗
InfoSpace Inc.

Bangalore, INDIA
sanjeet.khaitan@infospace.com

Sreeram Balakrishnan
IBM Software Group,

San Jose, CA, United States
sreevb@us.ibm.com

ABSTRACT
Entity annotation is emerging as a key enabling requirement for
search based on deeper semantics: for example, a search on ‘John’s
address’, that returns matches to all entities annotated as an address
that co-occur with ‘John’. A dominant paradigm adopted by rule-
based named entity annotators is to annotate a document at a time.
The complexity of this approach varies linearly with the number of
documents and the cost for annotating each document, which could
be prohibiting for large document corpora. A recently proposed al-
ternative paradigm for rule-based entity annotation [16], operates
on the inverted index of a document collection and achieves an or-
der of magnitude speed-up over the document-based counterpart.
In addition the index based approach permits collection level op-
timization of the order of index operations required for the anno-
tation process. It is this aspect that is explored in this paper. We
develop a polynomial time algorithm that, based on estimated cost,
can optimally select between different logically equivalent evalua-
tion plans for a given rule. Additionally, we prove that this prob-
lem becomes NP-hard when the optimization has to be performed
over multiple rules and provide effective heuristics for handling this
case. Our empirical evaluations show a speed-up factor upto 2 over
the baseline system without optimizations.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Inverted index, evaluation plan, cost estimate

1. INTRODUCTION
Developments in semantic search technology [11, 14, 6] have mo-
tivated the need for efficient and scalable entity annotation tech-
niques that can be deployed on a large scale. Entity annotation
involves associating one of several well-defined labels with token

sequences in unstructured documents. Example labels are ‘person
name’, ‘organization’, ‘place’, ‘date’, etc. All rule based systems
use a set of rules for the annotation purpose. A rule for entity an-
notation is a pair consisting of a pattern and a type. A pattern
defines the sequence of tokens that need to be identified and the
corresponding type denotes the type for the token sequence. In this
paper, we only consider patterns that are regular expressions over
tokens and the properties of tokens such as (i) which dictionaries
they belong to, (ii) their part of speech and (iii) orthographic prop-
erties. Most current rule-based techniques [13, 1, 15] for this task
operate at the document level, where each rule is evaluated against
one document at a time. The computational complexity of this ap-
proach varies linearly with the number of documents and the cost
for annotating each document, which could be prohibiting for large
document corpora. Another drawback of this approach is that the
entire document collection needs to be reprocessed for every minor
modification made in the set of rules. An example modification is
the addition of rules having common subexpressions with already
evaluated rules.

Recently, [16] proposed a framework for annotating a document
collection with typed entities by working solely on its inverted in-
dex. The framework yielded an order of magnitude speedup over a
state-of-the-art document-based annotator [10]. The improvement
achieved was even more pronounced when annotations had to be
produced for a set of rules that were incrementally added. We will
refer to this framework as IndexAnnot.

They use an inverted index that stores a posting list corresponding
to each unique token in the document collection. A posting list
contains all the position information for the token. They further
define a set of operations on posting lists. The consint operation
is one of the example operations used in IndexAnnot framework.
The consint operation is a binary operation that takes two posting
listsL1 andL2 corresponding to two tokens t1 and t2 as arguments.
It returns a new posting list such that each entry points to a token
sequence which consists of two consecutive tokens t1 and t2. The
cost of a consint operation is dependent on the length and the nature
of the posting lists given as its arguments.

The IndexAnnot framework translates the rules for annotation into a
sequence of operations on the inverted index [23]. These sequence
of operations are also known as evaluation plans. The associative
and commutative property of index operations, define an equiva-

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.INFOSCALE 2008, June 4-6, Vico Equense, ItalyCopyright © 2008 978-963-9799-28-8DOI 10.4108/ICST.INFOSCALE2008.3475

Figure 1: An example rule and two equivalent evaluation plans

lence class of evaluation plans. These evaluation plans are guar-
anteed to yield the same results, however may vary substantially
in their cost of evaluation. As an example, consider the rule given
in Figure 1. This rule annotates all the email ids from “ibm.com”,
as “local emails”. The figure also present two equivalent evalua-
tion plans for computing it. The first evaluation plan may be costly
as it first determines an intermediate posting list corresponding to
consint of ‘ANYWORD’ and ’@’. This may result into a much
larger intermediate posting list than the posting list achieved by
performing a consint operation on ‘@’ and ‘ibm’, as done in the
second evaluation plan in the Figure 1. This is analogous to matrix
chain multiplication where different orderings of a chain yield the
same results but with differing cost [8].

The focus of this paper is to develop methods for estimating the
cost of the different evaluation plans and develop algorithms for
finding the optimal plan. Based on the nature of index operations,
we first define an equivalence class for an evaluation plan. Since,
we need to determine the minimum cost evaluation plan without
actually evaluating any evaluation plan, we also develop cost esti-
mates techniques for the evaluation plans. We then present a poly-
nomial time algorithm based on dynamic programming, that yields
the minimum cost evaluation plan from the equivalence class. We
further consider the problem of jointly optimizing the evaluation
plans of a collection of rules, where the rules may have common
sub-expressions. In this case, the overall optimization is compli-
cated by the fact that the order in which the sub-parts are evaluated
also affects the overall execution time. We prove that finding the
optimal evaluation plan for this case is an NP hard problem, and
develop effective heuristics for handling this situation.

In the database community, several methods have been proposed to
optimize query evaluation plans [18]. These methods primarily aim
at determining an ordering of join operations that has the minimum
cost estimate. Several methods have also been proposed for the
problem of multi-query optimization [20, 17]. The join operation
is commutative as well as associative, making the query optimiza-
tion problem NP-Hard. On the other hand, the index operations
that are used for entity annotations do not have the commutative
property. This is because the order of tokens plays a crucial role in
determining annotations. This distinction reduces the search space
significantly and makes it possible for us to design a polynomial-
time algorithm for finding the optimal evaluation plan. Note that
the approach(es) described in this paper are applicable in any plan
optimization setting that involves a sequence of operations on post-
ings lists such that the operator is associative but not commutative.
The specific associative and non-commutative operator considered
in this paper is consint (discussed in subsequent sections).

There is a large body of prior art [19, 5, 21] on optimization strate-
gies for evaluating multi-term search queries. However, these ef-
forts focus on efficiently and accurately retrieving the top k doc-
uments using some scoring function instead of retrieving all the
matching documents and sorting them on the scoring function (which
can be very time consuming). Typically, these techniques tradeoff
some drop in their precision/recall for high gains in efficiency. Each
multi-term query can be viewed as a simple annotation rule. Con-
sider an example regular grammar of the form ‘< myname >→
John Smith’ that annotates every occurrence of ‘John Smith’ with
the label ‘myname’. This rule is equivalent to the phrase query
“John Smith”. For such simple cases our problem reduces to the
phrase query evaluation problem (assuming ranking of the results
is not required). However, our algorithm is designed to handle the
much more general case of rules that have the expressive power of
regular grammars.

There is a body of literature [3, 22, 4, 2] that discusses modifi-
cations to the inverted-index structure to support fast evaluation of
specific query classes. In prior work, nextword indexes [3, 22] were
proposed as a way of supporting phrase queries and phrase brows-
ing. In a nextword index, for each index term or firstword, there
is a list of the words or nextwords that follow that term, together
with the documents and word positions at which the firstword and
nextword occur as a pair. Bahle et al. [4] try to overcome two
disadvantages of the nextword index, viz., its size (which is typ-
ically around half that of the indexed collection) and inefficiency
(since nextwords must be processed linearly and compared to a
standard inverted index for rare firstwords). They propose evalu-
ation of phrase queries through a combination of an inverted index
on rare words and a form of nextword index on common words.
Baeza-Yates et. al. [2] propose an efficient searching of regular ex-
pressions on pre-processed text that runs in logarithmic expected
time in the size of the text for a wide class of regular expressions.
They use patricia tree as a logical model for the index. While the
above mentioned techniques create special data structures to effi-
ciently evaluate queries from specific classes, in [16] we restrict
ourselves to the use of off-the-shelf, general purpose index struc-
tures, such as that provided by Lucene [12].

The rest of this paper is organized as follows: in Section 2, we
recap the basics of the index-based annotation approach. We also
introduce the set of index operators required for evaluating the rules
as well as define the concept of the AND/OR Tree for representing
the evaluation plan. In Section 3, we formulate the optimization
problem and present a dynamic programming algorithm for opti-
mally ordering the nodes of the AND/OR Tree . We also present
methods for estimating cost of each of the index operators used in
the AND/OR Tree . In Section 4 we delve into the issues raised
by multiple rules that share common sub-parts. We prove this is
an NP hard problem and develop several heuristic algorithms for
picking the best evaluation plan. Finally, in Section 5, we present
our results that show an overall improvement up to a factor of 2 and
Section 6 presents our conclusions.

2. BACKGROUND: ENTITY ANNOTATION
USING INVERTED INDEX OPERATIONS

Figure 2 shows the process for entity annotation presented in [16].
A given document collection D is tokenized and segmented into
sentences. The tokens are stored in an inverted index I [23]. The
inverted index I has an ordered list U of the unique tokens u1, u2,
..uW that occur in the collection, where W is the number of tokens
in I . Additionally, for each unique token ui, I has a postings list

Figure 2: Overview of the entity annotation process referred to
in this paper

L(ui) =< l1, l2, . . . lcnt(ui) > of locations in D at which ui oc-
curs. cnt(ui) is the length of L(ui). Each entry lk, in the postings
list L(ui), has four fields: (1) a document identifier, lk.did, (2) a
sentence identifier, lk.sid, (3) the begin position of the particular
occurrence of ui, lk.first and (4) the end position of the same oc-
currence of ui, lk.last. The entries in a posting list are sorted first
by did, then by sid, followed by first and finally by last.

The input grammar used in [16] is the same as that used for named
entity annotations in GATE [10]. The GATE architecture for text
engineering uses the Java Annotations Pattern Engine (JAPE) [9]
for its information extraction task. JAPE is a pattern matching lan-
guage. [16] supports two classes of properties for tokens that are
required by grammars such as JAPE: (1) orthographic properties
such as an uppercase character followed by lower case characters,
and (2) dictionaries (gazetteers) to which a token or a token se-
quence belongsd. Examples of dictionaries are ‘location’ and ‘per-
son name’. The set of tokens along with entity types specified by
either of these two properties are referred to as Basic Entities. The
instances of basic entities specified by orthographic properties must
be single tokens. However, instances of basic entities specified us-
ing dictionary containment properties can be token sequences.

2.1 Generation of posting lists for basic and
derived entities

The module (1) of the system shown in Figure 2, identifies postings
lists for each basic entity type. These postings lists are entered as
index entries in I for the corresponding types. For example, if the
input rules require tokens/token sequences that satisfy Capsword or
Location Dictionary properties, a postings list is created for each of
these basic types. Constructing the postings list for a basic entity
type with some orthographic property is a fairly straightforward
task; the postings lists of tokens satisfying the orthographic prop-
erties are merged (while retaining the sorted order of each postings
list). The mechanism for generating the postings list of basic enti-
ties with gazetteer properties was developed in [16]. A rule for NE
annotation may require a token to satisfy multiple properties such
as Location Dictionary as well as Capsword. The posting list for
tokens that satisfy multiple properties are determined by perform-
ing an operation parallelint(L,L′) over the posting lists of the
corresponding basic entities. The parallelint(L,L′) operation re-
turns a posting list such that each entry in the returned list occurs
in both L as well as L′.

The module (2) of the system shown in Figure 2 identifies instances
of each annotation type, by performing index-based operations on
the posting lists of basic entity types and other tokens. The different
operation types and the sequence of their application will be dis-

cussed in the remainder of this section. Every intermediate posting
list generated by module (2) has a field Opt. When any expression
in the JAPE grammar is optional (or has the ’*’ or ’?’ operators
associated), the value of Opt for the corresponding posting list is
set to ‘true’.

2.2 Operations on Postings List
Two operations on postings lists were defined in [16].

1. merge(L1, L2, . . . , Ln): Returns a posting list such that
each entry in the returned list occurs in at least one of L1

or L2 or Ln. If any of L1 or L2 or Ln has the Opt
field set to true, the resultant posting list also has itsOpt field
set to true. This operation is associative as well as commu-
tative. Using these properties, the merge operation can be
performed in a manner similar to the merge-sort algorithm.
The cost of performingmerge(L1, L2, . . . , Ln) operation is
as follows:

cost︸︷︷︸
merge

= O(log(n)

n∑
i=1

|Li|) (1)

2. consint(L,L′): Returns a postings list such that each entry
in the returned list points to a token sequence which consists
of two consecutive subsequences @sa and @sb within the
same sentence, such that, L has an entry for @sa and L′ has
an entry for @sb. If either of L or L′ has its Opt field set to
true, the resultant posting list is merged with the correspond-
ing optional posing list. If both L and L′ have their Opt
fields set to true, the resultant posting list is merged with L
and L′ and the Opt field of the result is set to true.

We will denote consint(L,L′) by L ∗ L′.

There are several methods for computing consint(L,L′) depend-
ing on the relative size ofL andL′. If they are roughly equal in size,
a simple linear pass through L and L′, analogous to a merge, can
be performed. If there is a significant difference in sizes, a more ef-
ficient modified binary search algorithm can be implemented. The
details are shown in Figure 3.

consint(L,L′)
Let M elements of L be l1 · · · lM
Let N elements of L’ be l′1 · · · lN
if M < N then

set j = 1
for i = 1 to M do

set k = 1, keep doubling k until
l′j .first ≤ li.last < l′j+k.first

binary search the L′ in the interval j · · · k
to determine the value of p such that
l′p.first ≤ li.last < l′p+1.first

if l′p.first = li.last a match exists, copy to output
set j = p+ 1

end for
else

Same as above except l and l′ are reversed
end if

Figure 3: The modified binary search algorithm for consint

The cost of performing consint(L,L′) is as follows:

cost︸︷︷︸
consint

=

min

(
Λ(L,L′),Λ(L′, L), |L| + |L′|

)
if L.Opt = f, L′.Opt = f

min
(
Λ(L′, L), |L| + |L′|

)
if L.Opt = f, L′.Opt = t

min
(
Λ(L,L′), |L| + |L′|

)
if L.Opt = t, L′.Opt = f(

|L| + |L′|
)

if L.Opt = t, L′.Opt = t
(2)

where t and f stand for true and false respectively and Λ(X,Y) =
2|X|(log2(|Y |/|X|) + 1).

2.3 Inverted Index-based Annotation using a
Left-Deep AND/OR Tree

Each annotation pattern, which is a regular expression over basic
entities is first translated into a Left-Deep AND/OR Tree [16].
A Left-Deep AND/OR Tree specifies a sequence of consint and
merge operations on posting lists to obtain a postings list for the
annotation. Associated with each node in the tree is a regular ex-
pression and a postings list that points to all the matches for the
node’s regular expression in the document collection. There are
two node types: AND nodes where the output list is computed from
the consecutive intersection (consint) of the postings lists of two
children nodes and OR nodes where the output list is formed by
merging the posting lists of all the children nodes. Additionally,
each node has two binary properties: Opt and selfLoop. The first
property is set if the regular expression being matched is of the
form ‘R?’, where ‘?’ denotes that the regular expression R is op-
tional. The second property is set if the regular expression is of the
form ‘R+’, where ‘+’ is the Kleen operator denoting one or more
occurrences. For the case of ‘R*’, both properties are set.

We formally define an AND/OR Tree as follows:

DEFINITION 1. An AND/OR Tree is a directed tree T = (V, E)
such that

1. Each vertex v ∈ V has the following attributes:

• type: Type of a vertex is one of the following: (1)AND,
(2)OR and (3) LEAF.

• Opt: A boolean indicating whether the subtree rooted
at v is optional.

• selfLoop: A boolean indicating whether the subtree rooted
at v can repeat more than once.

• signature: A string that denotes the regular expression
associated with v.

2. Every AND vertex v has exactly two children vertices.

If the right child of every AND node is a a leaf an OR node or an
AND node with a self-loop, T is called a Left-Deep AND/OR Tree .

The Left-Deep AND/OR Tree is recursively built by scanning the
regular expression from left to right and identifying every sub-
regular expression for which a sub-tree can be built. Details of the
algorithm that builds the Left-Deep AND/OR Tree from a regular
expression are provided in [16].

Figure 4 shows an example regular expression and the correspond-
ing Left-Deep AND/OR Tree ; AND nodes are shown as circles

Figure 4: An example regular expression and the correspond-
ing Left-Deep AND/OR Tree

whereas OR nodes are shown as square boxes. Nodes having Opt
and selfLoop properties are labeled with +, ∗ or ?. The edges in
the tree represent dependency between computing nodes. The main
regular expression is at the root node of the tree. The leaf nodes
correspond to basic entities and words.

Figure 5 outlines the algorithm for computing the postings list of a
regular expression by operating bottom-up on the Left-Deep AND/OR
Tree .

for Each node v in the reverse topological sorting of GR do
if v.nodetype == AND then

Let v1 and v2 be the children of v
L(v) = consint(L(v1), L(v2))

else if v.type == OR then
L(v) = merge(L(v.child1), · · · , L(v.children))

end if
if v.selfLoop == 1 then
L(v) = consint(L(v),+)

end if
if v.Opt == 1 then
L(v).Opt = 1

end if
end for

Figure 5: The algorithm for computing postings list of a regular
expression R using the inverted index I and the corresponding
Left-Deep AND/OR Tree GR

3. OPTIMIZING AND/OR Trees

3.1 Equivalence of AND/OR Trees
An AND/OR Tree defines a plan for computing the posting list for
a regular expression on an inverted index I . More specifically, the
tree specifies a sequence of consint and merge operations that
should be performed on posting lists using the algorithm outlined
in Figure 5. The overall time for computing the posting list at the
root is proportional to the number of accesses made to the posting
lists involved.

DEFINITION 2. Given a sequence of operations S on posting
lists from an index I , the cost(S, I) denotes the number of accesses
made to the posting lists while evaluating S. For an AND/OR Tree
G, cost(G, I) is the cost of the sequence of operations performed
on posting lists using the algorithm outlined in Figure 5.

We make the following important observations on the consint and
merge operations:

Figure 6: An example regular expression, the corresponding
Left-Deep AND/OR Tree and an equivalent AND/OR Tree

1. The consint(L,L′) operator defined in Section 2.2 is asso-
ciative i.e., (L1 ∗ L2) ∗ L3 = L1 ∗ (L2 ∗ L3). However,
consint is not commutative. Thus, we cannot permute the
order of consint operations without changing the result. By
virtue of the associative property of consint, a sequence of
consint operations L1 ∗ L2 ∗ . . . ∗ Lk can be computed
by parenthesizing the sequence in several equivalent ways.
As an example, the parenthesization corresponding to a left-
most evaluation first is (. . . (((L1 ∗L2)∗L3) . . .)∗Lk. Each
parenthesization of a chain of consint operations leads to a
different cost, depending on the sequence and the nature of
intermediate posting lists.

2. The merge operator is commutative and associative, i.e.,
merge(L1, L2, . . . , Ln) = merge(Π(L1, L2, . . . , Ln)), where
Π(L1, L2, . . . , Ln) is any permutation of the posting lists.
The number of possible permutations for a list of length n
is n!. The merge operates on several posting lists simulta-
neously. The cost of evaluating merge(L1, L2, . . . , Ln) is
independent of the order of the posting lists being merged
(c.f., Section 2.2).

The cost(G, I) is sensitive to the ordering of consint operations in
G and does not depend on the ordering of the posting lists involved
in the merge operations. Based on this observation, we define a
relation Θ between two AND/OR Trees G1 and G2.

DEFINITION 3. We say that G1ΘG2 iff G1 and G2 are either
the same or differ only in the parenthesization of consint chains in
G1 and G2.

The relation Θ is symmetric, reflexive, and transitive by defini-
tion. Let us denote the equivalence class induced by Θ on an
AND/OR Tree G by GΘ. By virtue of the associativity property
of the consint operation, evaluation of any G′ ∈ GΘ will yield the
same result. Figure 6 shows an example regular expression, the cor-
responding Left-Deep AND/OR Tree and an equivalent AND/OR
Tree .

The value of cost(G, I) cannot be obtained without executing the
algorithm in Figure 5. In practice, however, we would require to
compare two plans for their costs before they are evaluated. We can
estimate the value of cost(G, I) using cost estimates of consint
and merge based on length of posting lists at leaves and length
estimates of intermediate posting lists. Let κ(G, I, ρ) denote an

Figure 7: The Canonical-Flattened AND/OR Tree correspond-
ing to the Left-Deep AND/OR Tree in Figure 6.

estimated cost of evaluating G on I , using some property ρ. ρ is
a function of G and I that estimates some property of the posting
list that results from the evaluation of G on I . As an example,
ρ(G, I) could be the estimated length of the posting list that results
from evaluating G on I . κ(G, I, ρ) gives an estimate of the cost of
evaluating G on I , using the property function ρ. We next define
the problem of determining an optimal plan Gopt ∈ GΘ for G,
given a cost estimation model κ, a property ρ and the index I . We
refer to this problem as OptPlan .

3.2 Problem Formulation
The plan specified by the Left-Deep AND/OR Tree G obtained us-
ing the algorithm outlined in [16] need not be optimal. There are
many equivalent plans in the equivalence set GΘ for G, that could
potentially have lower cost estimates than G.

DEFINITION 4. Let G be an AND/OR Tree and I an inverted
index. Let κ(G, I, ρ) denote the cost of evaluating G on I using
κ and a property ρ of G and I . We define OptPlan as the prob-
lem of determining Gopt ∈ GΘ that minimizes the estimated cost,
κ(Gopt, I, ρ). That is, Gopt = argmin︸ ︷︷ ︸

G∈GΘ

[κ(G, I, ρ)].

Since cost(G, I) is only sensitive to the ordering of consint op-
erations in G and the length of intermediate posting lists, we will
only consider cost estimates κ(G, I, ρ) that are determined by the
consint operations. We next define the Canonical-Flattened AND/OR
Tree that represents every sequence of nodes operated by consec-
utive consint as children of a common AND node. Thus, the
Canonical-Flattened AND/OR Tree represents a consint chain with-
out the parentheses information.

DEFINITION 5. A Canonical-Flattened AND/OR Tree is an AND/OR
Tree that allows any number of children for every AND node. Every
child of an AND node must hav one of the following properties (1)
type is OR (2) type is LEAF and (3) type is AND and atleast one
of Opt or isSelfLoop options is set. Figure 7 shows the Canonical-
Flattened AND/OR Tree corresponding to the Left-Deep AND/OR
Tree in Figure 6.

In Figure 8, we give the algorithm for converting any Left-Deep
AND/OR Tree GLD into the corresponding Canonical-Flattened
AND/OR TreeGF . The algorithm is invoked as flattenTree(GLD, eList),
where eList is an empty list. The algorithm does a depth first
search traversal on GLD and in the course, chains together every
sequence of nodes that are operated on by consecutive consint op-
erations as sibling nodes of a common AND node in the resultant

GF . Note that a Canonical-Flattened AND/OR Tree could also be
directly generated from the original regular expression.

flattenTree(G, currentList)
if (G.type == OR) || (G.type == LEAF) || Opt || isSelfLoop
then

currentList.add(G)
end if
if (G.type == OR) || Opt || isSelfLoop then

for Each G′ ∈ G.childList do
Create a new List, newList
flattenTree(G′, newList)
G′.childList = newList

end for
end if
if (G.type == AND) then

for Each G′ ∈ G.childList do
flattenTree(G′, currentList)

end for
end if
if G is a ROOT node then
GF .childList = currentList

end if

Figure 8: The algorithm for converting a Left-Deep
AND/OR Tree GLD into the corresponding Canonical-
Flattened AND/OR Tree GF .

The OptPlan problem on GLD reduces to the following problem of
OptConsintChain at each AND node of GF .

DEFINITION 6. Let Γ = L1 ∗ L2 ∗ . . . ∗ Ln, n ≥ 3 be a chain
of consint operations on posting lists and let L1,n denote the re-
sultant posting list. Let PΓ be any parenthesization of Γ. Thus, PΓ

determines a sequence in which consint is applied on the postings
lists in Γ. Let ρ be a property of Γ such as the estimated length
of the resultant posting list. The OptConsintChain problem is to
determine a parenthesization PΓ of the list Γ such that the cost
estimate κconsint(PΓ, I, ρ) is minimized.

3.3 A dynamic programming algorithm
The number of parenthesizations for a sequence of n consint op-
erations is the Catalan number [8] 1

n+1

(
2n
n

)
, which is exponential

in n. We could go through each possible parenthesization (brute
force), but this would require time Ω(4n/n(3/2)), which is very
slow and impractical for large n.

We can, however, apply dynamic programming to this problem. Let
Γi,j denote the consint chain between the ith and the jth posting
lists. LetMinC[i, j] be the minimum cost for computing Γi,j . The
key observations that form the basis of the algorithm are:

1. The outermost parentheses partition the chain of consints
between i and j at some k, i ≤ k < j.

2. The optimal parenthesization order has optimal ordering on
either side of k.

A recurrence for this problem is stated in Equation 3.3.

MinC[i, j] = min︸︷︷︸
i≤k≤j−1

{MinC[i, k] +MinC[k + 1, j]

+κconsint(G
consint
Γi,k,Γk+1,j

, I, ρ)}
MinC[i, i] = 0

whereGconsint
Γi,k,Γk+1,j

denotes a graph which has a consint node as a
root node that has two children corresponding to Γi,k and Γk+1,j .
The function κconsint(. . .) returns a cost estimate for the graph
Gconsint

Γi,k,Γk+1,j
using the estimates of property ρ for the posting list

Γi,k and Γk+1,j . As updates are made to MinC, using values
already computed, we need to

Note, that we need to determine the property values for these lists.

There are only (n
2) substrings between 1 and n. Thus, it requires

only Θ(n2) space to store the optimal cost for each of them. We
represent all the possibilities in a triangle matrix. We also store the
value of k in another triangle matrix MinSplit to reconstruct the
optimal parenthesization. The diagonal moves up to the right as the
computation progresses. Figure 9 outlines our algorithm for com-
puting the minimum cost parenthesization of the consint-chain Γ.
The runtime for this algorithm is O(n3).

Procedure OptConsintChain (Γ)
for i = 1 to n do
MinC[i, i] = 0

end for
for diag = 1 to n− 1 do

for i = 1 to n− diag do
j = i+ diag

MinC[i, j] = min︸︷︷︸
i≤k≤j−1

[MinC[i, k] +MinC[k + 1, j]

+κconsint(G
consint
Γi,k,Γk+1,j

, I, ρ)]

MinSplit[i, j] = argmin︸ ︷︷ ︸
i≤k≤j−1

[MinC[i, k] +MinC[k + 1, j]

+κconsint(G
consint
Γi,k,Γk+1,j

, I, ρ)]

Let s = MinSplit[i, j]
ρ[i, j] = updateρ(ρ[i, s], ρ[s+ 1, j])

end for
end for
return MinSplit

Figure 9: The algorithm for computing the minimum cost
parenthesization of a consint-chain Γ.

The method updateρ(ρ([i, k], ρ[k + 1, j]) obtains a ρ value for
the posting list of Γi,j based on the ρ values for Γi,k and Γk+1,j .
Examples of ρ will be discussed in Section 3.4. In particular, Equa-
tion 4 gives the possible update equations for updateρ(. . .).

3.3.1 Algorithm for OptPlan
We now outline the algorithm that produces an AND/OR TreeGopt

with the minimum cost estimate from a given Canonical-Flattened
AND/OR Tree GF . The algorithm, outlined in Figure 10, per-
forms a depth-first traversal of GF and for every AND node G,

the consint-chain formed by the children of G is optimally paren-
thesized using the OptConsintChain algorithm ((c.f. Figure 9). For
every other node, OptPlan is recursively invoked.

Procedure OptPlan (GF)
Let G be the root node of GF

for Each G′ ∈ G.childList do
Call OptPlan on G′

end for
if (G.type == AND) then

Form a consint-chain Γ comprising the children of G
Optimize Γ using OptConsintChain to get an AND/OR Tree atG

end if

Figure 10: The algorithm for computing the minimum cost
AND/OR Tree G from a given Canonical-Flattened AND/OR
Tree GF .

3.4 Cost Estimates using Properties of Posting
Lists

In this section, we define some cost estimation models. As men-
tioned in Section 3.1, we need to assess the cost of a plan even
before it is evaluated. This is done using the property ρ of the re-
sultant list. In our implementation, we use the estimated length of
the resultant list as the ρ. The ρ estimate for the posting list Lbasic

of any word or basic entity is the actual length of the posting list,
i.e., ρ(Lbasic) = |Lbasic|. The ρ estimate of the resultant list for a
merge operation can be computed using the following equation:

ρ(Gmerge
L1,L2,...,Ln

, I) =

n∑
i=1

ρ(Li) (3)

This approximation is an upper-bound on the length of the list re-
sulting from a merge operations.

To determine the estimated length of the resultant list for a consint
operation, we use one of the following estimates of ρ in the update
function updateρ(.):

ρmin(Gconsint
L1,L2 , I) = min(ρ(L1), ρ(L2))

ρam(Gconsint
L1,L2 , I) =

(ρ(L1) + ρ(L2))

2

ρgm(Gconsint
L1,L2 , I) =

√
ρ(L1) ∗ ρ(L2)

ρhm(Gconsint
L1,L2 , I) =

2 ∗ ρ(L1) ∗ ρ(L2)

ρ(L1) + ρ(L2)
(4)

Here, ρmin, ρam, ρgm and ρhm are length estimates obtained by
using the minimum, arithmetic mean, geometric mean and har-
monic mean respectively. The ρmin estimate is not an upper-bound
on the length of the resultant list from a consint operation. This
is because of the following reason. Given a regular expression,
there can be multiple entries in its posting list that have the same
first or last values. As an example, consider the posting list
for CAPSWORD+ which contains an entry for every consec-
utive sequence of capitalized words of length 1 or more; given a
sequence of n consecutive capitalized words in the document col-
lection, there will be atleast n entries in the posting list that have
the same start value (similarly for end). We therefore consider the
other ρ estimates to account for the length of both posting lists.

We obtain the cost estimate κconsint(G, I, ρ) based on length of
posting lists at leaf nodes inG and length estimates of intermediate
posting lists. This is achieved by choosing the length estimates as
given in the above equations. The value of κconsint(G

consint
L1,L2 , I, ρ)

is obtained using the following equation.

κconsint =

min

(
Λ(L,L′),Λ(L′, L), |L| + |L′|

)
if L.Opt = f, L′.Opt = f

min
(
Λ(L′, L), |L| + |L′|

)
if L.Opt = f, L′.Opt = t

min
(
Λ(L,L′), |L| + |L′|

)
if L.Opt = t, L′.Opt = f(

|L| + |L′|
)

if L.Opt = t, L′.Opt = t
(5)

where, Λ(X,Y) = 2|X|(log2(|Y |/|X|) + 1).

4. OPTIMIZING MULTIPLE AND/OR Trees
Multiple AND/OR Trees might have common sub-sequences of
evaluations. Figure 11 shows two Canonical-Flattened AND/OR
Trees , G1 and G2 with nodes R2 and R5 that are effectively the
same. Given this fact, G1 and G2 also share a sub-sequence of
consint operations, namely, L(a)∗L(R5)∗L(d). The application
of OptPlan (c.f. Section 3.3.1) on G1 or G2 ignores this common
sub-sequence information. In this section, we address the problem
of optimizing multiple AND/OR Trees simultaneously.

Figure 11: Two AND/OR Trees G1 and G2 having common
sub-expressions.

In Section 3.2 we reduced the OptPlan problem to the OptCon-
sintChain problem. Thus we can pose the problem of simultane-
ously optimizing multiple AND/OR Trees to the following problem
of simultaneously optimizing multiple consint-chains.

DEFINITION 7. Let S be a set, such that each Γ ∈ S is a
chain of consint operations on posting lists and is of the form
Γ = L1 ∗ L2 ∗ . . . ∗ Ln, n ≥ 3. We define MPlanOpt as the
problem of determining the parenthesization PΓ of every Γ ∈ S
so that the cost estimate

∑
Γ∈S

κ(PΓ, I, ρ) is minimized, where the

cost for computing the posting list of any sub-expression β of PΓ is
considered only once.

4.1 NP-Hardness
In this section, we prove that the MPlanOpt problem is NP-Hard.

THEOREM 1. The MPlanOpt problem is NP-Hard.

Instead of proving the Theorem 1, we prove the hardness result for
the following simpler problem, RuleEvalWithCache.

DEFINITION 8. Let, Γ = L1 ∗L2 ∗ . . .∗Ln be a consint chain.
The problem of RuleEvalWithCache is to determine a parenthe-
sizationPΓ of the chain Γ such that the cost estimate costEst(PΓ, I)
is minimized, where the cost for computing the posting list of any
sub-expression β of PΓ is considered only once.

The problem RuleEvalWithCache aims at evaluating a consint
chain while caching the posting list of every intermediate sub-expression
so that the cost of computing its posting list is accounted for only
once. If any sub-expression is repeated in Γ, the cached result
of it can be re-used. As an example consider the consint chain
Γ = C∗D∗X∗Y ∗C∗D. The subexpressionC∗D occurs twice in
the chain Γ. The parenthesization ((C∗D)∗((X∗Y)∗(C∗D)))of
Γ, is one of several possible parenthesizations that can gain from
the caching of posting list of intermediate sub-expressions.

THEOREM 2. The RuleEvalWithCache problem is NP hard.

PROOF. We give a reduction from the smallest grammar prob-
lem (SmallGrammar), a well-known NP-Hard problem [7]. The
SmallGrammar problem can be stated as follows: Given a string
σ, what is the smallest context free grammar that generates ex-
actly σ. The size of the grammar is defined to be the total number
of symbols on the right sides of all production rules. For exam-
ple, the smallest context free grammar generating the string: σ =
a rose is a rose is a rose is as follows: (1) S → BBA, (2)A →
a rose and (3) B → A is.

There is a simple reduction from the SmallGrammar problem to
RuleEvalWithCache. We omit details of the proof owing to space
constraints.

4.2 Heuristics for solving MPlanOpt
Since MPlanOpt is an NP-hard problem, we resort to heuristics for
solving this problem. All of our heuristics are based on one of the
following two techniques:

(1) Caching during plan optimization: Utilizing common subex-
pressions across AND/OR Trees during plan optimization.

(2) Caching during plan evaluation: Storing in a hash map, the
posting list for each evaluated node in an AND/OR Tree , using the
node signature as a key.

Based on these two techniques, we developed following 3 heuris-
tics.

(1) IOCache : Order the AND/OR Trees randomly and optimize
each plan individually. Evaluate rules in the same order and store
in a hash map, the posting list of every evaluated node, using the
corresponding node signature as the key. This heuristic uses only
the second technique listed above.

(2) COCache : Order the AND/OR Trees randomly and optimize
plans in that order. After optimizing a plan using the OptCon-
sintChain algorithm, the signature of every node in the optimized
plan is cached. While optimizing subsequent plans, the cost esti-
mate κ for a sub-expression Γ[i, j] is set to 0, if the sub-expression
is already present in the cache.

(3) CSECache: Store the signature of each node of every AND/OR
Tree against its frequency. The cost estimate κ of any sub-expression
is obtained by dividing the estimate obtained in Section 3.4 by the
above frequency.

5. EXPERIMENTS
5.1 Experimental setup

In this section, we present empirical comparison of performance of
the optimized evaluation plans under various strategies, against the
naive evaluation plan. The experiments were performed on three
data sets, viz.

(1) A combination of Reuters-21578 data set1 and the 20 News-
groups data set2. The data set consists of 16331 non-blank docu-
ments after stripping off the header information. The size of this
data set was 93 MB.

(2) A subset of the TREC wt10G data set comprising of 167943
documents from directories WTX001 to WTX011 and from di-
rectories WTX025 to WTX033. We consider only the ‘title’ and
‘body’ fields of each document in our experiments. The size of this
data set was 1 GB.

(3) The enron email data set3. The data consists of 267978 doc-
uments after elimination of header information and discarding the
resultant blank documents. The size of this data set was 1.2 GB.

Our entire implementation is in java. The experiments were per-
formed on a dual 3.2GHz Xeon server with 4 GB RAM. The in-
dexing was performed using Lucene [12]. Prior to indexing, the
sentence segmentation and tokenization of each data set was per-
formed using in-house Java versions of standard tools4.

Our rule specification is in JAPE [9]. JAPE is a version of CPSL
(Common Pattern Specification Language). JAPE provides finite
state transduction over annotations based on regular expressions.
The JAPE grammar requires information from two main resources:
(i) a tokenizer and (ii) a gazetteer.

We experimented with two manually crafted set of rules: (1) 12
rules for ‘Organization’ and (2) 15 rules for ‘Date’.

In the following subsection, we present results that we achieve by
optimizing individual plans, while in Section 5.3, we present our
results for the multi-plan optimization problem.

5.2 Individual Plan Optimization
In our first experiment, we compare the performance of the indi-
vidual plan optimization algorithm OptPlan (c.f Section 3), ab-
breviated as IO, using different properties ρmin, ρgm, ρhm and
ρam against the baseline evaluation plan of the Left-Deep AND/OR
Tree . The comparsion is performed in terms of the actual number
of accesses (cost) that are made to the posting list entries during all
the consint operations that are peformed at the time of evaluation.
The experiments were performed for the ‘organization’ and ‘date’
rule sets.

Figure 12 compares the cost of OptPlan using the different prop-
erties against the baseline on the reuters+20NG, trec and the enron
data sets. We observe that OptPlan performs consistently and sub-
stantially better than the baseline on all data sets, for both the rule-
sets and for all properties except ρam. The reason for the anoma-
lous behavior of ρam is as follows. The length of the posting list
resulting from consint(L1, L2) is generally more biased toward
the length of the shorter of the two lists L1 and L2. The harmonic
mean and geometric mean of |L1| and |L2| are also more biased
1
http://www.daviddlewis.com/resources/testcollections/reuters21578/

2
http://people.csail.mit.edu/jrennie/20Newsgroups/

3
http://www.cs.cmu.edu/~enron/

4
http://l2r.cs.uiuc.edu/~cogcomp/tools.php

Figure 12: Comparison of cost of the OptPlan algorithm against the baseline using different properties on the reuters, trec and enron
data set from left to right.

Figure 13: Comparison of cost of the IOCache, COCache and the CSECache heuristics against that of the baseline and the OptPlan
algorithms on the reuters, trec and enron data set from left to right.

toward the length of the shorter of the two lists, while their mini-
mum is determined only by the shorter list. Hence, these are good
estimates of the length of the posting list resulting from consint.
On the other hand, the arithmatic mean is equally biased by both
the numbers and hence is not a good estimate of the length of the
resultant list.

Figure 14 shows the performance gain we obtain on some individ-
ual rules for ‘organization’ and ‘date’ types on the reuters+20NG
data set using ρmin. The figure illustrates that the proposed al-
gorithm is consistently better than the baseline across a variety of
rules.

5.3 Multiple Plan Optimization
In our second experiment, we compare the performance of the heuris-
tics that optimize multiple plans (c.f Section 4) against the baseline.

The measure used for comparison was the same cost as described

above. For these experiments, we chose ρmin as the property ,
given its consistent and superior performance over the other prop-
erties .

Figure 13 compares the cost of the heuristics IOCache, COCache
and CSECache against OptPlan and the baseline, on the reuters+20NG,
trec and the enron data sets. We observe that IOCache shows a con-
sistent speedup over OptPlan (which is always better than the base-
line) and COCache performs consistently better than or as well as
IOCache. However, this consistency is not observed in CSECache;
this heuristic subsidizes the cost of computing sub-expressions com-
mon across plans, even before the optimal plans are computed and
hence may not always perform well in practice.

6. CONCLUSION
In this paper we investigated the issues concerning optimization of
evaluation plans using the inverted index. We developed a dynamic
programming method that achieves an optimal evaluation plan for a

Figure 14: Comparison of cost of evaluation of plans for some
sample ‘organization’ and ‘date’ rules, before and after opti-
mization.

given rule in polynomial time. We further investigated the problem
of multi-rule optimization and proved that the problem is NP hard.
Several heuristic approaches for optimizing multiple rules were de-
veloped and implemented. Our experiments show a speed-up factor
upto 2 over the baseline.

In our future work, we intend to develop optimization plans that
also search in the equivalence class of evaluation plan including
the distributive property of merge operation over consint opera-
tion. Better length estimates can be looked for. Including consint
operation with gaps will further increase the evaluation plan search
space, inviting the scope for even better results. Incorporation of
such an operation can be made.

7. REFERENCES
[1] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama,

D. Martin, K. Myers, and M. Tyson. Sri intnl fastus system:
Muc-6 test results and analysis. In MUC6 ’95: Proc. of the
6th conf. on Message understanding, 1995.

[2] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for
regular expressions or automaton searching on tries. Journal
of ACM, 43(6), 1996.

[3] D. Bahle, H. Williams, and J. Zobel. Eighth symposium on
string processing and information retrieval. In Proceedings of
Australasian Database Conference, 2001.

[4] D. Bahle, H. E. Williams, and J. Zobel. Efficient phrase
querying with an auxiliary index. In Proceedings of SIGIR,
2002.

[5] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level retrieval
process. In Proceedings of CIKM, 2003.

[6] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring
functions and indexes for proximity search in type-annotated
corpora. In Proceedings of the 15th international conference
on World Wide Web, 2006.

[7] M. Charikar, E. Lehman, D. Liu, R. Panigrahy,
M. Prabhakaran, A. Rasala, A. Sahai, and abhi shelat.

Approximating the smallest grammar: Kolmogorov
complexity in natural models. In Proceedings of STOC, 2002.

[8] T. H. Cormen, C. E. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[9] H. Cunningham. Jape – a java annotation patterns engine,
1999.

[10] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A framework and graphical development
environment for robust NLP tools and applications, 2002.

[11] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, S. Rajagopalan, A. Tomkins, J. A. Tomlin, and
J. Y. Zien. Semtag and seeker: bootstrapping the semantic
web via automated semantic annotation. In WWW ’03:
Proceedings of the 12th international conference on World
Wide Web, 2003.

[12] B. Goetz. The Lucene search engine: Powerful, flexible, and
free. http://www.javaworld.com/javaworld/jw-09-2000/jw-
0915-lucene.html,
2000.

[13] R. Grishman. Information extraction: Techniques and
challenges. In SCIE ’97: Intnl. summer School on
Information Extraction, 1997.

[14] E. Kandogan, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar semantic search: a
database approach to information retrieval. In Proceedings of
the 2006 ACM SIGMOD international conference on
Management of data, 2006.

[15] D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and
Y. Wilks. Named entity recognition from diverse text types.
In Recent Advances in Natural Language Processing Conf.,
2001.

[16] G. Ramakrishnan, S. Balakrishnan, and S. Joshi. Entity
annotation based on inverse index operations. In Proceedings
of the 2006 Conference on Empirical Methods in Natural
Language Processing, pages 492–500, Sydney, Australia,
July 2006. Association for Computational Linguistics.

[17] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000.

[18] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
Systems Concepts. McGraw-Hill, Inc., New York, NY, USA,
1997.

[19] T. Strohman, H. Turtle, and W. B. Croft. Optimization
strategies for complex queries. In Proceedings of SIGIR,
2005.

[20] S. N. Subramanian and S. Venkataraman. Cost-based
optimization of decision support queries using
transient-views. In SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD international conference on Management of
data, pages 319–330, 1998.

[21] H. R. Turtle and J. Flood. Query evaluation: Strategies and
optimizations. Inf. Process. Manage., 31(6):831–850, 1995.

[22] H. Williams, J. Zobel, and P. Anderson. Whatś next? index
structures for efficient phrase querying. In Proceedings of
Australasian Database Conference, pages 141–152, 1999.

[23] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

