
A Hybrid Architecture for Content Consistency and Peer
Synchronization in Cooperative P2P Environments
Carlo Mastroianni

ICAR-CNR
Via P. Bucci 41C

87036 Rende (CS) Italy
+39-0984-831725

mastroianni@icar.cnr.it

Giuseppe Pirrò
DEIS – University of Calabria

Via P. Bucci 41C
87036 Rende (CS) Italy

+39-0984-494773

gpirro@deis.unical.it

Domenico Talia
DEIS – University of Calabria

Via P. Bucci 41C
87036 Rende (CS) Italy

+39-0984-494726

talia@deis.unical.it

ABSTRACT
Peer-to-Peer architectures for content and knowledge management
foster the creation of communities of workers in which effective
knowledge and information sharing takes place. In such
communities, workers have similar capabilities in providing other
workers with data and/or services and are autonomous in
managing their own knowledge objects. Since objects are
typically shared among a set of workers, problems regarding
concurrent access to content, content consistency and
synchronization of peers arise. This paper describes a hybrid
architecture for the management of data consistency and peer
synchronization. The designed framework combines centralized,
yet dynamic, mechanisms for metadata management and peer-to-
peer mechanisms for data transfer. The paper reports on the use of
these mechanisms in K-link+ a P2P collaborative platform,
developed at the GridLab of the University of Calabria, for
distributed knowledge management. An analytical study founded
on queue network theory confirms the efficiency of the presented
approach.

Keywords
Peer to Peer, Virtual Office, Collaborative Work, Distributed
Knowledge Management

1. INTRODUCTION
Most of the current architectures for content sharing and
knowledge management are typically based on client/server
architectures in which one or more servers act as central entities.
In these architectures, knowledge handled by workers must be
managed according to organizational guidelines. However, these
centralized approaches do not reflect the social nature of
knowledge [1]. As discussed in [15], the seed of new knowledge
is individual (tacit) knowledge, but its importance increases when
it becomes available to the whole organization. Therefore, the
externalization of tacit knowledge is a quintessential process to
create new knowledge; this typically requires people to interact
and collectively reflect on a problem or an idea. Such
observations promote the demand for new technological
architectures that place more emphasis on collaboration.

Moreover, since an increasingly number of workers very often
operates outside of the traditional office, a virtual workplace
where the physical workplace can be recreated is required. The
Virtual Office (VO) solution complies with this requirement. A
VO can be viewed as a work environment defined regardless of
the geographic locality of the employees. This model is becoming
essential since, even in conventional offices, today many business
relationships are necessarily maintained across distributed
environments. The VO is based on the concept of workspace. A
workspace is a community of people that work together, as if they
were in the same physical workplace, concurrently access shared
content and accomplish common objectives. Such communities
produce and exchange knowledge within workspaces through a
set of shared tools.
The Virtual Office model cannot be effectively managed through
a centralized entity in charge of object updating and
dissemination, because this solution can hinder the autonomous
interactions among workers and be poorly scalable. Conversely,
the Peer-to-Peer (P2P) paradigm can be more appropriate and
effective, because it fits both the requirements of collaboration
(synchronous and asynchronous) and knowledge sharing that are
raised by the adoption of VOs. In fact, P2P architectures naturally
support the creation of communities (e.g., workspaces, peer
groups) in which content and conveyed knowledge can be created,
shared, exchanged and transformed.
We developed a P2P system, named K-link+ [13], which
implements the VO model and allows users to create flexible and
collaborative P2P applications for knowledge management. In K-
link+, peers can concurrently work on the same shared
documents/files, in the following referred to as “knowledge
objects” or simply “objects”. To foster peer autonomy, different
local replicas of an object can be created, so concurrent access can
affect data consistency if adequate mechanisms are not provided.
Moreover, peers can join or leave the system at any time, thus
introducing the synchronization issue: synchronization is required
by peers that reconnect to the network and need to be informed
about recent updates made on objects by other peers.
Object consistency is also a fundamental reliability requirement
for a P2P system. Even if it is not possible, or convenient, to
guarantee that all users are provided identical object replicas all
the time, mechanisms must be provided to make users work
without any actual limitations [19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

This paper describes an architecture which is designed for the
management of knowledge in small/medium enterprises and is
actually adopted in the K-link+ system. This architecture adopts a
hybrid model to cope with the content consistency and peer
synchronization issues. It exploits the efficiency of centralized
models but at the same time includes decentralized features,

ziglio
Typewritten Text
INFOSCALE 2008, June 4-6, Vico Equense, Italy
Copyright © 2008 978-963-9799-28-8
DOI 10.4108/ICST.INFOSCALE2008.3474

which assure scalability properties when the system size
increases. This is accomplished by using: (i) a unique and stable
server to maintain a limited amount of metadata information about
shared objects, (ii) a number of interchangeable servers that
maintain and manage the primary copies of shared objects, and
(iii) a pure decentralized mechanism that allows P2P nodes to
effectively exchange up-to-date object replicas.
To this aim different roles can be assumed by K-link+ Nodes
(KLNs). In particular, a Rendezvous node maintains a common
view about shared objects and their state. A set of Manager nodes
are in charge of receiving object update requests from Worker
nodes and possibly authorizing them. Finally, Broker nodes are
used to speed up the propagation of updated objects over the
network. The work presented here extends and refines the
preliminary architecture description given in [14] and provides an
analytical study through which the described hybrid architecture
was assessed and important performance indices, such as
computation load and response time, were evaluated.
The remainder of this paper is organized as follows: Section 2
discusses related work; Section 3 presents the architecture of K-
link+ and its implementation in JXTA; Section 4 describes the
hybrid model that addresses data consistency and peer
synchronization issues; Section 5 presents an analytical
performance evaluation of this approach within the K-link+
system; finally, Section 6 concludes the paper.

2. RELATED WORK
Replication of content is an important issue in P2P systems,
especially if these are devoted to collaborative knowledge
management [2, 4, 5, 9]. Replication mechanisms are usually
classified into reactive and proactive mechanisms [17]. In reactive
replication, as objects are transferred from the home node to the
requesting peer, intermediate nodes through which the data flows,
determine independently whether or not to cache the content.
Some researchers propose to cache pointers instead of real objects
in order to yield better query search performance. In DiCAS [22],
queries are forwarded to peers of a predefined group which
passively cache the pointers in an unstructured P2P network.
However, a large overhead is necessary to update the pointers
when the object is moved or deleted, since the updated location
information has to be flooded to the whole overlay network.
In proactive replication, content is pushed to selected peers by the
node that stores the primary copy, in order to obtain better
performance in terms of query latency, load balance etc. However,
the cost of replicating objects to a large number of peers can be
cumbersome in both disk space and bandwidth, particularly for
systems that support applications with large objects (e.g., audio,
video, software distribution). A replication strategy based on
object popularity in unstructured P2P networks is explored in [5].
Nevertheless, this strategy does not reduce the worst-case search
latency for all the objects.
The strategy adopted in this paper borrows characteristics from
both reactive and proactive approaches. A push-based mechanism
is initiated by a peer when it generates or receives an updated
version of an object, since it forwards this object to other workers,
in a P2P fashion. This approach assures a quick dissemination of
objects to the members of a community but, owing to its
decentralized and unstructured nature, cannot guarantee that every
worker is given the updated version of every shared object all the
time. However, the updated version of an object is always
maintained by the related Manager node. Therefore, when a
worker cannot obtain the updated version of an object through the

P2P mechanism, it can always request this object, with a pull
modality, to the Manager.
An issue strictly related to replication is content consistency,
which is a fundamental reliability requirement in distributed
database systems, since concurrent operations on multiple replicas
of the same data item can create a conflict [18]. This issue is even
more complex in P2P systems, owing to their dynamic and
unreliable nature. Current approaches differ according to the scale
of P2P systems. In a large-scale and dynamic system, it is
complex and cumbersome to guarantee full consistency among
replicas, so researchers have designed algorithms to support
consistency in a best-effort way. In [8], a hybrid push/pull
algorithm is used to propagate updates, where flooding is
substituted by rumor spreading to reduce communication
overhead. SCOPE [3] is a P2P system that supports consistency
among a large number of replicas, at the cost of maintaining a
sophisticated data structure. By building a replica-partition-tree
(RPT) for each key, SCOPE keeps track of the locations of
replicas and then propagates update notifications.
Conversely, in a small- or medium-scale system, it is possible to
adopt centralized schemes to guarantee a strong consistency
model, which is often the sequential model [12]. In [21], an
algorithm for file consistency maintenance through virtual servers
in unstructured and decentralized P2P systems is proposed.
Consistency of each dynamic file is maintained by a virtual server
(VS). A file update can only be accepted through the VS to ensure
the one-copy serializability.
The hybrid architecture described in this paper, and adopted in the
K-link+ system, is specifically designed for knowledge
management in small/medium enterprises. Its main purpose is to
combine the efficiency of centralized models and the scalability
and fault-tolerance characteristics of decentralized systems.

3. ARCHITECTURE AND
IMPLEMENTATION OF K-LINK+
K-link+ is a collaborative P2P system that provides users with a
Virtual Office environment, in which content can be shared, to
enable collaborative work, and replicated to foster peer autonomy
[13]. Different applications (document sharing, messaging, shared
boards, agenda, etc.) can be integrated within a single
environment (a K-link+ workspace) and new tools can be added
as new components to support emerging requirements. In this
section, the system architecture is briefly presented along with its
implementation in JXTA [20]. For a more detailed description of
the K-link+ architecture refer to the GridLab website,
http://grid.deis.unical.it/k-link.

3.1 The K-link+ Architecture
The K-link+ architecture is based on five layers including basic
grouping and communication services, data handling services,
semantics services, workspace management services and a set of
high level tools for content sharing and user cooperation. Figure 1
shows the K-link+ architecture, whose layers are described in the
following.

K-link+ Core Layer. This layer defines the K-link+ core services
that are exploited by higher layers. In the current version of K-
link+, we adopted the JXTA framework to implement these
services, though any other P2P infrastructure can be used. Among
the core services, the K-Group Service allows KLNs to create new
K-Groups (e.g., communities or workspaces), while the
Connection Service allows KLNs to join the K-link+ network at

any time. Features used to send and receive messages are
provided by the Communication Service.

P2P PLATFORM

Connection
Service

Workspace
Management

Personal
Knowledge

Management
(PKM)

Profile
Editing

Knowledge
Worker

Tool
Management

Instant
Messaging

(IM)

Contact
Management

Profile and
Presence
Service

Workspace and
Invitation

Service
i

IM
Service

Ontology and
Indexing
Service

Synchronization
Service

Tool Data
Repository

Workspace
Repository

Contact
Repository

Ontology
Repository

Knowledge
Index

Document
Repository

Tool
Service

LOCAL DATA HANDLER

Contact
Controller

Tool
Controller Chat

Controller
Profile

Controller

Workspace Controller
PKM

Controller Workspace
Factory

Semantic
Services

layer

Data
Handling

 and
Consistency

Management
layer

K-Group
Service

Communication
Service

Controller
layer

Tool
layer

Core
layer

Fig. 1. The K-link+ architecture.

Data Handling and Consistency Management Layer. This
layer is responsible for handling the problems introduced in the
introductory section, that is, concurrent access to shared objects,
object consistency and peer synchronization. The layer includes
the Local Data Handler, which manages a set of local repositories
to store information about contacts, workspaces, objects and so
on. A detailed description of the functionalities of this layer is
provided in Section 4.
K-link+ Semantic Services Layer. The services of this layer
manage local and remote operations performed by a K-link+ user.
The Ontology and Indexing Service deals with operations
involving ontologies (creation, update) that K-link+ exploits to
describe and annotate resources in a semantic way. The Indexing
Service copes with the indexing of documents for keyword based
searches. The Profile and Presence Service manages state check
operations and enables users to create and publish their profile
within the K-link+ network. The Workspace and Invitation
Service handles workspace set up and population by sending
invitation messages to other KLNs. The Tool Service is used to
add new tool instances to workspaces at run time. The Instant
Message (IM) Service allows KLNs to communicate each other
via a chat-like system.
K-link+ Controller Layer. This layer contains a set of controllers
through which the system interacts with the Data Handling and
Consistency Management Layer. The Workspace Controller
manages workspace settings through the creation of workspace
profiles that contain information about workspace topics, sets of
tools and workspace members. The Contact Controller enables
workers to discover other peer workers in the network and add
them to a personal Contact List. The PKM Controller is delegated
to manage personal knowledge, that is, knowledge that is
autonomously handled by workers. The Tool Controller allows
workers to handle operations (add, update, remove) on knowledge
management tools.
K-link+ Tool Layer. This layer provides a basic set of K-link+
Tools (file sharing, shared calendar, contact manager, etc.) that
can be embedded in a workspace. In addition, other tools can be

developed and included in the system as modular components,
with the only requirement that the K-link+ tool interface must be
implemented. Tools are shared among workspace participants:
when a new tool is added to a workspace, a local tool instance will
be automatically created on the K-link+ client of each workspace
member. Hence, objects created through workspace tools can be
shared among workspace members. For further information about
the development of tools refer to the GridLab website,
http://grid.deis.unical.it/k-link.

3.2 K-link+ implementation
While the K-link+ technology is independent of any particular
P2P architecture, however the JXTA framework [20] was used to
implement it.
As a consequence of this choice, the Core Layer of the K-link+
architecture maps each K-link+ peer, also called K-link+ Node
(KLN), to a JXTA peer and each K-link+ group (K-group) to a
JXTA peer group. JXTA peers can be divided into two categories:
edge peers and rendezvous peers. Edge peers are transient peers
provided with resource discovery and publishing capabilities. On
the other hand, rendezvous peers are expected to be more stable.
The aim of a rendezvous peer is to enable edge peers to discover
and publish network resources. In JXTA each network resource
(e.g., peers, peer groups, services) is published through XML
documents called Advertisements. To participate in a P2P
network, an edge peer needs to know how to connect to at least a
rendezvous peer. Typically, an edge peer maintains a list of
known rendezvous peers (called “seed” rendezvous) and
participates in dynamic discovery of new rendezvous nodes. This
allows edge peers to fail-over to an alternative rendezvous when
needed, so as to enhance overall network reliability. Every JXTA
peer can act both as an edge peer or a rendezvous peer. In fact, an
edge peer can adaptively become a rendezvous peer if it cannot
connect to any rendezvous for an extended period of time

4. CONTENT CONSISTENCY AND PEER
SYNCHRONIZATION
In K-link+, several users can work concurrently on shared objects.
To favor the autonomy of users, the system allows different
replicas of the same object to be created, so that users can work on
their local copies. As mentioned in Section 3.1, the purpose of the
Data Handling and Consistency Management layer is to ensure
data persistence, consistency management and peer
synchronization. In the context of K-link+, the sequential
consistency model is adopted [12], which assures that all updates
performed on an object are seen in the same sequence by all the
peers. The model is implemented by associating, to each object, a
K-Link+ node (called Manager), which is responsible for
authorizing object updates thus allowing the KLNs to view the
updates in the same order. In particular, each object is assigned a
Version Number (VN), which is incremented after each update.
In more details, K-link+ defines the following set of roles that can
be assumed by workspace nodes:
• Creator. It is a KLN that creates a shared object and specifies

the Manager List (ML), i.e. the list of KLNs that can assume
the Manager role for this object. Managers are ordered on the
basis of their responsibilities in managing the object.

• Rendezvous. For each workspace, one rendezvous node
maintains metadata about all the shared objects in a
Consistency Table (described below) and provides such
information to workspace members. The Rendezvous stores

up-to-date information about objects, in particular the identity
of the node which is currently in charge of each object (i.e.,
the Current Manager) and the current VN.

• Manager. An object Manager is a KLN that manages the
object life cycle and is contacted by KLNs when they want to
propose an object update. An object can be assigned to
several Managers, but at a given time only the Current
Manager, i.e., the first online Manager in the ML, is actually
responsible for the object. The Current Manager can decide
whether or not to authorize an object update, according to the
specific set of semantic rules associated to the object. KLNs
are informed about the identity of the Current Manager by the
Rendezvous.

• Broker. It is a KLN that maintains an updated copy of an
object and can forward it to other KLNs. Whereas the
Manager role is assigned at object creation time, the Broker
role is dynamic, since it can be played by any node whenever
it maintains an updated copy of an object.

• Worker. It is an ordinary KLN that operates on an object and
possibly issues update proposals to the Current Manager.
Workers can obtain an updated copy of an object either by a
Broker, in a P2P fashion, or by the Current Manager of the
object.

The Rendezvous maintains information about the state of the
objects in a Consistency Table. Each object is permanently
associated to an Entry of this table, whose structure is shown in
Table 1. An object is identified by a unique ID, which is assigned
when the object is created. Moreover, to keep trace of the object
state, the Consistency Entry includes a version number VN (an
integer value), which is incremented at each authorized object
update, the ID of the Current Manager and the Manager List.
While the Rendezvous is in charge of maintaining updated
information about all the shared objects of the workspace, KLNs
can maintain replicas of the Consistency Entries describing the
objects in which they are interested.

Table 1. Consistency Table

Field Description

Object ID A unique ID, that identifies the shared object
Version

Number (VN)
Object version number, incremented at each

object update
Current
Manage

The first online node in the Manager List. It
is responsible for a shared object

Manager List An ordered list of nodes that can assume the
Current Manager role

Creator The node that creates the object

The definition of the mentioned roles enables three different kinds
of interactions, as shown in Figure 2. A static centralized
approach is adopted when workers interact with the unique
Rendezvous of the workspace. The presence of a single
Rendezvous is appropriate in a small/medium network, as it is
generally possible to assign this role to a node with high reliability
features. Note, however, that the load of this node is moderate, as
it only deals with small size metadata information, as is better
discussed in Section 5. In fact, the aim of the Rendezvous is to
provide reliable and updated information about objects, but the
actual management of each single shared object is delegated to the

corresponding Current Manager. This enables a dynamic
centralized paradigm because the role of Current Manager, if and
when needed, can be switched from one Manager to another that
is included in the ML of the object. This way, several issues can
be tackled: (i) the presence of a central bottleneck, which would
be originated if all objects were managed by a single node, is
avoided; (ii) it is possible to cope with the volatile nature of P2P
networks, in which peers with Manager responsibilities can leave
the network at any time; (iii) a Current Manager switch can be
performed for an object also to better balance the load among
different Managers, as will be described in Section 5.
On the other hand, a decentralized approach is exploited by
Brokers that provide updated copies of objects to workers in a
P2P fashion. The combined use of these three paradigms can
represent an efficient trade-off among different ways to face
distributed object management.

Rendezvous

K-link+ Workspace
Network

Current
Manager

Broker Broker

Broker

Broker

Worker

Worker

Worker Worker

Broker

Decentralized

Static Centralized

Dynamic
Centralized

Interaction Models

Fig. 2. The K-link+ approach to content consistency.

In the following different scenarios, in which the above-
mentioned types of interactions occur, are described. These
scenarios are: (a) the creation of a new shared object, (b) the
update of an existing shared object, (c) the synchronization of a
peer and (d) the Manager switch, performed either after a
Manager disconnection or to achieve a fairer load balancing of
Managers. Tables 2-5 list the various types of messages used in
these scenarios. They are grouped by target node, as this will be
useful for the evaluation of the computation load, done in Section
5.

Table 2. Messages received by the Rendezvous node

Message Sender Receiver

Create object Creator
Inform the Rendezvous
about the new object

Object information
request

Worker
Check the current version
number of an object

Manager leave Current Manager
Inform the Rendezvous
that the Current Manager
is leaving the network

Version update Current Manager
Inform the Rendezvous
about the new version
number of an object

Table 3. Messages received by Current Manager nodes

Message Sender Receiver

Online update request Worker
Propose an object update
while online

Offline update request Worker
Propose an object update
after reconnecting

Table 4. Messages received by Worker nodes

Message Sender Receiver

Object copy reply Broker
Send an updated copy of
an object

Version check Broker
Ask a worker to check the
version number of an
object

Version information
reply

Workspace Network
Inform the worker about
the current version number
of an object

Update reply Current Manager
Accept/decline update
proposals

Object information
reply

Rendezvous
Give information about the
current Manager and
current VN of an object

Object copy request Worker
Request an updated copy
of an object

Table 5. Messages received by all Workspace nodes

Message Sender Receiver

Object forward Creator
Forward a copy of a new
object along with metadata
to the interested peers

Version information
request

Worker
Check if an updated copy
of an object is available

Manager alive Rendezvous
Inform the network about
the identity of a new
Current Manager

Scenario A. Creation of a new Shared Object
The creation of a new shared object is performed as follows. After
creating a new shared object, a KLN (i.e., the Creator) informs the
Rendezvous by sending it a create object message which contains
metadata describing the new object (i.e., a new Consistency
Entry), which will be stored in the Consistency Table. Moreover,
the Creator defines the Manager List (ML): the first online
Manager specified in the ML automatically assumes the role of
Current Manager. The Creator forwards the new Consistency
Entry, along with a copy of the new object, to the KLNs that can
be interested in this object, by sending object forward messages.
The KLNs store the received copy of the object in the local object
repository through the Local Data Handler, while the Consistency
Entry is stored into the local Consistency Table. When a KLN
receives a new object it becomes a Broker, since it owns an object
whose version number is the same as that maintained by the
Rendezvous. A Broker can forward the new object to other KLNs
in a P2P fashion, thus making object propagation faster.

Scenario B. Object Update
A worker can perform read operations, or provisional write
operations, directly on the local copy of an object, through the
Local Data Handler. However, every attempt to permanently
modify the state of a shared object must be forwarded, through the
Synchronization Service, to the Current Manager of the object, by
sending it an online update request message. The Current
Manager accepts modifications if these do not conflict with the
current object state, according to the specific set of semantic rules
associated to the object. If a modification is authorized, the
Current Manager increments the object VN and sends back an
update reply message to the requesting worker. Whenever an
object update proposal is accepted, the updated copy of the object,
along with information about the new VN, is sent from the
requester to the involved workspace members, in a P2P fashion,
through object forward messages, whereas the updated
Consistency Entry is sent by the Current Manager to the
Rendezvous through a version update message.
Notice that the propagation of the updated object is initiated by
the requester instead of the Current Manager, thus avoiding to
overload the latter. The KLNs that receive an updated object copy
of an object assume the role of Broker for this object. To foster
object propagation, a Broker may contact a set of workers by
sending them a version check message containing the current
object VN. If the worker notices that this VN is higher than that
maintained locally, it replies to the Broker with an object copy
request message and will receive the updated object copy through
an object copy reply message. If the Current Manager is not
available when an update request is issued, a Manager Switch
procedure is required, as detailed in Scenario D.

Scenario C. Peer Synchronization
A synchronization procedure is performed when a KLN
reconnects to the workspace network after being offline. Its
purpose is: (i) to provide the reconnecting KLN with updated
information about the objects of interest; (ii) to enable the KLN to
propose possible object updates made on the local copy while
offline.
In the first step, the KLN node uses the Synchronization Service
to contact the Rendezvous and get information about current VNs
and Current Managers of the objects of interest. This information
is obtained by exchanging object information request/reply
messages. Subsequently, two different procedures are followed by
a KLN depending on whether or not it has performed any object
update while offline. If no updates have been made, the
decentralized approach (see Figure 2) can be exploited, since the
KLN can obtain the latest object version from a workspace
Broker. Specifically, the KLN checks whether the object VN
received by the Rendezvous is higher than the VN stored locally,
which would mean that the object has been updated. In this case,
the KLN issues a version information request message to the
workspace network and receives version information reply
messages from workspace Brokers. Afterwards, the KLN chooses
a Broker from which it can obtain the updated object in a P2P
fashion, by using object copy request/reply messages.
A different procedure is followed if the KLN has made offline
updates. In this case, the dynamic centralized approach must be
adopted, since the KLN has to submit its update proposals to the
Current Manager by sending to it offline update request and
receiving by it update reply messages, following the same
procedure described in Scenario B (Object Update).

In the case in which the Current Manager is not available when
the KLN reconnects, a Manager Switch procedure is required, as
detailed in Scenario D. In this case, the KLN keeps its update
proposals stored in a local buffer until it is informed by the
Rendezvous about the presence of an available Current Manager.
In the meantime, the KLN can obtain an updated copy of the
object from a Broker.

Scenario D. Manager Switch
In the above-mentioned scenarios, it is assumed that the Current
Manager is online and available. If this condition does not hold, a
Manager Switch procedure is required. By default the Current
Manager is the first online KLN contained in the ML. When a
new Manager becomes Current Manager, the Rendezvous informs
the workspace network through a manager alive message. This
way workspace members can store information about the new
Current Manager (by updating the local Consistency Entry of the
object) and will submit to it future update proposals.
However, in a P2P scenario, the Current Manager can leave the
network at any time either in a safe or unsafe way. In the first
case, it sends a manager leave message to the Rendezvous. The
latter searches for the next online Manager contained in the ML
and informs the workspace network through a manager alive
message. If the Current Manager leaves the network abruptly (i.e.,
without informing the Rendezvous), a different approach is
adopted. The Rendezvous is informed about the Current Manager
failure directly by a worker. This can happen either when a
worker reconnects (Scenario C) or when it receives no reply after
an online update request (Scenario B). In both cases, the worker
sends an object information request message to the Rendezvous.
Before responding with an object information reply message, the
Rendezvous always checks the availability of the Current
Manager. If the Current Manager who is in charge of the object
has left the system and another Current Manager can be elected,
the Rendezvous operates the switch and informs both the
requesting worker and the workspace network through a manager
alive message.

5. SYSTEM EVALUATION
This section presents a performance evaluation of the proposed
model for data consistency and peer synchronization. The main
purpose of our performance analysis is to evaluate the load of
Manager and Rendezvous nodes.
Analysis is made through a mathematical model based on the
queuing theory and often adopted for the performance evaluation
of computer systems [11]. Parameters adopted in the evaluation
were experimentally determined during the actual operation of the
K-Link+ platform in our departmental network. In particular,
these parameters concern the size and frequency of client requests
and the corresponding service times experienced on the
Rendezvous and the Managers.
The arrival of messages and their processing is modelled through
M/G/1 queues [10]. An M/G/1 queue consists of a FIFO buffer
with requests arriving randomly according to a Poisson process at
rate λ and a processor, called a server, which retrieves requests
from the queue and serves them on a first-come-first-serve
(FCFS) order, with a generic (G) distribution of service time.
The service time of requests is heavy-tailed in nature [6, 7]. In
particular, the task size is often modelled with a Bounded Pareto
distribution. According to this distribution, a high percentage of
tasks require a short processing time, while a low percentage

require long processing time. As opposed to the Pareto
distribution, the Bounded Pareto distribution allows for the
definition of minimum and maximum task sizes. This prevents the
possibility of generating very long or very short tasks, which are
not realistic. The probability density function for the Bounded
Pareto B(k,p,α) is reported in formula (1).

1

)(1
)(−−

−
= α

α

αα x
pk

kxf (1)

In this formula, α represents the task size variation, k is the
smallest task size and p is the largest task size. This function is
defined for k<=x<=p and expresses the distribution probability of
the service time. Values of k and p were set according to
measurements taken during the actual usage of K-Link+ at the
GridLab of the University of Calabria and at the ICAR-CNR
institute. The parameter α must be included in the range <0,2> (a
lower value accounts for higher variability), and is set to 1 for our
analysis.
The theory of M/G/1 queues enables the calculation of several
interesting indices [16], that is, the average load on the server, the
average processing time, needed to process a request at the server,
the average waiting time of requests in the queue and the overall
service time, which is the sum of the waiting time and the
processing time at the server.
In particular, the average load, ρ, can be calculated as λ/μ, where
λ is the average frequency of request arrivals at the server and μ is
the inverse of the average processing time E(X), which can be
calculated as the first moment of the Bounded Pareto service time
distribution. The expected waiting time of a request in the queue,
E(w), can be obtained by using the Pollaczek-Khintchine (PK)
formula and the Little’s law [10]. This results in formula (2), in
which E(X2) is the second momentum of the Bounded Pareto
distribution.

)1(2
)()(

2

ρ
λ

−
=

XEwE (2)

The overall service time E(T) is simply obtained by adding to
formula (2) the average processing time E(X)=1/μ. The service
time is only defined in the case that the average load is lower than
1, that is, if λ is lower than μ, otherwise the queue will grow
indefinitely. Actually, the average load can be interpreted as the
average CPU utilization needed to cope with the incoming
messages. A value greater than 1 indicates that the node is
overloaded and more servers are necessary to cope with the flow
of requests.
In the next subsections, the performance of the most critical
categories of nodes of the K-Link+ architecture are separately
evaluated, that is, the Manager and the Rendezvous. To obtain λ,
the arrival rates of the different types of requests/messages that
are delivered to the Rendezvous and to the Managers are
calculated and, according to the composition property of Poisson
processes, these arrival rates are then summed.

5.1 Evaluating the Manager load
To estimate the load of a Manager network composed of up to
100 nodes and containing a number of shared objects ranging
from 100 to 2000 are considered. Those values correspond to the
objects on which clients are actually working. It means that there
can be other shared objects but they do not concur to the system
load if users are not working on them. In this sense, the maximum

number of objects (2000) corresponds to an average of 20 objects
on which each client is actually working. Table 6 summarizes the
parameters and values that have been adopted for our analysis.

Table 6. Scenario for the evaluation of the Manager load

Parameter Name Value

Number of workers, N 100

Average fraction of online and offline nodes, Fon
and Foff

0.5 and 0.5

Overall number of shared objects, Nobj 100 to 2000

Number of Manager nodes, Nmg 1 to 24

Average rate of operations that a worker performs
on a shared object while online, Ron

1 each 6000 s

Average rate of operations that a worker performs
on a shared object while offline, Roff

1 each 12000 s

Minimum task size 200 bytes

Maximum task size 100 Kbytes

Average time required by a Manager to process an
update request , 1/μ

450 ms

In particular, the size of content that must processed by a
Manager, when it evaluates an update request for an object, is
comprised between 200 bytes and 100 Kbytes, which are the
values experienced during K-link+ operation. The corresponding
service times vary from 20 ms to 10 s: these were set as the values
of parameters k and p in the Bounded Pareto distribution, reported
in formula (1). The average service time, 1/μ, is obtained
analytically, as the first moment of the Bounded Pareto
distribution.
The load of a Manager node is computed as the contribution of
two types of messages (see Table 3): online update requests
incoming from online nodes, and offline update requests that are
received from nodes that reconnect to the network. Actually,
several offline requests can be sent by a node when reconnecting,
so possibly generating a burst of requests. However, since these
bursts come from different nodes at different times, their impact
was found to be insignificant, so only the average arrival rates can
be considered. The arrival rates corresponding to online and
offline update requests, respectively named λon and λon, are
calculated as follows:

ononobjon FRNN ⋅⋅⋅=λ

 offoffobjoff FRNN ⋅⋅⋅=λ (3)

In the hypothesis that all the Managers receive comparable
number of requests, the average arrival rate at a Manager, λ, is
computed by dividing the sum of these 2 contributions by the
number of Managers:

mg

offon

N
λλλ +

= (4)

From λ, performance indices can now be calculated as described
in the previous subsection. Figure 3 depicts the Manager load ρ in
a network with 100, 500, 1000 and 2000 objects, and different
numbers of available Managers, in the hypothesis that the load is
fairly shared among the Managers.

Fig. 3. Manager load vs. the number of Managers, for
different numbers of shared objects. The load is sustainable
only when it is below the dashed line, correspond to the value
of 1.

The figure shows that the Manager load decreases with the
number of Managers, with a negative exponential trend. It can
also be noticed that, in the presence of a single Manager, the load
is sustainable in the case of 100 shared objects, while the presence
of more objects leads to a load greater than 1. For example, the
load is about 1.65 if there are 500 shared objects, and is even
higher with 1000 or 2000 shared objects. In these cases, a
multiple Manager configuration is necessary, and the proper
number of Managers can be chosen according to the number of
objects. For instance, Figure 3 shows that at least 7 Managers are
needed if the number of shared objects is 2000, since the load is
always larger than 1 if fewer than 7 Managers are available.
Figure 4 shows the average overall service time E(T) (that is, the
waiting time in the queue plus the actual processing time at the
server), which is defined only when the corresponding Manager
load (Figure 3) is lower than 1. It can be noticed that the overall
service time tends to be very high as the corresponding value of
the load approaches the value of 1, for example, in configurations
with 1000 objects and 4 Managers or with 2000 objects and 8
Managers. As the number of Managers increases beyond these
values, the service time decreases and becomes acceptable.

Fig. 4. Overall service time of requests vs. the number of
Managers, for different numbers of shared objects. When the
corresponding average load is greater than 1 (see Figure 3) the
service time is undefined because the system is overloaded and
the requests cannot be served.

5.2 Evaluating the Rendezvous load
As described in Section 4, K-link+ relies upon a hybrid paradigm
with the simultaneous use of centralized and decentralized
communication mechanisms. While the presence of several
Managers allows for sharing the processing load pertaining to the
management of objects, and brokers are exploited to disseminate
objects in a P2P fashion, some high level functionalities are kept
centralized. In particular, the maintenance of the Consistency
Table and the dynamic assignment of Current Managers to objects
is consigned to the Rendezvous.
This choice was made to exploit the efficiency and security of the
centralized paradigm at least for such important operations as the
two mentioned above. However, the centralized approach can also
have two drawbacks: (i) the fault tolerance management and (ii) a
possible high load on the server. In order to cope with the first
issue, the K-Link+ application manages a possible Rendezvous
fault by maintaining a back up Rendezvous that can substitute the
current one at each time (this feature is similar to that adopted by
JXTA). The second issue is tackled by assigning the Rendezvous
only operations that require few computing resources. Indeed, a
Rendezvous only copes with metadata documents, which are
small and easily manageable, whereas more cumbersome
operations, which pertain to the management and update of actual
knowledge objects, are distributed among multiple Managers.
To verify the last point, the Rendezvous load was evaluated. It is
computed as the contribution of three types of messages (see
Table 2): version update messages and manager leave messages,
which are sent by Managers, and object information request
messages issued by workers when they reconnect. The
contribution of create object messages is not considered, since it
is negligible with respect to others.
The average rates of these three types of messages are computed
as described in the following:

1. The average rate of version update messages is obtained
as follows: (i) the contributions of online and offline
requests issued by a single worker, for all their objects
(Table 6), are summed; (ii) each time a worker request
is accepted by the corresponding Manager, which is
assumed to happen 50% of times, a version update
message is sent by this Manager to the Rendezvous:
therefore the event rate computed at the first step is
multiplied by 0.5; (iii) finally, the obtained rate is
multiplied by the number of workers.

2. The average rate of manager leave messages is obtained
by assuming an average connection time of Managers
equal to 5 hours. The corresponding rate, equal to 1
message each 18000 seconds, is then multiplied by the
number of Managers.

3. The average rate of object information request
messages is obtained by assuming an average
connection time of a worker equal to 3 hours. This rate
is then multiplied by the number of workers.

The average time intervals required to process these types of
message were estimated on the running K-Link+ application.
They are equal to about 50 milliseconds (ms) for processing a
version update message, and 100 ms for processing a manager
leave or an object information request message. Note that these
values are much lower than the processing values experienced by
the Manager nodes, since the Rendezvous only deals with
metadata information, while the Managers deal with actual
knowledge objects. Actually, the load related to the version

update messages, which depends on the number of shared objects,
gives the largest contributions if compared with the load of the
other two terms, which do not depend on the number of objects,
but on the number of nodes and the connection times of workers
and Managers. Figure 5 reports the Rendezvous load and shows
that it increases with the number of nodes N and the number of
shared objects. In this scenario, the CPU utilization of the
Rendezvous remains below 65% in all cases. This behavior
indicates that to handle up to 100 nodes it is not necessary to
adopt a multiple Rendezvous architecture.

Fig. 5. Load of a Rendezvous node vs. the number of shared
objects, with a number of Managers equal to 6.

6. CONCLUSIONS
This paper focuses on two relevant issues in P2P systems, i.e., the
consistency of data that arises, since users can work concurrently
on multiple replicas of the same object, and the synchronization
of peers that is needed when they disconnect from the platform
and reconnect again. A model was designed to face these issues in
K-link+: a small/medium scale collaborative system founded on
the concepts of Virtual Office and workspace.
A hybrid model was adopted that combines the efficiency of
centralized interaction patterns, which are used for the
management of metadata information about knowledge objects,
with the scalability and adaptive features of decentralized
interactions, which are adopted for the update and dissemination
of actual data. An analytical performance evaluation, based on the
theory of queue networks confirms the suitability of this
approach.
In this work, it is assumed that the load is equally shared among
the Managers. In a more realistic scenario, each Manager sustains
a different load, either because the objects are unfairly distributed,
or because different numbers of update requests are issued for
different objects. To handle such a situation we are considering a
redirection mechanism. In particular, if a Manager experiences a
very high load, it can ask the Rendezvous to assign some of the
managed objects to a different Manager, in order to alleviate its
load. Preliminary experiments are confirming the effectiveness of
this approach.

Acknowledgments
This research work is partially funded by the FP6 CoreGRID
Network of Excellence which is funded by the European
Commission (Contract IST-2002-004265).

7. REFERENCES
[1] Bonifacio, M., Bouquet, P., Mameli, G., Nori, M. KEEx: A

Peer-to-Peer Solution for Distributed Knowledge
Management. In Proceedings of the PAKM conference on
Practical Aspects of Knowledge Management PAKM ‘02,
Wien, Austria, December 2002, 490-500.

[2] Chang, T., Ahamad, M.. Improving service performance
through object replication in middleware: a peer-to-peer
approach. In Proceedings of the 5th IEEE International
Conference on Peer-to-Peer Computing, Konstanz,
Germany, August/September 2005.

[3] Chen, X., Ren, S., Wang, H., Zhang, X. SCOPE: scalable
consistency maintenance in structured P2P systems. In
Proceedings of INFOCOM Computer and Communications
Societies Conference INFOCOM ’05, Miami, FL, USA,
March 2005, 1502-1513.

[4] Chen, Y., Katz, R., Kubiatowicz, J. Dynamic replica
placement for scalable content delivery. In Proceedings of
the International Workshop on Peer-to-Peer Systems
IPTPS’02, 2002.

[5] Cohen, E., Shenker, S. Replication strategies in unstructured
peer-to-peer networks. In Proceedings of the ACM
SIGCOMM 200202 Conference, Pittsburgh, PA, USA,
August 2002.

[6] Crovella, M. E., and Bestavros. A. Self-similarity in World
Wide Web traffic: Evidence and possible causes. IEEE/ACM
Transactions on Networking, 5(6), 1997, 835-846.

[7] Crovella, M. E., Taqqu, M. S., and Bestavros. A. Heavy-
Tailed Probability Distributions in the World Wide Web. A
Practical Guide To Heavy Tails, Birkhauser Boston Inc.,
Cambridge, MA, USA, 1998, 3-26.

[8] Datta, A., Hauswirth, M., Aberer, K. Updates in highly
unreliable, replicated peer-to-peer systems, . In Proceedings
of ICDCS International Conference on Distributed
Computing Systems ICDCS ’03, Providence, RI, USA, May
2003, 76-88.

[9] Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher,
P. Adaptive replication in peer-to-peer systems. In
Proceedings of the 24th International Conference on
Distributed Computing Systems ICDCS'04, Tokyo, Japan,
March 2004.

[10] Haverkort, B. Performance of computer communication
systems. John Wiley & Sons, New York, USA, 1998.

[11] Jain, R. The art of computer systems performance analysis.
John Wiley & Sons, New York, USA, 1991.

[12] Lamport, L. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs, IEEE
Transactions on Computers, 28, 9, September 1979, 690-
691.

[13] Le Coche, E., Mastroianni, C., Pirrò, G., Ruffolo, M., Talia,
D. A Peer-to-Peer Virtual Office for Organizational
Knowledge Management. In Proceedings of the PAKM
conference on Practical Aspects of Knowledge Management
PAKM ‘06, Wien, Austria, November-December 2006, 166-
177.

[14] Mastroianni, C., Pirrò, G., Talia, D. Data consistency in a
p2p knowledge management platform. In Proceedings of the
second HPDC workshop on Use of P2P, GRID and agents
for the development of content networks Upgrade ’07,
Monterey, CA, USA, June 2007, 17-24.

[15] Nonaka, I., Takeuchi, H. The Knowledge-Creating
Company: How Japanese Companies Create the Dynamics
of Innovation. Oxford University Press, New York, USA,
1995.

[16] Pathan, A. K., Broberg, J. A., Bubendorfer, K., Kim, H. K.,
Buyya, R. An architecture for virtual organization (VO)-
based effective peering of content delivery networks. In
Proceedings of the second HPDC workshop on Use of P2P,
GRID and agents for the development of content networks
Upgrade ’07, Monterey, CA, USA, June 2007, 29-38.

[17] Ramamritham, K., Prashant, S. Dynamic Information
Dissemination, IEEE Internet Computing, 11(4), July/August
2007, 14-15.

[18] Rosenkrantz, D. J., Stearns, R. E., Lewis, P. M. System level
concurrency control for distributed database systems, ACM
Transactions on Database Systems, 3(2), 1978.

[19] Tanenbaum, A. S., van Steen, M. Distributed Systems:
Principles and Paradigms, Prentice Hall, 2002.

[20] Traversat, B., Abdelaziz, M., Pouyoul E. Project JXTA: A
Loosely-Consistent DHT Rendezvous Walker. Available at
http://www.jxta.org/docs/jxta-dht.pdf.

[21] Wang, Z., Kumar, M., Das, S. K., Shen, H. File Consistency
Maintenance Through Virtual Servers in P2P Systems. In
Proceedings of the IEEE Symposium on Computers and
Communications ISCC '06, Cagliari, Italy, June 2006, 435-
441.

[22] Wang, C., Xiao, L., Liu, Y., Zheng, P. DiCAS: An Efficient
Distributed Caching Mechanism for P2P Systems, IEEE
Transactions on Parallel and Distributed Systems, 17(10),
2006.

	1. INTRODUCTION
	2. RELATED WORK
	3. ARCHITECTURE AND IMPLEMENTATION OF K-LINK+
	3.1 The K-link+ Architecture
	3.2 K-link+ implementation

	4. CONTENT CONSISTENCY AND PEER SYNCHRONIZATION
	Scenario A. Creation of a new Shared Object
	Scenario B. Object Update
	Scenario C. Peer Synchronization
	Scenario D. Manager Switch

	5. SYSTEM EVALUATION
	5.1 Evaluating the Manager load
	5.2 Evaluating the Rendezvous load

	6. CONCLUSIONS
	Acknowledgments
	7. REFERENCES

