M-TEEVE: Real-Time 3D Video Interaction and
Broadcasting Framework for Mobile Devices

Shu Shi
Dept. of Computer Science
University of lllinois at
Urbana-Champaign

shushi2@illinois.edu

Klara Nahrstedt
Dept. of Computer Science
University of lllinois at
Urbana-Champaign

klara@illinois.edu

ABSTRACT

3D video is an emerging technology that promises immersive
experiences in a truly seamless environment. In this paper,
we present a new proxy-based framework to extend the 3D
video experience to mobile devices. The framework has two
major features. First, it allows audience to use mobile de-
vices to change rendering viewpoints and interact with 3D
video, and it supports different interaction devices to col-
laborate with each other. Second, the proxy compresses the
3D video streams before broadcasting to mobile devices for
display. A novel view-dependent real-time 3D video com-
pression scheme is implemented to reduce the requirements
of both transmission bandwidth and rendering computation
on mobile devices. The system is implemented on different
mobile platforms and our experiments indicate a promising
future of 3D video on mobile devices.

1. INTRODUCTION

Different from traditional multimedia applications, immer-
sive applications have multiple representations of data ob-
jects to users, based on their physical contexts and interac-
tions with devices, such as video, audio, graphics and so on.
Therefore, they provide more immersive experiences in ar-
tificially created virtual space. Our previous TEEVE (Tele-
immersive Environments for EVErybody) project [15] is a
good example. Multiple 3D cameras are used to capture and
reconstruct 3D video streams which are transmitted over
high speed network and displayed on the rendering side. By
mixing different 3D video streams together, remote users can
be immersed into a shared virtual space. Furthermore, dif-
ferent viewpoints of the video can be selected as in computer
graphics to obtain the best immersive experience.
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Inspired by the success of using Wii remote to interact with
3D video in our tele-immersive dance experiments [14], we
are paying more attention to using mobile devices in immer-
sive applications. As computing environments become more
ubiquitous, the recent development enables more physical
sensors equipped on mobile devices, such as touch-screen,
3-axis accelerometer, GPS , compass, camera, and so on.
These sensors not only enhance user interactions with the
related input methods, but also create more user-centric
applications. Moreover, as mobile devices become much
more powerful, they have already been capable of provid-
ing similar level of computing experience as desktops and
laptops. For example, many desktop 3D applications, es-
pecially games like Quake [2], have been already ported to
different mobile platforms.

This paper introduces how we implement TEEVE system on
mobile platforms. As a first step, we focus on the rendering
side only. The goal is to use mobile devices to receive, ren-
der, display and interact with 3D video streams, so that the
physical sensors embedded in mobile devices can be utilized
to provide better interactive experience. However, simply
porting desktop implementation to mobile platforms has a
serious bottleneck in network bandwidth. A bandwidth at
the Gbps level is required in TEEVE to maintain quality,
real-time and immersive communication [16], while the wire-
less network environment for general mobile devices can only
provide a few Mbps of bandwidth. Computational capability
is another issue to be considered. Computation resources of
mobile devices are still limited if there is no dedicated hard-
ware acceleration for graphics and multimedia processing.

We propose a prototype of M-TEEVE (Mobile TEEVE),
a proxy-based framework to solve these constraints. The
framework has two major features. First, it allows audience
to use mobile devices to change rendering viewpoints and in-
teract with 3D video. Two interaction methods, eye tracking
and orientation tracking, are studied. Moreover, the collab-
oration mode for different mobile devices to interact with the
3D video simultaneously is supported by proposing a general
control protocol. Second, the proxy framework compresses
the 3D video streams before broadcasting to mobile devices
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for display. A novel view-dependent real-time 3D video com-
pression scheme is implemented to reduce the requirements
of both transmission bandwidth and rendering computation
on mobile devices.

The typical example of the early work in immersive expe-
rience is CAVE [6], which uses three, four, five or six walls
covered by projected screens to form a room-sized cube. The
movement of the user inside CAVE is detected by electro-
magnetic, acoustic, and optical tracking technologies. The
scene projected on walls are changed dynamically according
to the physical movements detected. For more personal-
ized scenarios, dome-type of displays [3] are typically used
in various sizes. Infrared emitter of Wii remote [8] has been
popular for desktop virtual reality displays. However, these
approaches are based on desktop computing which has less
limitation in bandwidth and computation than mobile com-
puting.

The rest of the paper is organized as follows. Section 2 in-
troduces the overview of M-TEEVE. Details are discussed
in Sections 3 and performance is evaluated in Section 4.
Section 5 summaries related work and the final section con-
cludes the whole paper.

2. M-TEEVE FRAMEWORK

2.1 3D Video

In our system, 3D video is represented by multiple depth
image streams. The depth image is based on traditional 2D
image, but each image pixel does not only have the color
data, but also the depth data indicating the distance of the
object from the camera. As a result, each pixel has the 2D
position information in a image frame as well as the depth
information and can be used to reconstruct the 3D coordi-
nate in a 3D space. The depth image can be generated by
many methods. In our project, we use a 3D camera, which
is a group of four calibrated 2D camera (Figure 1(a)), to cal-
culate the depth by stereo triangulation. We also test the
commercial stereo camera, named BumbleBee 2 from Point
Grey (Figure 1(b)) [1], to achieve a better frame rate. Mul-
tiple 3D cameras are located in different positions to capture
all faces of the scene. Figure 1(c) shows how cameras are
placed in our project. It is important to calibrate all cameras
before capturing the scene. The calibration enables all pix-
els from multiple depth image streams can be reconstructed
in a global coordination system.

On the rendering side, depth image streams are reconstructed
and processed as point clouds. Therefore, 3D points can be
merged with the other 3D video streams or graphic envi-
ronments and manipulated as other graphic objects easily,
such as moving the video object (point cloud) to different
position, or change the viewpoint of viewing the video (we
call it rendering viewpoint in the rest of this paper). This
type of manipulation operation is considered as the interac-
tion between the video viewer and 3D video. In this paper,
we mainly focus on the interaction using mobile devices to
change the rendering viewpoint.

2.2 Architecture
The proxy based framework of M-TEEVE is shown in Fig-
ure 2. Based on the original TEEVE framework, a proxy is
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Figure 1: (a) 3D camera (c) BumbleBee 2 Stereo
Camera (a) 3D Video Capturing Environment

added on the rendering side. It receives 3D video streams
from the gateway server, collects the interaction control in-
formation from control units, adjusts the rendering view-
point of 3D video and other properties such as "pause” or
”stop” according to the control information, compresses 3D
video streams, and broadcasts the compressed stream to all
display units. The control unit is the device for users to in-
teract with 3D videos. It generates the interaction control
signals and sends these control information to the proxy.
In M-TEEVE framework, the control unit can be any in-
teresting user interaction method, for example, a computer
program running on another workstation which sends con-
trol information corresponding to the rhythm of a music. In
our research, we focus on using mobile devices with phys-
ical sensors as control units. The display unit receives the
compressed 3D video stream and displays the 3D video on
its own screen. It can be either the mobile device or the
workstation with a big screen. The control unit can be used
as the display unit as well although they are separated in
the framework architecture.

The proposed framework features in its generality and scal-
ability. It supports mobile devices as interaction and dis-
play devices while keeping compatible with previous desk-
top TEEVE implementation. Since the framework is not
designed for any specific interaction device, the system is
easily scaled to add support for new mobile devices.

2.3 Maobilelnteraction
We are targeting two interaction methods using mobile de-
vices, eye tracking and orientation tracking.

Eye tracking changes the rendering viewpoint by detecting
the movement of viewer’s eyes. It has been exploited in dif-
ferent systems of virtual and augmented reality. Two com-
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Figure 2: M-TEEVE Framework

mon approaches are to track either the physical location of
eyes or the point of gaze (i.e., where we are looking). Differ-
ent mechanisms for eye tracking result in different tracking
capabilities and require different software/hardware specifi-
cations. Compared with tracking the point of gaze which
requires additional hardware typically mounted to the head,
tracking the physical location of eyes can be achieved rela-
tively easily with a normal web camera which is equipped in
many mobile devices. By comparing the physical location of
eyes in different image frames, we can track the eye move-
ment in 2D plane (left-right, up-down) and these movement
will be translated into different control signals and adjust
the rendering viewpoint accordingly. For example, when I
move my eyes up, it usually means that I want to look at the
upper side of the video objects. Consequently, the rendering
viewpoint should also be lifted up and cover more upper side
area of the video object.

Orientation tracking changes the rendering viewpoint by de-
tecting the orientation of the device, which is achieved by
accelerometers. Accelerometers are usually used to detect
the hand movement and generate the motion vectors. Our
previous Wil remote interaction approach [14] is based on
these motion vectors. However, this approach is appropri-
ate for wii remote but not for the mobile device which has
the display screen and also acts as a display unit. For ex-
ample, the motion of the hand, which is intended to change
the rendering viewpoint, also brings the display screen away
from the user. Therefore, we propose orientation tracking:
the rendering viewpoint is changed according to the device’s
orientation, rather than the instantaneous motion. Figure 3
explains the idea. It correlates the device’s orientation with
the rendering viewpoint. For example, if the device is facing
up, the viewer has to look downward above the device to get
the best view. Then the facing up orientation can be linked
with the rendering viewpoint of looking downward above the
video objects.

However, although these methods provide natural and non-
invasive interaction, they both have deficiencies. Eye track-
ing is only effective to detect the eye movement in 2D plane.
The distance of two eyes can be measured to provide func-
tions of zoom in/zoom out, but no other complicated 3D
motions can be effectively recognized. Orientation track-
ing provides flexible navigation to any viewpoint direction
in 3D space, but lacks the capability of zoom in/zoom out
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Figure 3: Orientation Tracking

and moving in the 2D plane while keeping the orientation
fixed. As a result, it is important to combine two methods
together for collaborative interaction.

Collaborative interaction means multiple control units are
collaborating with each other to obtain a better interac-
tion experience. For example, the mobile device which is
equipped with both web camera and accelerometers can be
used to run eye tracking and orientation tracking at the same
time. The orientation of the device is used to decide the ren-
dering viewpoint direction in 3D space. While keeping the
orientaion fixed, eye tracking can be used for zoom in/zoom
out and 2D navigation.

2.4 3D Video Compression

Compression techniques on depth image have been studied
from many aspects. ATTEST [12] suggests using the stan-
dard video codec H.264 to compress both color and depth
frames. The proxy-based compression proposed by Penta
and Narayanan [11] and the skeleton-based compression in-
troduced by Lien [9] both use pre-defined models to reduce
data redundancy. Yang [16] proposed two general schemes
for intra-stream compression and Kum [7] studied the inter-
stream compression using reference stream. However, these
techniques either need off-line processing or fail to meet the
compression ratio required by wireless bandwidth.

Therefore, in M-TEEVE, a new view-dependent 3D video
compression scheme is used in the proxy to compress original
depth image streams before broadcasting to display units.
The main idea of the compression scheme is to compress
and transmit only useful data to mobile display units. As
the proxy receives the control signals from control units, it
knows exactly what the rendering viewpoint at the display
units. Given the rendering viewpoint of the 3D video, the
proxy pre-renders the 3D video scene for display units and
finds all 3D points which are visible at current viewpoint.
Other 3D points in the cloud are occluded or invisible at
current viewpoint and can be highly compressed or even
discarded if the bandwidth is limited. Moreover, for the
standalone display unit which can’t also act as the control
unit (e.g., a monitor), the proxy can only send the 2D im-



age of the pre-rendered scene for the display unit to display
directly. For more details of the view-dependent compres-
sion scheme, please refer to our previous work [13]. This
view-dependent compression scheme works only for 3D video
compression but not 2D video or 3D graphics, because 2D
video does not have the viewpoint property and 3D graphics
does not update the scene every frame.

3. IMPLEMENTATION
3.1 EyeTracking

Eye tracking is implemented using OpenCV computer vision
library [4] (Figure 4). Internally, viewer’s face is captured
with the 2D web camera equipped with the mobile device
and eyes are manually selected as the feature points at the
beginning. Lucas-Kanade algorithm [10] is used to calculate
the optical flow of consecutive frames in order to track the
movement of feature points. This is a well-known method as
the best combination of accuracy and speed for determining
optical flows. By calculating optical flows of eyes, this soft-
ware sensor provides not only directions of the movement
(such as left, right, up, or down) of eyes, but the distance
of the movement in 2-dimensional Cartesian coordinates. In
addition, by measuring the change in distance between two
eyes, the sensor tracks a user’s zooming motion to the dis-

play.

Figure 4: Eye Tracking

3.2 Orientation Tracking

Orientation tracking is achieved by using accelerometers,
which are currently widely equipped in many game devices
and mobile phones. Taking iPhone/iPod Touch as an ex-
ample, three accelerometers (Figure 5) are embedded, one
along each of the primary axes of the device. An accelerom-
eter measures changes in velocity over time along a given
linear path. So the combination of three accelerometers can
detect movement of the device in any direction. Besides, it
can also be used to track both sudden movements in the de-
vice and the device’s current orientation relative to gravity.

For iPhone/iPod touch [5], the orientation of the device can
be simply read from UIDeviceOrientation in UIDevice
class. However, the obtained value does not give the exact
orientation vector, but only indicates whether the device is
in landscape or portrait mode or whether the device is face
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Figure 5: Accelerometer Axes in iPhone [6]

up or face down. The accurate orientation vector has to be
extracted from raw data of accelerometers manually. In our
implementation, we use a high data sampling frequency and
a low-pass filter to reduce the influence of the sudden motion
on the accelerometer data and extract the vector of gravity,
which can be simply translated into the accurate orientation
vector.

3.3 Collaborative I nteraction

In our implementation, we propose an interaction protocol
for different control units to exchange control information
with proxy in order to achieve collaborative interaction. A
general protocol is crucial because the control information
from different interaction devices can be interpreted in the
same representation and the proxy does not have to care
about the detail features of various control units. Although
we are focusing on only two interaction methods, we expect
to include as much content in this protocol prototype as
necessary for future extension. The protocol is divided into
four main categories as listed in Table 1.

Table 1: Interaction Protocol

Category Description Example
ADMIN System initialization, au- connect,
thentication and registration login
CONTROL Adjust system parameters pause,
and video properties stop
NAVIGATE  Adjust the 3D video render-  zoom,
ing viewpoint rotate

ADVANCED Query protocols for testing dump
and debugging

3.4 Compression and Broadcasting

The flow of compression and decompression is elaborated in
Figure 6 [13]. However, in M-TEEVE framework, the com-
pression scheme could be further simplified due to the sep-
aration of control units and display units. Since the display



unit does not change the rendering viewpoint, the viewpoint
module in the decompression flow can be removed. As a re-
sult, the enhanced layer in the stream frame is not necessary
and the corresponding module in compression flow to gen-
erate enhance layer can also be removed.

For the network transmission, both push and pull modes are
supported. For the push mode, the proxy broadcasts the
compressed video stream to all display units. Since the cur-
rent network does not provide enough support for broadcast
and multicast, each display unit needs to register with the
proxy to receive the compressed video streams. The proxy
sends the packets to each registered display unit through
UDP unicast. For the pull mode, the display unit may re-
quest the specific video frame from proxy through TCP con-
nection. This mode is provided for some display units which
try to prevent the quality loss brought by the unstable UDP
transmission.

4. EXPERIMENTS

We have implemented M-TEEVE for Nokia N800 tablet and
Apple iPod Touch. Nokia N800 is a Linux based PDA and
has the front-facing camera for eye tracking. The ongoing
implementation will be on NVidia Tegra, which is greatly

enhanced in graphics rendering and video decoding. (Figure
7).

MNOKIA

9:18% PM

Figure 7: Experimenting Mobile Devices: Nokia
N800, Apple iPod Touch

Experiments indicate the impressive performance of our proxy-

based system in terms of transmission bandwidth and frame
rate of 3D video playback for mobile devices. Table 2 shows
the improvement achieved by Nokia N800 (TI OMAP2420
330 MHz CPU and 128MB memory, 802.11g Wi-Fi). In
the table, the display frame rate and the transmission band-
width of proxy-based M-TEEVE framework are compared
with original TEEVE implementation which is simply ported
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to mobile platform. As we can see obviously, the original
implementation has a poor performance in mobile devices.
The frame rate is still less than 1 fps even when only 3 out
of total 12 camera streams are transmitted and processed.
However in M-TEEVE framework, all 12 video streams can
be transmitted to mobile devices. Even when the 3D video
is displayed at the full screen resolution (no device in our ex-
periment has the display resolution larger than 1024*768),
the bandwidth requirement can still be easily achieved in the
current Wi-Fi network environment. The display frame rate
for the small display resolution can be further improved by
using a more powerful workstation as the proxy. However,
since the overall 3D video frame rate of our tele-immersive
applications remains around 10 fps [15], the frame rate of
M-TEEVE shown in the table is enough for existing appli-
cations.

Table 2: Performance of 3D Video Display on Nokia
N800

Display Frame Rate(fps) Bandwidth(bps)
Resolution M-TEEVE Orig M-TEEVE Orig
176*144 12.9 0.9 414K

320%240 11.6 0.9 742K 280K
640*480 7.6 0.8 1.2M (3 camera
1024*768 4.7 0.8 1.6M streams)

Another important performance issue is the control delay.
The control delay refers to the delay time from the behavior
of interaction is generated by user till the expected effects
appear on the display screen. The control delay can be di-
vided into two parts. The first part is the control detection
delay and the second part is the control transmission delay.
In our experiments, eye tracking incurs a large control detec-
tion delay since we notice that running eye racking algorithm
in mobile devices is very expensive. Figure 8 compares the
eye tracking performance on Nokia N800 and a Dell laptop
(Pentium M 1.7GHz, 1GB Memory). It takes on average 220
ms for the PDA to detect the eye movement on the captured
frames. Orientation tracking does not have this problem,
since it replies on the data provided by the hardware sen-
sors and no complicate algorithm is needed to analyze the
data. For the control transmission delay, since all control
signals are transmitted through network, the delay can be
variant from time to time. In our experiments, the average
network transmission delay time is no more than 150 ms.
However, the network delay could be increased under heavy
network load, which impairs the user interactive experience.
We will focus more on reducing the network delay in our
future research.

5. CONCLUSIONS

We proposed M-TEEVE framework in this paper to support
mobile devices in tele-immersive applications. The physical
sensors provide new 3D video interactive experience by mov-
ing eyes or changing the orientation of mobile devices. The
proxy-based framework does not only allow different mobile
devices to collaborate during interaction, but also reduce
the transmission bandwidth and rendering computation for
display devices. Experiments shows the great progress of
mobile performance in 3D video applications as well as the
deficiency of control delay, which we will try to improve in
our future work.
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