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ABSTRACT 
Peer-to-Peer architectures for content and knowledge management 
foster the creation of communities of workers in which effective 
knowledge and information sharing takes place. In such 
communities, workers have similar capabilities in providing other 
workers with data and/or services and are autonomous in 
managing their own knowledge objects. Since objects are 
typically shared among a set of workers, problems regarding 
concurrent access to content, content consistency and 
synchronization of peers arise. This paper describes a hybrid 
architecture for the management of data consistency and peer 
synchronization. The designed framework combines centralized, 
yet dynamic, mechanisms for metadata management and peer-to-
peer mechanisms for data transfer. The paper reports on the use of 
these mechanisms in K-link+ a P2P collaborative platform, 
developed at the GridLab of the University of Calabria, for 
distributed knowledge management. An analytical study founded 
on queue network theory confirms the efficiency of the presented 
approach. 
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1. INTRODUCTION 
Most of the current architectures for content sharing and 
knowledge management are typically based on client/server 
architectures in which one or more servers act as central entities. 
In these architectures, knowledge handled by workers must be 
managed according to organizational guidelines. However, these 
centralized approaches do not reflect the social nature of 
knowledge [1]. As discussed in [15], the seed of new knowledge 
is individual (tacit) knowledge, but its importance increases when 
it becomes available to the whole organization. Therefore, the 
externalization of tacit knowledge is a quintessential process to 
create new knowledge; this typically requires people to interact 
and collectively reflect on a problem or an idea. Such 
observations promote the demand for new technological 
architectures that place more emphasis on collaboration. 

Moreover, since an increasingly number of workers very often 
operates outside of the traditional office, a virtual workplace 
where the physical workplace can be recreated is required. The 
Virtual Office (VO) solution complies with this requirement. A 
VO can be viewed as a work environment defined regardless of 
the geographic locality of the employees. This model is becoming 
essential since, even in conventional offices, today many business 
relationships are necessarily maintained across distributed 
environments. The VO is based on the concept of workspace. A 
workspace is a community of people that work together, as if they 
were in the same physical workplace, concurrently access shared 
content and accomplish common objectives. Such communities 
produce and exchange knowledge within workspaces through a 
set of shared tools. 
The Virtual Office model cannot be effectively managed through 
a centralized entity in charge of object updating and 
dissemination, because this solution can hinder the autonomous 
interactions among workers and be poorly scalable. Conversely, 
the Peer-to-Peer (P2P) paradigm can be more appropriate and 
effective, because it fits both the requirements of collaboration 
(synchronous and asynchronous) and knowledge sharing that are 
raised by the adoption of VOs. In fact, P2P architectures naturally 
support the creation of communities (e.g., workspaces, peer 
groups) in which content and conveyed knowledge can be created, 
shared, exchanged and transformed. 
We developed a P2P system, named K-link+ [13], which 
implements the VO model and allows users to create flexible and 
collaborative P2P applications for knowledge management. In K-
link+, peers can concurrently work on the same shared 
documents/files, in the following referred to as “knowledge 
objects” or simply “objects”. To foster peer autonomy, different 
local replicas of an object can be created, so concurrent access can 
affect data consistency if adequate mechanisms are not provided. 
Moreover, peers can join or leave the system at any time, thus 
introducing the synchronization issue: synchronization is required 
by peers that reconnect to the network and need to be informed 
about recent updates made on objects by other peers.  
Object consistency is also a fundamental reliability requirement 
for a P2P system. Even if it is not possible, or convenient, to 
guarantee that all users are provided identical object replicas all 
the time, mechanisms must be provided to make users work 
without any actual limitations [19]. 
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This paper describes an architecture which is designed for the 
management of knowledge in small/medium enterprises and is 
actually adopted in the K-link+ system. This architecture adopts a 
hybrid model to cope with the content consistency and peer 
synchronization issues. It exploits the efficiency of centralized 
models but at the same time includes decentralized features, 
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which assure scalability properties when the system size 
increases. This is accomplished by using: (i) a unique and stable 
server to maintain a limited amount of metadata information about 
shared objects, (ii) a number of interchangeable servers that 
maintain and manage the primary copies of shared objects, and 
(iii) a pure decentralized mechanism that allows P2P nodes to 
effectively exchange up-to-date object replicas. 
To this aim different roles can be assumed by K-link+ Nodes 
(KLNs). In particular, a Rendezvous node maintains a common 
view about shared objects and their state. A set of Manager nodes 
are in charge of receiving object update requests from Worker 
nodes and possibly authorizing them. Finally, Broker nodes are 
used to speed up the propagation of updated objects over the 
network. The work presented here extends and refines the 
preliminary architecture description given in [14] and provides an 
analytical study through which the described hybrid architecture 
was assessed and important performance indices, such as 
computation load and response time, were evaluated. 
The remainder of this paper is organized as follows: Section 2 
discusses related work; Section 3 presents the architecture of K-
link+ and its implementation in JXTA;  Section 4 describes the 
hybrid model that addresses data consistency and peer 
synchronization issues; Section 5 presents an analytical 
performance evaluation of this approach within the K-link+ 
system; finally, Section 6 concludes the paper. 

2. RELATED WORK 
Replication of content is an important issue in P2P systems, 
especially if these are devoted to collaborative knowledge 
management [2, 4, 5, 9]. Replication mechanisms are usually 
classified into reactive and proactive mechanisms [17]. In reactive 
replication, as objects are transferred from the home node to the 
requesting peer, intermediate nodes through which the data flows, 
determine independently whether or not to cache the content. 
Some researchers propose to cache pointers instead of real objects 
in order to yield better query search performance. In DiCAS [22], 
queries are forwarded to peers of a predefined group which 
passively cache the pointers in an unstructured P2P network. 
However, a large overhead is necessary to update the pointers 
when the object is moved or deleted, since the updated location 
information has to be flooded to the whole overlay network. 
In proactive replication, content is pushed to selected peers by the 
node that stores the primary copy, in order to obtain better 
performance in terms of query latency, load balance etc. However, 
the cost of replicating objects to a large number of peers can be 
cumbersome in both disk space and bandwidth, particularly for 
systems that support applications with large objects (e.g., audio, 
video, software distribution). A replication strategy based on 
object popularity in unstructured P2P networks is explored in [5]. 
Nevertheless, this strategy does not reduce the worst-case search 
latency for all the objects.  
The strategy adopted in this paper borrows characteristics from 
both reactive and proactive approaches. A push-based mechanism 
is initiated by a peer when it generates or receives an updated 
version of an object, since it forwards this object to other workers, 
in a P2P fashion. This approach assures a quick dissemination of 
objects to the members of a community but, owing to its 
decentralized and unstructured nature, cannot guarantee that every 
worker is given the updated version of every shared object all the 
time. However, the updated version of an object is always 
maintained by the related Manager node. Therefore, when a 
worker cannot obtain the updated version of an object through the 

P2P mechanism, it can always request this object, with a pull 
modality, to the Manager. 
An issue strictly related to replication is content consistency, 
which is a fundamental reliability requirement in distributed 
database systems, since concurrent operations on multiple replicas 
of the same data item can create a conflict [18]. This issue is even 
more complex in P2P systems, owing to their dynamic and 
unreliable nature. Current approaches differ according to the scale 
of P2P systems. In a large-scale and dynamic system, it is 
complex and cumbersome to guarantee full consistency among 
replicas, so researchers have designed algorithms to support 
consistency in a best-effort way. In [8], a hybrid push/pull 
algorithm is used to propagate updates, where flooding is 
substituted by rumor spreading to reduce communication 
overhead. SCOPE [3] is a P2P system that supports consistency 
among a large number of replicas, at the cost of maintaining a 
sophisticated data structure. By building a replica-partition-tree 
(RPT) for each key, SCOPE keeps track of the locations of 
replicas and then propagates update notifications. 
Conversely, in a small- or medium-scale system, it is possible to 
adopt centralized schemes to guarantee a strong consistency 
model, which is often the sequential model [12]. In [21], an 
algorithm for file consistency maintenance through virtual servers 
in unstructured and decentralized P2P systems is proposed. 
Consistency of each dynamic file is maintained by a virtual server 
(VS). A file update can only be accepted through the VS to ensure 
the one-copy serializability. 
The hybrid architecture described in this paper, and adopted in the 
K-link+ system, is specifically designed for knowledge 
management in small/medium enterprises. Its main purpose is to 
combine the efficiency of centralized models and the scalability 
and fault-tolerance characteristics of decentralized systems. 

3. ARCHITECTURE AND 
IMPLEMENTATION OF K-LINK+ 
K-link+ is a collaborative P2P system that provides users with a 
Virtual Office environment, in which content can be shared, to 
enable collaborative work, and replicated to foster peer autonomy 
[13]. Different applications (document sharing, messaging, shared 
boards, agenda, etc.) can be integrated within a single 
environment (a K-link+ workspace) and new tools can be added 
as new components to support emerging requirements. In this 
section, the system architecture is briefly presented along with its 
implementation in JXTA [20]. For a more detailed description of 
the K-link+ architecture refer to the GridLab website, 
http://grid.deis.unical.it/k-link. 

3.1 The K-link+ Architecture 
The K-link+ architecture is based on five layers including basic 
grouping and communication services, data handling services, 
semantics services, workspace management services and a set of 
high level tools for content sharing and user cooperation. Figure 1 
shows the K-link+ architecture, whose layers are described in the 
following. 

K-link+ Core Layer. This layer defines the K-link+ core services 
that are exploited by higher layers. In the current version of K-
link+, we adopted the JXTA framework to implement these 
services, though any other P2P infrastructure can be used. Among 
the core services, the K-Group Service allows KLNs to create new 
K-Groups (e.g., communities or workspaces), while the 
Connection Service allows KLNs to join the K-link+ network at 



any time. Features used to send and receive messages are 
provided by the Communication Service. 
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Fig. 1.  The K-link+ architecture. 
 
Data Handling and Consistency Management Layer. This 
layer is responsible for handling the problems introduced in the 
introductory section, that is, concurrent access to shared objects, 
object consistency and peer synchronization. The layer includes 
the Local Data Handler, which manages a set of local repositories 
to store information about contacts, workspaces, objects and so 
on. A detailed description of the functionalities of this layer is 
provided in Section 4. 
K-link+ Semantic Services Layer. The services of this layer 
manage local and remote operations performed by a K-link+ user. 
The Ontology and Indexing Service deals with operations 
involving ontologies (creation, update) that K-link+ exploits to 
describe and annotate resources in a semantic way. The Indexing 
Service copes with the indexing of documents for keyword based 
searches. The Profile and Presence Service manages state check 
operations and enables users to create and publish their profile 
within the K-link+ network. The Workspace and Invitation 
Service handles workspace set up and population by sending 
invitation messages to other KLNs. The Tool Service is used to 
add new tool instances to workspaces at run time. The Instant 
Message (IM) Service allows KLNs to communicate each other 
via a chat-like system. 
K-link+ Controller Layer. This layer contains a set of controllers 
through which the system interacts with the Data Handling and 
Consistency Management Layer. The Workspace Controller 
manages workspace settings through the creation of workspace 
profiles that contain information about workspace topics, sets of 
tools and workspace members. The Contact Controller enables 
workers to discover other peer workers in the network and add 
them to a personal Contact List. The PKM Controller is delegated 
to manage personal knowledge, that is, knowledge that is 
autonomously handled by workers. The Tool Controller allows 
workers to handle operations (add, update, remove) on knowledge 
management tools. 
K-link+ Tool Layer. This layer provides a basic set of K-link+ 
Tools (file sharing, shared calendar, contact manager, etc.) that 
can be embedded in a workspace. In addition, other tools can be 

developed and included in the system as modular components, 
with the only requirement that the K-link+ tool interface must be 
implemented. Tools are shared among workspace participants: 
when a new tool is added to a workspace, a local tool instance will 
be automatically created on the K-link+ client of each workspace 
member. Hence, objects created through workspace tools can be 
shared among workspace members. For further information about 
the development of tools refer to the GridLab website, 
http://grid.deis.unical.it/k-link. 

3.2 K-link+ implementation 
While the K-link+ technology is independent of any particular 
P2P architecture, however the JXTA framework [20] was used to 
implement it. 
As a consequence of this choice, the Core Layer of the K-link+ 
architecture maps each K-link+ peer, also called K-link+ Node 
(KLN), to a JXTA peer and each K-link+ group (K-group) to a 
JXTA peer group. JXTA peers can be divided into two categories: 
edge peers and rendezvous peers. Edge peers are transient peers 
provided with resource discovery and publishing capabilities. On 
the other hand, rendezvous peers are expected to be more stable. 
The aim of a rendezvous peer is to enable edge peers to discover 
and publish network resources. In JXTA each network resource 
(e.g., peers, peer groups, services) is published through XML 
documents called Advertisements. To participate in a P2P 
network, an edge peer needs to know how to connect to at least a 
rendezvous peer. Typically, an edge peer maintains a list of 
known rendezvous peers (called “seed” rendezvous) and 
participates in dynamic discovery of new rendezvous nodes. This 
allows edge peers to fail-over to an alternative rendezvous when 
needed, so as to enhance overall network reliability. Every JXTA 
peer can act both as an edge peer or a rendezvous peer. In fact, an 
edge peer can adaptively become a rendezvous peer if it cannot 
connect to any rendezvous for an extended period of time 

4. CONTENT CONSISTENCY AND PEER 
SYNCHRONIZATION 
In K-link+, several users can work concurrently on shared objects. 
To favor the autonomy of users, the system allows different 
replicas of the same object to be created, so that users can work on 
their local copies. As mentioned in Section 3.1, the purpose of the 
Data Handling and Consistency Management layer is to ensure 
data persistence, consistency management and peer 
synchronization. In the context of K-link+, the sequential 
consistency model is adopted [12], which assures that all updates 
performed on an object are seen in the same sequence by all the 
peers. The model is implemented by associating, to each object, a 
K-Link+ node (called Manager), which is responsible for 
authorizing object updates thus allowing the KLNs to view the 
updates in the same order. In particular, each object is assigned a 
Version Number (VN), which is incremented after each update.  
In more details, K-link+ defines the following set of roles that can 
be assumed by workspace nodes: 
• Creator. It is a KLN that creates a shared object and specifies 

the Manager List (ML), i.e. the list of KLNs that can assume 
the Manager role for this object. Managers are ordered on the 
basis of their responsibilities in managing the object. 

• Rendezvous. For each workspace, one rendezvous node 
maintains metadata about all the shared objects in a 
Consistency Table (described below) and provides such 
information to workspace members. The Rendezvous stores 



up-to-date information about objects, in particular the identity 
of the node which is currently in charge of each object (i.e., 
the Current Manager) and the current VN.  

• Manager. An object Manager is a KLN that manages the 
object life cycle and is contacted by KLNs when they want to 
propose an object update. An object can be assigned to 
several Managers, but at a given time only the Current 
Manager, i.e., the first online Manager in the ML, is actually 
responsible for the object. The Current Manager can decide 
whether or not to authorize an object update, according to the 
specific set of semantic rules associated to the object. KLNs 
are informed about the identity of the Current Manager by the 
Rendezvous. 

• Broker. It is a KLN that maintains an updated copy of an 
object and can forward it to other KLNs. Whereas the 
Manager role is assigned at object creation time, the Broker 
role is dynamic, since it can be played by any node whenever 
it maintains an updated copy of an object. 

• Worker. It is an ordinary KLN that operates on an object and 
possibly issues update proposals to the Current Manager. 
Workers can obtain an updated copy of an object either by a 
Broker, in a P2P fashion, or by the Current Manager of the 
object. 

The Rendezvous maintains information about the state of the 
objects in a Consistency Table. Each object is permanently 
associated to an Entry of this table, whose structure is shown in 
Table 1. An object is identified by a unique ID, which is assigned 
when the object is created. Moreover, to keep trace of the object 
state, the Consistency Entry includes a version number VN (an 
integer value), which is incremented at each authorized object 
update, the ID of the Current Manager and the Manager List. 
While the Rendezvous is in charge of maintaining updated 
information about all the shared objects of the workspace, KLNs 
can maintain replicas of the Consistency Entries describing the 
objects in which they are interested. 

 
Table 1. Consistency Table 

Field Description 

Object ID A unique ID, that identifies the shared object 
Version 

Number (VN) 
Object version number, incremented at each 

object update 
Current 
Manage 

The first online node in the Manager List. It 
is responsible for a shared object 

Manager List An ordered list of nodes that can assume the 
Current Manager role 

Creator The node that creates the object 
 

 
The definition of the mentioned roles enables three different kinds 
of interactions, as shown in Figure 2. A static centralized 
approach is adopted when workers interact with the unique 
Rendezvous of the workspace. The presence of a single 
Rendezvous is appropriate in a small/medium network, as it is 
generally possible to assign this role to a node with high reliability 
features. Note, however, that the load of this node is moderate, as 
it only deals with small size metadata information, as is better 
discussed in Section 5. In fact, the aim of the Rendezvous is to 
provide reliable and updated information about objects, but the 
actual management of each single shared object is delegated to the 

corresponding Current Manager. This enables a dynamic 
centralized paradigm because the role of Current Manager, if and 
when needed, can be switched from one Manager to another that 
is included in the ML of the object. This way, several issues can 
be tackled: (i) the presence of a central bottleneck, which would 
be originated if all objects were managed by a single node, is 
avoided; (ii) it is possible to cope with the volatile nature of P2P 
networks, in which peers with Manager responsibilities can leave 
the network at any time; (iii) a Current Manager switch can be 
performed for an object also to better balance the load among 
different Managers, as will be described in Section 5. 
On the other hand, a decentralized approach is exploited by 
Brokers that provide updated copies of objects to workers in a 
P2P fashion. The combined use of these three paradigms can 
represent an efficient trade-off among different ways to face 
distributed object management. 
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Fig. 2. The K-link+ approach to content consistency. 
 
In the following different scenarios, in which the above-
mentioned types of interactions occur, are described. These 
scenarios are: (a) the creation of a new shared object, (b) the 
update of an existing shared object, (c) the synchronization of a 
peer and (d) the Manager switch, performed either after a 
Manager disconnection or to achieve a fairer load balancing of 
Managers. Tables 2-5 list the various types of messages used in 
these scenarios. They are grouped by target node, as this will be 
useful for the evaluation of the computation load, done in Section 
5. 
 

Table 2. Messages received by the Rendezvous node 

Message Sender Receiver 

Create object Creator 
Inform the Rendezvous 
about the new object 

Object information 
request 

Worker 
Check the current version 
number of an object 

Manager leave Current Manager 
Inform the Rendezvous 
that the Current Manager 
is leaving the network 

Version update Current Manager 
Inform the Rendezvous 
about the new version 
number of an object 

 
 



Table 3. Messages received by Current Manager nodes 

Message Sender Receiver 

Online update request Worker 
Propose an object update 
while online 

Offline update request Worker 
Propose an object update 
after reconnecting 

 
Table 4. Messages received by Worker nodes 

Message Sender Receiver 

Object copy reply Broker 
Send an updated copy of 
an object 

Version check Broker 
Ask a worker to check the 
version number of an 
object 

Version information 
reply 

Workspace Network 
Inform the worker about 
the current version number 
of an object 

Update reply Current Manager 
Accept/decline update 
proposals 

Object information 
reply 

Rendezvous 
Give information about the 
current Manager and 
current VN of an object 

Object copy request Worker 
Request an updated copy 
of an object 

 
Table 5. Messages received by all Workspace nodes 

Message Sender Receiver 

Object forward Creator 
Forward a copy of a new 
object along with metadata 
to the interested peers 

Version information 
request 

Worker 
Check if an updated copy 
of an object is available 

Manager alive Rendezvous 
Inform the network about 
the identity of a new 
Current Manager 

 

Scenario A. Creation of a new Shared Object 
The creation of a new shared object is performed as follows. After 
creating a new shared object, a KLN (i.e., the Creator) informs the 
Rendezvous by sending it a create object message which contains 
metadata describing the new object (i.e., a new Consistency 
Entry), which will be stored in the Consistency Table. Moreover, 
the Creator defines the Manager List (ML): the first online 
Manager specified in the ML automatically assumes the role of 
Current Manager. The Creator forwards the new Consistency 
Entry, along with a copy of the new object, to the KLNs that can 
be interested in this object, by sending object forward messages. 
The KLNs store the received copy of the object in the local object 
repository through the Local Data Handler, while the Consistency 
Entry is stored into the local Consistency Table. When a KLN 
receives a new object it becomes a Broker, since it owns an object 
whose version number is the same as that maintained by the 
Rendezvous. A Broker can forward the new object to other KLNs 
in a P2P fashion, thus making object propagation faster. 

Scenario B. Object Update 
A worker can perform read operations, or provisional write 
operations, directly on the local copy of an object, through the 
Local Data Handler. However, every attempt to permanently 
modify the state of a shared object must be forwarded, through the 
Synchronization Service, to the Current Manager of the object, by 
sending it an online update request message. The Current 
Manager accepts modifications if these do not conflict with the 
current object state, according to the specific set of semantic rules 
associated to the object. If a modification is authorized, the 
Current Manager increments the object VN and sends back an 
update reply message to the requesting worker. Whenever an 
object update proposal is accepted, the updated copy of the object, 
along with information about the new VN, is sent from the 
requester to the involved workspace members, in a P2P fashion, 
through object forward messages, whereas the updated 
Consistency Entry is sent by the Current Manager to the 
Rendezvous through a version update message.  
Notice that the propagation of the updated object is initiated by 
the requester instead of the Current Manager, thus avoiding to 
overload the latter. The KLNs that receive an updated object copy 
of an object assume the role of Broker for this object. To foster 
object propagation, a Broker may contact a set of workers by 
sending them a version check message containing the current 
object VN. If the worker notices that this VN is higher than that 
maintained locally, it replies to the Broker with an object copy 
request message and will receive the updated object copy through 
an object copy reply message. If the Current Manager is not 
available when an update request is issued, a Manager Switch 
procedure is required, as detailed in Scenario D. 

Scenario C. Peer Synchronization 
A synchronization procedure is performed when a KLN 
reconnects to the workspace network after being offline. Its 
purpose is: (i) to provide the reconnecting KLN with updated 
information about the objects of interest; (ii) to enable the KLN to 
propose possible object updates made on the local copy while 
offline.  
In the first step, the KLN node uses the Synchronization Service 
to contact the Rendezvous and get information about current VNs 
and Current Managers of the objects of interest. This information 
is obtained by exchanging object information request/reply 
messages. Subsequently, two different procedures are followed by 
a KLN depending on whether or not it has performed any object 
update while offline. If no updates have been made, the 
decentralized approach (see Figure 2) can be exploited, since the 
KLN can obtain the latest object version from a workspace 
Broker. Specifically, the KLN checks whether the object VN 
received by the Rendezvous is higher than the VN stored locally, 
which would mean that the object has been updated. In this case, 
the KLN issues a version information request message to the 
workspace network and receives version information reply 
messages from workspace Brokers. Afterwards, the KLN chooses 
a Broker from which it can obtain the updated object in a P2P 
fashion, by using object copy request/reply messages. 
A different procedure is followed if the KLN has made offline 
updates. In this case, the dynamic centralized approach must be 
adopted, since the KLN has to submit its update proposals to the 
Current Manager by sending to it offline update request and 
receiving by it update reply messages, following the same 
procedure described in Scenario B (Object Update).  



In the case in which the Current Manager is not available when 
the KLN reconnects, a Manager Switch procedure is required, as 
detailed in Scenario D. In this case, the KLN keeps its update 
proposals stored in a local buffer until it is informed by the 
Rendezvous about the presence of an available Current Manager. 
In the meantime, the KLN can obtain an updated copy of the 
object from a Broker. 

Scenario D. Manager Switch 
In the above-mentioned scenarios, it is assumed that the Current 
Manager is online and available. If this condition does not hold, a 
Manager Switch procedure is required. By default the Current 
Manager is the first online KLN contained in the ML. When a 
new Manager becomes Current Manager, the Rendezvous informs 
the workspace network through a manager alive message. This 
way workspace members can store information about the new 
Current Manager (by updating the local Consistency Entry of the 
object) and will submit to it future update proposals. 
However, in a P2P scenario, the Current Manager can leave the 
network at any time either in a safe or unsafe way. In the first 
case, it sends a manager leave message to the Rendezvous. The 
latter searches for the next online Manager contained in the ML 
and informs the workspace network through a manager alive 
message. If the Current Manager leaves the network abruptly (i.e., 
without informing the Rendezvous), a different approach is 
adopted. The Rendezvous is informed about the Current Manager 
failure directly by a worker. This can happen either when a 
worker reconnects (Scenario C) or when it receives no reply after 
an online update request (Scenario B). In both cases, the worker 
sends an object information request message to the Rendezvous. 
Before responding with an object information reply message, the 
Rendezvous always checks the availability of the Current 
Manager. If the Current Manager who is in charge of the object 
has left the system and another Current Manager can be elected, 
the Rendezvous operates the switch and informs both the 
requesting worker and the workspace network through a manager 
alive message. 

5. SYSTEM EVALUATION 
This section presents a performance evaluation of the proposed 
model for data consistency and peer synchronization. The main 
purpose of our performance analysis is to evaluate the load of 
Manager and Rendezvous nodes. 
Analysis is made through a mathematical model based on the 
queuing theory and often adopted for the performance evaluation 
of computer systems [11]. Parameters adopted in the evaluation 
were experimentally determined during the actual operation of the 
K-Link+ platform in our departmental network. In particular, 
these parameters concern the size and frequency of client requests 
and the corresponding service times experienced on the 
Rendezvous and the Managers. 
The arrival of messages and their processing is modelled through 
M/G/1 queues [10]. An M/G/1 queue consists of a FIFO buffer 
with requests arriving randomly according to a Poisson process at 
rate λ and a processor, called a server, which retrieves requests 
from the queue and serves them on a first-come-first-serve 
(FCFS) order, with a generic (G) distribution of service time. 
The service time of requests is heavy-tailed in nature [6, 7]. In 
particular, the task size is often modelled with a Bounded Pareto 
distribution. According to this distribution, a high percentage of 
tasks require a short processing time, while a low percentage 

require long processing time. As opposed to the Pareto 
distribution, the Bounded Pareto distribution allows for the 
definition of minimum and maximum task sizes. This prevents the 
possibility of generating very long or very short tasks, which are 
not realistic. The probability density function for the Bounded 
Pareto B(k,p,α) is reported in formula (1). 
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In this formula, α represents the task size variation, k is the 
smallest task size and p is the largest task size. This function is 
defined for k<=x<=p and expresses the distribution probability of 
the service time. Values of k and p were set according to 
measurements taken during the actual usage of K-Link+ at the 
GridLab of the University of Calabria and at the ICAR-CNR 
institute. The parameter α must be included in the range <0,2> (a 
lower value accounts for higher variability), and is set to 1 for our 
analysis. 
The theory of M/G/1 queues enables the calculation of several 
interesting indices [16], that is, the average load on the server, the 
average processing time, needed to process a request at the server, 
the average waiting time of requests in the queue and the overall 
service time, which is the sum of the waiting time and the 
processing time at the server. 
In particular, the average load, ρ, can be calculated as λ/μ, where 
λ is the average frequency of request arrivals at the server and μ is 
the inverse of the average processing time E(X), which can be 
calculated as the first moment of the Bounded Pareto service time 
distribution. The expected waiting time of a request in the queue, 
E(w), can be obtained by using the Pollaczek-Khintchine (PK) 
formula and the Little’s law [10]. This results in formula (2), in 
which E(X2) is the second momentum of the Bounded Pareto 
distribution. 
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The overall service time E(T) is simply obtained by adding to 
formula (2) the average processing time E(X)=1/μ. The service 
time is only defined in the case that the average load is lower than 
1, that is, if λ is lower than μ, otherwise the queue will grow 
indefinitely. Actually, the average load can be interpreted as the 
average CPU utilization needed to cope with the incoming 
messages. A value greater than 1 indicates that the node is 
overloaded and more servers are necessary to cope with the flow 
of requests. 
In the next subsections, the performance of the most critical 
categories of nodes of the K-Link+ architecture are separately 
evaluated, that is, the Manager and the Rendezvous. To obtain λ, 
the arrival rates of the different types of requests/messages that 
are delivered to the Rendezvous and to the Managers are 
calculated and, according to the composition property of Poisson 
processes, these arrival rates are then summed. 

5.1 Evaluating the Manager load 
To estimate the load of a Manager network composed of up to 
100 nodes and containing a number of shared objects ranging 
from 100 to 2000 are considered. Those values correspond to the 
objects on which clients are actually working. It means that there 
can be other shared objects but they do not concur to the system 
load if users are not working on them. In this sense, the maximum 



number of objects (2000) corresponds to an average of 20 objects 
on which each client is actually working. Table 6 summarizes the 
parameters and values that have been adopted for our analysis.  

Table 6. Scenario for the evaluation of the Manager load 

Parameter Name Value 

Number of workers, N 100 

Average fraction of online and offline nodes, Fon 
and Foff 

0.5 and 0.5 

Overall number of shared objects, Nobj 100 to 2000 

Number of Manager nodes, Nmg 1 to 24 

Average rate of operations that a worker performs 
on a shared object while online, Ron 

1 each 6000 s 

Average rate of operations that a worker performs 
on a shared object while offline, Roff 

1 each 12000 s 

Minimum task size 200 bytes 

Maximum task size 100 Kbytes 

Average time required by a Manager to process an 
update request , 1/μ 

450 ms 

In particular, the size of content that must processed by a 
Manager, when it evaluates an update request for an object, is 
comprised between 200 bytes and 100 Kbytes, which are the 
values experienced during K-link+ operation. The corresponding 
service times vary from 20 ms to 10 s: these were set as the values 
of parameters k and p in the Bounded Pareto distribution, reported 
in formula (1). The average service time, 1/μ, is obtained 
analytically, as the first moment of the Bounded Pareto 
distribution. 
The load of a Manager node is computed as the contribution of 
two types of messages (see Table 3): online update requests 
incoming from online nodes, and offline update requests that are 
received from nodes that reconnect to the network. Actually, 
several offline requests can be sent by a node when reconnecting, 
so possibly generating a burst of requests. However, since these 
bursts come from different nodes at different times, their impact 
was found to be insignificant, so only the average arrival rates can 
be considered. The arrival rates corresponding to online and 
offline update requests, respectively named λon and λon, are 
calculated as follows: 

ononobjon FRNN ⋅⋅⋅=λ  

                          offoffobjoff FRNN ⋅⋅⋅=λ                       (3) 

In the hypothesis that all the Managers receive comparable 
number of requests, the average arrival rate at a Manager, λ, is 
computed by dividing the sum of these 2 contributions by the 
number of Managers: 
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From λ, performance indices can now be calculated as described 
in the previous subsection. Figure 3 depicts the Manager load ρ in 
a network with 100, 500, 1000 and 2000 objects, and different 
numbers of available Managers, in the hypothesis that the load is 
fairly shared among the Managers.  

 

Fig. 3. Manager load vs. the number of Managers, for 
different numbers of shared objects. The load is sustainable 
only when it is below the dashed line, correspond to the value 
of 1. 
 
The figure shows that the Manager load decreases with the 
number of Managers, with a negative exponential trend. It can 
also be noticed that, in the presence of a single Manager, the load 
is sustainable in the case of 100 shared objects, while the presence 
of more objects leads to a load greater than 1. For example, the 
load is about 1.65 if there are 500 shared objects, and is even 
higher with 1000 or 2000 shared objects. In these cases, a 
multiple Manager configuration is necessary, and the proper 
number of Managers can be chosen according to the number of 
objects. For instance, Figure 3 shows that at least 7 Managers are 
needed if the number of shared objects is 2000, since the load is 
always larger than 1 if fewer than 7 Managers are available. 
Figure 4 shows the average overall service time E(T) (that is, the 
waiting time in the queue plus the actual processing time at the 
server), which is defined only when the corresponding Manager 
load (Figure 3) is lower than 1. It can be noticed that the overall 
service time tends to be very high as the corresponding value of 
the load approaches the value of 1, for example, in configurations 
with 1000 objects and 4 Managers or with 2000 objects and 8 
Managers. As the number of Managers increases beyond these 
values, the service time decreases and becomes acceptable. 

 

Fig. 4.  Overall service time of requests vs. the number of 
Managers, for different numbers of shared objects. When the 
corresponding average load is greater than 1 (see Figure 3) the 
service time is undefined because the system is overloaded and 
the requests cannot be served. 



5.2 Evaluating the Rendezvous load 
As described in Section 4, K-link+ relies upon a hybrid paradigm 
with the simultaneous use of centralized and decentralized 
communication mechanisms. While the presence of several 
Managers allows for sharing the processing load pertaining to the 
management of objects, and brokers are exploited to disseminate 
objects in a P2P fashion, some high level functionalities are kept 
centralized. In particular, the maintenance of the Consistency 
Table and the dynamic assignment of Current Managers to objects 
is consigned to the Rendezvous.  
This choice was made to exploit the efficiency and security of the 
centralized paradigm at least for such important operations as the 
two mentioned above. However, the centralized approach can also 
have two drawbacks: (i) the fault tolerance management and (ii) a 
possible high load on the server. In order to cope with the first 
issue, the K-Link+ application manages a possible Rendezvous 
fault by maintaining a back up Rendezvous that can substitute the 
current one at each time (this feature is similar to that adopted by 
JXTA). The second issue is tackled by assigning the Rendezvous 
only operations that require few computing resources. Indeed, a 
Rendezvous only copes with metadata documents, which are 
small and easily manageable, whereas more cumbersome 
operations, which pertain to the management and update of actual 
knowledge objects, are distributed among multiple Managers.  
To verify the last point, the Rendezvous load was evaluated. It is 
computed as the contribution of three types of messages (see 
Table 2): version update messages and manager leave messages, 
which are sent by Managers, and object information request 
messages issued by workers when they reconnect. The 
contribution of create object messages is not considered, since it 
is negligible with respect to others. 
The average rates of these three types of messages are computed 
as described in the following: 

1. The average rate of version update messages is obtained 
as follows: (i) the contributions of online and offline 
requests issued by a single worker, for all their objects 
(Table 6), are summed; (ii) each time a worker request 
is accepted by the corresponding Manager, which is 
assumed to happen 50% of times, a version update 
message is sent by this Manager to the Rendezvous: 
therefore the event rate computed at the first step is 
multiplied by 0.5; (iii) finally, the obtained rate is 
multiplied by the number of workers.  

2. The average rate of manager leave messages is obtained 
by assuming an average connection time of Managers 
equal to 5 hours. The corresponding rate, equal to 1 
message each 18000 seconds, is then multiplied by the 
number of Managers. 

3. The average rate of object information request 
messages is obtained by assuming an average 
connection time of a worker equal to 3 hours. This rate 
is then multiplied by the number of workers. 

The average time intervals required to process these types of 
message were estimated on the running K-Link+ application. 
They are equal to about 50 milliseconds (ms) for processing a 
version update message, and 100 ms for processing a manager 
leave or an object information request message. Note that these 
values are much lower than the processing values experienced by 
the Manager nodes, since the Rendezvous only deals with 
metadata information, while the Managers deal with actual 
knowledge objects. Actually, the load related to the version 

update messages, which depends on the number of shared objects, 
gives the largest contributions if compared with the load of the 
other two terms, which do not depend on the number of objects, 
but on the number of nodes and the connection times of workers 
and Managers. Figure 5 reports the Rendezvous load and shows 
that it increases with the number of nodes N and the number of 
shared objects. In this scenario, the CPU utilization of the 
Rendezvous remains below 65% in all cases. This behavior 
indicates that to handle up to 100 nodes it is not necessary to 
adopt a multiple Rendezvous architecture. 

 
Fig. 5.  Load of a Rendezvous node vs. the number of shared 
objects, with a number of Managers equal to 6. 
 

6. CONCLUSIONS 
This paper focuses on two relevant issues in P2P systems, i.e., the 
consistency of data that arises, since users can work concurrently 
on multiple replicas of the same object, and the synchronization 
of peers that is needed when they disconnect from the platform 
and reconnect again. A model was designed to face these issues in 
K-link+: a small/medium scale collaborative system founded on 
the concepts of Virtual Office and workspace. 
A hybrid model was adopted that combines the efficiency of 
centralized interaction patterns, which are used for the 
management of metadata information about knowledge objects, 
with the scalability and adaptive features of decentralized 
interactions, which are adopted for the update and dissemination 
of actual data. An analytical performance evaluation, based on the 
theory of queue networks confirms the suitability of this 
approach. 
In this work, it is assumed that the load is equally shared among 
the Managers. In a more realistic scenario, each Manager sustains 
a different load, either because the objects are unfairly distributed, 
or because different numbers of update requests are issued for 
different objects. To handle such a situation we are considering a 
redirection mechanism. In particular, if a Manager experiences a 
very high load, it can ask the Rendezvous to assign some of the 
managed objects to a different Manager, in order to alleviate its 
load. Preliminary experiments are confirming the effectiveness of 
this approach. 
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