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ABSTRACT 
A novel dense depth map estimation algorithm is proposed in 
order to meet the requirements of N-view plus N-depth 
representation, which is one of the standardization efforts for the 
upcoming 3D display technologies. Hence, extraction of multiple 
depth maps is achieved from multi-view video. Starting from the 
piecewise planarity assumption of the scene, estimation of 3D 
structure of the patches, obtained through color-based over-
segmentation, is achieved by plane- and angle-sweeping for every 
view independently. Markov Random Field (MRF) modeling is 
utilized for each view in pixel-wise manner in order to relax and 
refine the estimated planar models while incorporating visibility 
and consistency constraints. In this algorithm, the fusion of 
multiple depth maps is performed by updating belief values on the 
observed nodes based on depth and color consistency during the 
refinement step. The proposed method handles untextured 
surfaces, as well as depth discontinuities at object boundaries, due 
to its initial modeling of the scene as piecewise planar regions. 
The experimental results illustrate reliability and the robustness of 
the proposed algorithm for different type of scenes. 
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1. INTRODUCTION 
The recent advances in 3-D extraction [2] and representation [2] 
technologies, as well as the introduction of auto-stereoscopic (or 
multiscopic) 3D displays in the market, have pioneered new 
alternatives to traditional television setups which involve free-
view TV and 3DTV.  In free-view TV, the TV-viewers freely 
select their viewing position by generating virtual views of the 
scene, whereas in a typical 3DTV, the perception of the third 
dimension, depth, is provided to the viewer. For both of these 
approaches, any mono-view video data should be converted into a 
3-D scene representation, so that 3D structure of the captured 
scene is available for these displays. Hence, the extraction of the 
3D content from multiple images becomes crucial for the 
perception of the third dimension.  
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Dense depth map representation [2] is one of the most popular 
and endeavored way of 3D representation of a scene. In this 
representation, a depth value is assigned for each pixel and a 
point-wise modeling is achieved where depth assignments could 
be utilized to map 3D points onto images to render arbitrary view 
points. Dense depth map estimation is an inverse problem of 3D 
extraction from 2D projections; thus, some assumptions, such as 
smoothness or color consistency, are required in order to obtain 
high quality models [3]. In that manner, many algorithms have 
been proposed in order to estimate depth maps that utilize stereo 
[3] or multiple views [4]-[7]. Most of these methods assign depth 
maps for only one image which is chosen as the reference view of 
the data set. However, video rendered from different viewpoints 
through only the reference view and its depth map, will be 
relatively poor in quality due to occlusions, especially when the 
view point moves away from the reference camera. Such 
occlusions result with disturbing visualization at the output of any 
3DTV system. In order to provide more satisfactory and realistic 
visualization, contribution from multiple views should be 
considered. Such an approach requires depth maps for all of the 
cameras in multi-view setups, which is denoted as N-view-plus-N-
depth representation [8]. This extension utilizes the maximum 
information belonging to multi-view video and is one of the 
standardization efforts to be utilized in the upcoming 3D display 
technologies. 
 
The extraction of several depth maps from multiple images have 
not received much attention so far; however, as video capture 
technology developed, multi-view content become available and 
the requirement for multiple depth maps has increased. There are 
mainly two approaches for the solution of this problem; the first 
one is utilizing stereo algorithms for pairs of images among 
multiple views and then merging the estimated depth maps for 
consistency and obtaining a final representation [8]. This 
approach is sub-optimal, since the extra information, especially 
for the occluded regions, from multiple views is discarded and 
depth maps are initially obtained with the similar problems as 
most stereo algorithms face. However, utilizing multiple images 
for the estimation of depth map of each camera as proposed in [9] 
and [10] reduces the ambiguities and handles occlusions by 
constraining multiple match probabilities. In both [9] and [10], 
MRF models are constructed and depth assignment is achieved by 
loopy belief propagation (BP). In addition, the visibility, which is 
a powerful tool for depth estimation is also considered in these 
methods. The utilization of visibility constraint provides 
robustness against large occluded regions and consistent, reliable 
depth maps for all of the images. 3D extraction presented in [11], 
utilizes a similar representation as N-view-plus-N-depth, however 
the images are captured by a video camera and consecutive frames 

ziglio
Typewritten Text
IMMERSCOM 2009, May 27-29, Berkeley, USACopyright © 2009  978-963-9799-39-4DOI 10.4108/ICST.IMMERSCOM2009.6223



are utilized as the multiple views. Thus, the problem is considered 
in the context of small base line and fusion of multiple depth 
maps via visibility is achieved for refining the initially estimated 
depth maps [11]. 
 
Although multiple depth map estimation algorithms provide 
satisfactory results, they still suffer from the untextured regions 
that might lead ambiguities. In this work, a novel segment-based 
approach is proposed followed by a refinement through belief 
propagation in pixel-domain in order to overcome these problems. 
The geometrical verification of untextured regions are difficult to 
achieve, since color variation at those regions is quite small; 
hence, the pixels may be mismatched no matter how many images 
are utilized during depth estimation. In the proposed method, 
however, those regions are treated as super-pixels, consisting of a 
group of pixels and matching is performed for all of the pixels 
belonging to the same segment. Such an approach enforces pixels 
to have depth values strictly (or parametrically) related with the 
neighboring pixels, namely a planarity constraint [12]. The 
relaxation of the depth map from the planarity assumption is 
achieved by applying belief propagation among pixels considering 
the depth consistencies, visibility and color match as well. 
 
This paper is organized as follows, Section 2 gives an overview of 
the algorithm by explaining the fundamental assumptions; in 
Section 3, the details of the region based plane- and angle-
sweeping dense depth map estimation methods are given, which is 
followed by the refinement algorithm based on belief propagation 
in Section 4. Section 5 is devoted to the experimental results and 
finally, the paper concludes in Section 6. 

2. OVERVIEW OF THE ALGORITHM 
The proposed algorithm estimates the depth maps for all images 
given in a multi-view sequence whose internal and external 
calibration parameters are provided at a certain time instant. The 
estimation is achieved in two steps as shown in Figure 1; in the 
first step, the scene is modeled via non-overlapping planar 
segments, which are obtained through over-segmenting each 
image by any color segmentation algorithm. The initial 3D models 
for these segments are estimated based on plane- and angle-
sweeping, which are valuable tools for relating multiple images of 
the same scene with each other. During sweeping operations, the 
segments are swept among different depth candidates and rotated 
around their centroids in order to obtain the best possible match 
based on their intensity similarity, while being mapped to multiple 
images. The sweeping operations are performed for all images of 
the multi-view data independently and the initial depth maps are 
obtained for each image. In the second step, in order to improve 
the depth estimate accuracy, the planarity assumption is relaxed 
by modeling each image as MRF and utilizing pixel-based belief 
propagation that takes into account the visibility of scene points 
between different views. Pixels are considered as the nodes of the 
MRFs, whose states correspond to different depth candidates, and 
the final assignment is achieved by iteratively updating the 
messages coming from the neighboring nodes in loopy belief 
propagation algorithm. In the proposed MRF, each node has 4 
neighbor nodes and the state probabilities are calculated 
according to the current depth maps and their correspondence 
reliability. After certain number of iterations, the states 
probabilities are updated according to the refined depth maps. 

This approach provides the reliability and the consistency 
between the depth maps of different views. In this manner, the 
refinement and updates are performed iteratively until 
convergence of the models.  

 
Figure 1: Flowchart of the proposed method 

The region-based algorithms [14]-[17] [22], which have been 
popular in last decade, mostly focus on dense depth estimation 
from stereo pairs. The proposed method extends the region-based 
matching approach to multi-view data and deviates from the 
general direction of those methods by modifying the algorithm 
“from pixel matching to segment correspondence” into “from 
segment correspondence to pixel matching”. The novelty of the 
proposed method is mainly due to treating each segment as super-
pixels to be matched and applying the iterative belief propagation 
refinement, which relaxes depth values within super-pixels and 
provides depth consistency. Assigning 3D models to each 
segment individually provides these pixels to have constrained 
depth values with their neighbors. Hence, the proposed algorithm 
provides reliable models, especially for the untextured regions, 
where matching could be problematic due to less texture 
variation. Proposed region-based approach assumes the scene to 
be piecewise planar; however, this assumption may not be valid as 
long as the scene involves roundly shaped, natural objects, which 
is a common case actually. Thus, the planarity models are relaxed 
via MRF-modeling in order to consider such objects as well.  

3. INITIAL DEPTH MAP ESTIMATION 
In this study, initial dense matching is provided by using a 
method, in which plane- and angle-sweeping is performed to 
estimate the planar model of the scene. In addition, special 
attention is devoted to overcome the difficulties resulting from 
large untextured regions and the effects of enlarging or shrinking 
of some regions due to rotation of cameras in a multiple-camera 
setup. The first main step of the proposed method is plane- and 
angle-sweeping of the segments in 3D scene during intensity 
matching process.  

3.1 Color Segmentation 
In order to exploit the piecewise planarity assumption for the 
scene, segmentation of some planar patches within this scene is 
required. According the coherence principle, it is assumed that 
the regions having similar color distribution should belong to the 
same object. This principle can be extended by stating that these 
regions should also have associated depth values, since they 
belong to the same object. In that aspect, the input views are over-
segmented into a relatively higher number of regions, which do 
not have any semantic meaning, whereas correctly defining 
homogeneity in terms of color distribution. For the segmentation 
of the input images, among various tested methods, mean-shift 
image segmentation algorithm [18] is preferred, since it is 
insensitive to gradient changes which might lead to false contours. 
The performance of the initial depth map estimation algorithm 
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depends on the segmentation quality; an erroneous segmentation 
(i.e. a region belonging to more than one semantic objects or 
planes) might result with inferior depth maps. Fortunately, these 
errors could still be handled in the pixel-based refinement step 
during the relaxation of these depth maps.  

3.2 Plane- and Angle- Sweeping 
The plane-sweeping approach has been introduced in [20], in 
order to match the object boundaries between multiple images. 
The main idea stems from the requirement of relating multiple 
edge images to each other and extracting depth information. In 
this manner, a surface in any view can be easily back-projected to 
3D space and by using the projection matrices, the corresponding 
locations of the surface in the other views are determined easily. 
The relations between images are defined via homographies, 
which also determine the projective transformations between 
planes. In order to map 3D surfaces to multiple images, the space 
is initially sampled with planes, which are parallel to each other 
along the principal direction of the reference view. The mapping 
between the cameras is achieved by homographic relations from 
3D planes to camera planes as illustrated in Figure 2 for an 
arbitrary camera. 
 
Sweeping through the depth planes provides the best depth values 
for each segment in the context of visual similarity [20]. The 
visual similarity is measured by summing the intensity differences 
between the pixels of the warped segment and the� pixels onto 
which the segment is mapped. In the relation below, the 
formulation�������segment Si in jth image is given explicitly, where 
x’ denotes the target pixels on which x in Si is mapped according 
to the homographies between camera j and k at corresponding to 
depth d, M denotes total number of different camera views, Ntotal 
corresponds to the total number of pixels mapped for Si. 
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In (4), it is observed that all of the pixels within a segment have 
contribution to the cost function; however, this may not be the 
case for partially occluded sub-regions within segments. In order 
to handle these cases, the visibility of the pixels should be 
considered which cannot be determined at the initial steps of the 
algorithm. 
 
However, in this method, before the estimation of the depth maps, 
such cases are handled by thresholding the intensity similarities of 
the pixels. It is assumed that if the intensity difference for a pixel 
is above a threshold, then it should belong to an occluded region 
and the contribution of that pixel to the cost function should be 
ignored. After the initial depth estimates are obtained, the 
visibility is modeled precisely, which will be explained in the 
upcoming sections. Plane-sweeping provides the segments to have 
a constant depth value (i.e. distance from the camera) for all of 
their pixels within its boundaries. This assumption is valid as long 
as the size of segments is considerably small. As the segment size 
increases, the constant depth assumption may be violated, 
especially for the slanted and complex surfaces in the scene. 

 
Figure 2: Each segment is mapped onto multiple images via 
homographies. 

In the proposed method, such surfaces are modeled by angle-
sweeping [17][21], based on the planarity assumption of the 
scene. In angle-sweeping, the segments are rotated around their 
centroids and the best similarity match is searched.  

3.3 Iterative Update of Planar Structures 
 
Up to this point, for the proposed algorithm, smoothness 
assumption is only enforced for the pixels belonging to the same 
segment via the planarity assumption, whereas smoothness 
between neighboring segments that belong to same object is not 
considered. In addition, the partially occluded segments are pre-
modeled by intensity thresholding without any visibility 
constraint. In this step, the initial depth estimates are refined via 
smoothness constraint between neighboring segments and the 
visibility during the warping of the pixels to the other views. The 
previous cost function in (1), which is based on intensity 
similarity, is improved by a smoothness term that takes depth 
differences of the pixels on the boundaries of the segments and 
the visibility of the pixels into account, as follows: 
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In (5), X’ is related to X by a homography depending on the 
angles at which the segments are rotated around their centroids 
and d, the corresponding depth location. DI denotes the estimated 
depth image; Vi is the set of visible pixel in Ir

k which is the 
reconstructed image of the kth camera from the jth camera. The 
reconstruction is achieved by warping all the segments in the 
corresponding image to the target image via the homographies 
between these two images. During such a reconstruction, some 
pixels in Ir

k might have more than one correspondence from the 
pixels on the source image. In this case, the pixel, closer to the 
camera, is rendered, which is actually the visibility constraint. The 
reconstructed image is stored in a Z-buffer [15] and the pixels on 
the top of this Z-buffer are utilized for the intensity filling in order 
to implement this constraint.  
 
The minimization of the cost function in (2) is an np-complete 
problem and there are different solution approaches, such as 
graph cuts [14] and belief propagation [16]. In the proposed 
method, a greedy search algorithm introduced in [15] is utilized. 
In this method, for each segment a search is performed in the 
depth space, considering the neighboring smoothness and the 
reconstruction quality of the warped images. Hence, the segments 
are enforced to have similar depth values with the neighboring 
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segments that have similar color distribution which provides 
smoother depth maps. 

4. REFINEMENT VIA BELIEF 
PROPAGATION 
 
Until this step, estimation of the depth maps has been performed 
independently for all the images in a multi-view camera setup. In 
addition, the scene is assumed to consist of non-overlapping 
planar structures in order to model untextured regions and object 
boundaries precisely. N-view-plus-N-depth representation requires 
the estimated depth maps to be consistent, that is, the points that 
are visible in multiple images should have the same depth values 
assigned in the corresponding depth maps. Thus, a refinement step 
is required to relax the planarity assumption and relate depth maps 
of different images with each other. In this study, a pixel-based 
belief propagation method is proposed for providing relaxation 
and consistency. Each view is modeled as a MRF whose nodes 
correspond to the pixels and the states of the nodes are the 
candidate depth values of the sampled space. In this model, each 
pixel is labeled (fx) to a depth value such that a predefined energy 
function is minimized. It is assumed that the neighboring pixels’ 
depth assignments are smooth almost everywhere, unless the 
nodes are at the object boundaries or at sharp discontinuities.  
 
For stereo problems, the energy functions in MRF models 
generally consist of two terms [23]; a compatibility term based on 
the observation cost Фi(fx), and a smoothness term between the 
states of the neighboring hidden nodes Ψ(fp). A similar 
formulation is also utilized in the proposed work with the formula 
given as below:   

∑∑
∈∈
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The compatibility term originating from the observations, is a 
function that is based on the color similarity and the depth 
consistency of the labeling. The color similarity, Ecolor, is 
calculated as below by the absolute difference of the intensities at 
the corresponding pixel locations for visible depth candidates.  
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In (4), xf
i is the pixel in ith camera onto which the pixel in the kth 

image is mapped via labeling (fx), Ii is the intensity image of the ith 
camera. The visibility can be easily modeled for this case without 
intensity thresholding by help of initial depth map estimates. The 
intensity match function is calculated for the depth labels which 
provide the current pixel to be visible. The visibility constraint is 
illustrated in Figure 3, for the corresponding depth hypothesis of 
point A in center camera (C3); the intensity function utilizes 
observations from 4th and 5th cameras, where the point is visible 
according to the estimated depth surface. Other cameras are 
discarded, since for that depth value point A is occluded in 1st and 
2nd cameras.   
 
The depth consistency, Edepth, for each pixel is measured by the 
absolute differences of the candidate depth value (fx) and the 
depth values at which the corresponding pixel is mapped onto, as 
follows: 

∑
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where Di corresponds to the current depth map estimate of the ith 
camera. Depth consistency provides the depth estimates to be 
similar for the pixels in different cameras that represent the same 
surface in the scene. Depth consistency and intensity similarity 
terms are combined with weighting factors to obtain the 
compatibility term, as follows: 
 

 )(.)(.)( xdepthdxcolorcx fEfEf λλ +=Φ   (6) 

 
In (6), λc and λd correspond to the weighting factors of the color 
and depth information. In the proposed algorithm, these factors 
change in time as the depth maps are refined. The updating 
strategy can be summarized as follows: initially, the color 
information is more reliable compared to the depth estimates; 
hence, the weighting factor for color term is higher. However, as 
the depth maps are refined, the reliability of depth information 
increases; hence, the weighting factor for the depth term is also 
increased. The smoothness term, which controls the neighboring 
state relations of the hidden nodes, is a linear function of the state 
differences between neighboring nodes, where z denotes the 
neighboring nodes of x: 
 

∑
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The depth estimates are refined by the maximization of the total 
energy function. In this study, min-sum belief propagation 
algorithm [23] is utilized in order to propagate messages to the 
neighboring nodes and update the states of the nodes. Belief 
propagation is an iterative method that passes messages in a local 
manner, and widely utilized in computer vision problems due to 
its convergence property. 
 
Each node sends messages to their neighboring nodes indicating 
the energy values at different state cases, iteratively. In the 
equation below, the belief update relation is given, where 

)( x
T

xz fm →
 denotes the message passed to node-x for the labeling 

of fx from node-z at iteration T. Finally, the assignment of the 
states is achieved by the minimization of the beliefs among f,�at 
each node individually. 
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Figure 3: Color similarity and depth consistency are measured for 
visible states of the pixels. 
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Belief update is considered for MRF of each view independently; 
however, MRFs of different views should be related to each other 
in order to obtain consistent depth maps. This relation is provided 
with a similar method as presented in [9]. The procedure can be 
summarized as follows: 

1. Calculate the energy function (3) for each 
node at each state by the current depth 
map estimates. 

2. Perform iterative belief propagation for 
each MRF model (each view) independently 
in order to refine the depth maps. 

3. Go to step 1 with the refined depth maps. 
4. Iterate the first three steps until the 

convergence of the refinement of the depth 
maps. 

Since the updates are performed in pixel domain for belief 
propagation, the relaxation of the planar structures which are 
estimated segment-wise is achieved. In addition, especially for the 
untextured regions, there is a possibility to trap in local minima 
which correspond to false depth estimations. However, the 
proposed method first constrains the pixels in these regions and 
enforces them to be strictly planar; later, relaxes them without 
violating the smoothness assumption.   

5. EXPERIMENTAL RESULTS 
The proposed algorithm has been tested on various multi-view 
data sets, such as Break-Dancing [19], Ballet [19] and Uli [24] , 
which are widely utilized in multi-view coding, rendering and 
depth estimation research. Sample frames of those sequences are 
illustrated in Figure 4. During these experiments, for each data 
set, 5 different views are utilized and the corresponding 5 depth 
maps are estimated. The initial images are independently 
segmented into approximately 500-1000 sub-regions by mean-
shift image segmentation algorithm [18]. 
 
The estimated initial depth maps for the reference camera of 
different data sets and the refined depth maps as a result of 
applying pixel-based belief propagation are presented in Figure 5, 
Figure 6 and Figure 7, respectively, where the darker intensities 
indicate the regions closer to the cameras. It can be easily 
observed that the erroneous regions in the initial estimates are 
corrected after the refinement step; in addition, the consistency of 
the depth maps is also achieved. When the refined depth estimates 
are analyzed, it is observed that the proposed method also handles 
large occlusions and untextured regions quite well. In Break-
Dancing and Ballet frames, the depth distributions at floor and 
wall do not involve spikes generally originating from texture 
similarities; hence, smooth depth variation is obtained. Thus, the 
advantage of the segment-based approach is obviously utilized to 
obtain robust and realistic depth maps.  
 
The quality of the resulting depth maps is also measured 
objectively by calculating the PSNR values of the reconstructed 
frames that are obtained from the depth maps and different 
viewpoints. It should also be indicated that higher PSNR values 
can be obtained via better frame rendering algorithms, whereas in 
this work, the algorithm presented in [25] is utilized during the 
rendering stage. PSNR values are calculated by discarding the 
occluded parts of the reconstructed images; thus, the comparisons 
based on PSNR might not yield the results with subjective visual 
quality. The proposed method is also compared to the work 

presented in [11] (median-fusion) for Break-Dancing sequence. 
The comparison is performed by PSNR calculation of the 
consecutive reconstructions, nth camera from (n+1)th camera, in 
order to minimize the ratio of the occluded regions. PSNR values 
are given in Table 1. According to these results, the proposed 
algorithm outperforms [11] and provides the best reconstruction 
for different camera positions.  
 
In Figure 8 and Figure 9, reconstruction results of the center 
camera views of Break-Dancer and Ballet sequences from the left 
and right neighboring cameras are illustrated. In that scenario the 
occluded regions are handled, thus PSNR values are calculated 
among the whole image. The quality of the reconstruction for 
Break-Dancing is 32.26 dB while it is 31.98 dB for the Ballet 
sequence. In Figure 9, the reconstructions from initial and refined 
depth maps are also compared, and the effect of refinement is 
clearly observed in terms of visual quality and PSNR measure.  

6. SUMMARY AND CONCLUSIONS 
A novel algorithm is proposed for the estimation of multiple depth 
maps from multi-view utilizing cues from each camera in order to 
provide consistency and reliability. The approach of “from 
segment correspondence to pixel matching” provides the 
untextured regions and object boundaries to be modeled correctly, 
while the smoothness of estimated depth maps is also satisfied. 
Moreover, associating depth maps with each other refines the 
estimated models and it is clearly observed that consistency 
between neighboring depth maps is crucial for extracting 3D 
information precisely. The experimental results show that the 
proposed approach is applicable to different kind of scenes, 
indoor or outdoor, and it is robust to texture and illumination 
variations. The future work is devoted to the utilization of 
temporal consistency in addition to spatial consistency among the 
estimated depth maps of different cameras in multi-view video 
that will provide smoother frame transition in rendered video 
sequences.  

Table 1: PSNR values for the reconstructions via three different depth 
map results 

PSNR 
Initial 
[17] 

Proposed  Median-Fusion 
[11]   

view-3 from view-2 30.68 31.41 30.98 

view-4 from view-3 31.86 32.53 31.68 

view-5 from view-4 31.20 32.13 31.77 

view-6 from view-5 31.13 31.59 31.43 

 

�
Figure 4: Typical frames from (a) Ballet, (b) Break-Dancing and (c) Uli 
multi-view data sets. 
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�
Figure 5: (a) Initial, (b) refined depth map for Break-Dancer. 

�
Figure 6: a) Initial depth estimate, (b) refined depth map for Ballet. 

�
Figure 7: a) Initial depth estimate, (b) refined depth map for Uli. 

 
Figure 8: (a) Original 4th camera view, (b) Reconstruction from two 
neighboring cameras (32.26 dB). 

 
Figure 9: (a) Original 4th camera view, (b) reconstruction via initial depth 
estimate (30.78 dB), (c) reconstruction with refined depth estimate (31.98 
dB), (d) difference map between the original frame and best 
reconstruction. 
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