
A distributed delivery model for 3D-video streams

Goran Petrovic
Eindhoven University of

Technology
Den Dolech, 5600 MB

Eindhoven, The Netherlands
g.petrovic@tue.nl

Dirk Farin
Eindhoven University of

Technology
Den Dolech, 5600 MB

Eindhoven, The Netherlands
d.s.farin@tue.nl

Peter H. N. de With
Eindhoven University of

Technology and LogicaCMG
Den Dolech, 5600 MB

Eindhoven, The Netherlands
P.H.N.de.With@tue.nl

ABSTRACT
3D-video systems allow a user to perceive depth in the viewed
scene and to interactively display the scene from multiple
viewpoints. This paper presents an architecture for the scal-
able delivery of 3D-video streams over IP-networks, where
we contribute in two aspects. First, we model 3D-video as a
multi-stream application, where each stream (or layer) car-
ries a single coded video signal or coded scene-description
data. Second, we propose an end-to-end delivery model for
3D-video applications, which leverages a distributed system
architecture to reduce the bandwidth and processing cost at
the server and the end-hosts.

Keywords
Multi-media streaming, 3D-video, Streaming-CDN

1. INTRODUCTION
The emergence of 3D-TV and immersive-teleconferencing

applications has spawned interest in building large multi-
camera recording systems [26]. In such a system, a number
of consumer-grade cameras are used to synchronously record
a scene from multiple viewpoints. In a multiple-perspective
viewing scenario [7], a scene can be displayed from different
viewpoints (angles) interactively and on-demand. A user
either selects a new viewpoint, or his movements are con-
tinuously tracked and the displayed content automatically
adjusted. Stereoscopic video is a special case of multiple-
perspective viewing, where the depth effect is rendered with
the help of a specialized display device (head-mounted glasses
or an auto-stereoscopic display). For brevity, we refer jointly
to both multiple-perspective and stereoscopic applications as
3D-video and make clear distinctions where appropriate.

The need to serve a large number of video streams for a
single 3D scene, coupled with the processing for interactive
viewpoint adaptation, may require new trade-offs in the de-
sign of multimedia servers, clients and delivery architectures.
This paper focuses on the end-to-end delivery architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMMERSCOM 2007,October 10-12, 2007, Verona, Italy.
Copyright 2007 ICST 978-963-9799-06-6 .

for 3D-video streaming. Specifically, we address the problem
of delivering 3D-video to a large and highly heterogeneous
client-base in today’s IP networks in a scalable fashion. In
doing so, we assume that suitable multi-camera recording
systems can be constructed, as exemplified in recent work
on this topic (e.g., [26] and the references therein). More-
over, our view is that the state-of-the-art video coding stan-
dards (MPEG-4/H.264) – although not specifically tailored
for the compression of 3D-video data – are at least read-
ily applicable to fast prototyping and building operational
streaming systems. Armed with these two assumptions, we
address the key design trade-off in 3D-video streaming ar-
chitectures: the balance between the computation load and
the network bandwidth. To this end, we propose a distrib-
uted delivery architecture where processing modules extend
a generic Streaming-CDN to incorporate various forms of
3D-video rendering. A Streaming Content Delivery Network
(Streaming-CDN) is a wide-area overlay network of stream-
ing servers/proxies, which provide control over the content
stored at individual network nodes as well as the traffic be-
tween the nodes.

The remainder of the paper is structured as follows. Sec-
tion 2 surveys the recent related work and puts our work
in context. Section 3 presents our model for the end-to-end
3D-video delivery architecture. In Section 4 we report on an
ongoing implementation of the 3D streaming and rendering
algorithms within the proposed delivery model. Section 5
highlights the main points of the presented work and sug-
gests directions for future work.

2. BACKGROUND AND RELATED WORK
When multiple synchronized cameras are used to record

a scene, interactive viewpoint changes can be directly sup-
ported by switching to the desired camera stream. How-
ever, to support continuous viewing while changing the view-
point, the number of physical cameras may grow impracti-
cally large. For this reason, most 3D-video systems render
virtual viewpoints at locations between the original view-
points. To ensure a seamless transition and a similar image
quality across all views, virtual views have to be automati-
cally constructed from a number of selected original camera
streams. View interpolation in the context of 3D-video refers
to a set of rendering algorithms which render virtual views
of the scene by blending a number of original views. These
algorithms either render virtual views directly, or assume
some form of scene description (e.g., a geometric model) in
order to generate those views more efficiently [21].

lacerda
Typewritten Text

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.IMMERSCOM 2007, October 10-12, Verona, ItalyCopyright © 2007 978-963-9799-06-6DOI 10.4108/ICST.IMMERSCOM2007.2153



a) Local rendering

Sender

Receiver

SCENE

DESCRIPTION

Viewpoint

control

IP Network

Cam 1 Cam 4Cam 1 Cam 3

Sender

Receiver

b) Remote rendering

SCENE

DESCRIPTION

Viewpoint

control

IP Network

Cam 1 Cam 4Cam 1 Cam 3

c) Hybrid local/remote rendering

IP Network

Sender

Receiver

SCENE

DESCRIPTION

Viewpoint

control

Cam 1 Cam 4Cam 1 Cam 3

Figure 1: Distributed 3D-video delivery models.

Different architectural options exist for implementing view
interpolation in 3D-video systems. In general, either the
sender renders the desired virtual viewpoints and streams
them to the receivers, or the sender transmits a number
of original streams to each receiver to perform the interpo-
lation. To better understand possible design options and
analyze the differences between them, we borrow a catego-
rization from computer graphics research. Martin [14] gives
an overview of the approaches for partitioning the rendering
load between the server and the clients in networked graph-
ics applications. We adopt the same general concept, but
confine ourselves to considering real-world 3D scenes as op-
posed to synthetic scenes. According to the classification
in [14], there are three broad categories of distributed ren-
dering approaches.

Local rendering (Fig. 1a). A delivery model where a 3D-
video sender transmits all available camera streams to the re-
ceiver is common in immersive teleconferencing systems [22],
which employ multi-camera set-ups at each participating
site. The design choice is dictated by the application – to
create a continuous immersive feeling, all available streams
must be rendered at the same time. Efficient compres-
sion [11], congestion control [16] and adaptive streaming
strategies [24] are all important to maximize the user Qual-
ity of Service (QoS). Our objective is to explore a different
application space. Instead of focusing on immersive (and
computationally expensive) scene rendering for a single user,
our main goal is to enable interactive exploration of a remote
scene for a large number of concurrent users.

Remote rendering (Fig. 1b). This delivery model is com-
mon in computer graphics for implementing complex ren-
dering tasks. The model is particularly useful if a client
does not have the resources to render the full model, while
rendering a simplified model is unacceptable. In this case, a
powerful remote server renders the model and sends the re-
sulting high-quality images to the client [9]. For bandwidth
efficiency, these images are compressed at a sufficient quality.

Hybrid rendering (Fig. 1c). Hybrid methods balance the
rendering load between the client and the server. The server
renders a part of the scene, while the client combines those
images with the locally rendered scene parts [25].

Discussion
The design choice among the alternative architectures is
application-dependent and illustrates a trade-off between
the computation load at the server (and the client) and the
network bandwidth. If the sender implements the view in-
terpolation, bandwidth and rendering costs at the receiver
will not be larger than in conventional 2D streaming. How-
ever, serving a large number of such requests concurrently
may quickly consume computational resources at the sender.
This is a serious concern for the scalability of 3D-video sys-
tems. Similarly, if the view interpolation is implemented at
the client, multiple video streams and scene description data
need to be delivered to the client in real-time. The associ-
ated bandwidth and rendering costs may be prohibitively
high for a large fraction of the today’s client base. Still,
this delivery model has already been considered for multi-
view stereosopic 3D-TV applications [15]. System optimiza-
tions to reduce the bandwidth cost include a combination of
unicast and IP multicast for the delivery of multiple view-
points [13]. The lack of global Internet support for IP-
multicast can be alleviated using a peer-to-peer overlay net-
work for multi-view video delivery [12]. Without view in-
terpolation, the set of available viewpoints in these systems
is limited to the original cameras. Our work is complemen-
tary in that our system proposal includes a view interpo-
lation module, which is efficient and flexible enough to be
employed at either the sender, or at an intermediate node
(e.g., proxy/peer), or at the receiver.

3. SYSTEM PROPOSAL

3.1 Selective and layered streaming
Our design decisions are based on two observations re-

lated to the 3D-video rendering process. First, the qual-
ity of interpolated virtual frames depends on the number
of original frames that are blended together, as well as the
availability of a suitable scene description. Second, in real-
world scenarios, some scene viewpoints will be transmitted
frequently, and others not at all, entirely driven by the user
interest. Therefore, an on-demand transmission scheme will
have a lower bandwidth cost than a flat scheme that trans-
mits the entire scene to every user. Furthermore, bandwidth
optimizations for partial scene transmission are best imple-
mented at run-time, for every user independently. For ex-
ample, a user navigating to a specific part of the scene will
receive the camera streams and geometry streams for that
part of the scene only.

Base on the above observations, we believe that 3D-video
streaming systems are best implemented using a layered con-
tent representation scheme [17]. In this representation, each
information layer conveys a single video stream or a scene-
description stream. The receiver can select the number of
different layers to receive, based on its preferences or ca-
pabilities. The layering concept is a well-known guideline
for the design of adaptive streaming systems (e.g., the RLM
scheme [18]), and has been considered for multi-view scene
transmission [12]. However, in view of the heterogeneity
in today’s IP-networks and very specific 3D-video render-
ing requirements, a pure end-to-end adaptive strategy may
not be sufficient. We assert that a distributed delivery ar-
chitecture of today’s Streaming-CDNs provides a suitable



3D

Streaming

Server

Content Provider

3D-Content Generation

Streaming CDN

Scene

modeling/

Compression

Cam 2

Cam 3

...

Cam n

Cam 1

Cam 2

Scene 1

Cam 1

Scene 2

...

Scene 3

Cam 3

...

Node D

Caching

Virtual View

Rendering

Node B

Streaming

Node C

Streaming

Cam 2

Scene 1

Cam 1

Scene 2

Cam 3

Cam 2 Node E

Caching

Virtual View

Rendering

Streaming

Streaming

Node A

Client A

Cam 2

Scene 1

Cam 1

Client B

Client C

Cam 3

Scene 2

Cam 2

Virtual views

Cam 2

Cam 3

Scene 2

Interactive

viewpoint control

Interactive

viewpoint control

Interactive

viewpoint control

Figure 2: Distributed 3D-video delivery architecture.

model for implementing large-scale 3D-video streaming sys-
tems. Therefore, we propose to extend a Streaming-CDN
with processing modules specific to 3D-video to incorporate
the remote (Fig. 1b) or the hybrid rendering architecture
(Fig. 1c) for the benefit of resource-constrained receivers.
Such extensions and benefits they provide with respect to
reducing the server bandwidth, the server processing load
and latency are described next.

3.2 Streaming-CDNs
Many of today’s large-scale commercial streaming systems

are implemented over Streaming Content Delivery Networks
(Streaming-CDNs) [3] [10]. A Streaming-CDN is a wide-
area overlay network of streaming servers/proxies. Being
privately managed, Streaming-CDNs provide control over
the content stored at individual servers as well as the traf-
fic between them. Their distributed architecture allows to
apply network-wide load balancing, replication, caching and
pre-fetching strategies, otherwise impossible with central-
ized cluster architectures. The benefits are direct for both
the content providers and the clients. For providers, Streaming-
CDNs provide significant bandwidth savings. Instead of
serving one stream per client, a single stream needs to be
sent to a Streaming-CDN, redirecting every incoming client
to one of its servers. Ideally, the server will be selected ac-
cording to the network metrics such as RTT to the client,
topological proximity, or congestion level, thus improving
the QoS delivered to the client [10]. In addition to generic
functions (pre-fetching and caching), some Streaming-CDN
servers implement stream-specific processing (transcoding
and optimized packet scheduling) as a part of the client
adaptation strategy [23].

3.3 3D-video over Streaming-CDNs
Our proposed three-tier architecture for the delivery of

3D-video streams over IP-networks is illustrated in Figure 2.
It consists of a 3D-video server, a network of intermediate
nodes, and the clients. The design is based on a generic
Streaming-CDN and is extended with 3D-video rendering
modules. In the sequel, the most important system aspects
are discussed.

3.3.1 3D-Server
The 3D-server is a part of the content provider’s network,

located at the point of connection to a Streaming-CDN. Its
back-end is functionally decomposed into scene recording,

3D-scene modelling and compression stages. For ease of ex-
position, we assume that the scene is recorded with an array
of static, fully calibrated cameras. The raw camera frames
and their calibration data are first processed at the scene
modelling stage, which is discussed next. The compression
of the resulting scene representation is covered in Section 4.

Scene modelling for 3D-video refers to a range of algorith-
mic approaches for the recovery of physical scene descrip-
tion from its camera recordings. These include extraction of
scene geometry (3D-surfaces), surface reflectance properties
and modelling of light sources [20]. We consider scene geom-
etry extraction only, as our focus is multiple-perspective
viewing under original, static lighting. Depending on the
scope of geometric information recovered for a scene, the
models can be broadly classified as local or global. Global
approaches reconstruct a geometric model consistent with
all input cameras and continuously update it over time (e.g.,
dynamic 3D-wireframe mesh models). Due to a high compu-
tation complexity, current global systems focus on individual
scene objects [21]. Local geometric models only describe the
scene from a subset of viewpoints (e.g., depth maps, inter-
camera occlusion relationships). These reconstruction meth-
ods have a lower complexity, and the hardware for certain
local geometry measurements such as depth, is already avail-
able [5]. A local, view-dependent geometric model matches
well with selective scene transmission model. Therefore, our
resulting 3D-video scene has a multi-stream representation,
consisting of the video streams and the local scene-geometry
streams.

3.3.2 Distributed 3D-video delivery
A Streaming-CDN for 3D-video delivery is an overlay net-

work of nodes that cache, process and forward 3D-streams
(Fig. 2 illustrates a simplified architecture). In this subsec-
tion, we attempt to apply a Streaming-CDN to the design
of our 3D-video streaming system. It will become apparent
that this approach will yield a number of benefits for the
server and for the clients.

Streaming-CDN connects to a 3D-video server via one of
its edge nodes (Node A). This node serves as the entry point
for every 3D-stream requested by a client connected to one
of the streaming edge-servers (Nodes D and E ). For clarity,
we consider a small session with only three clients concur-
rently navigating a region of the scene spatially delimited by



Cameras 1 and 3.

Clients first join the session by sending a request to the
3D-server. The server replies with a list of available cam-
era viewpoints, their calibration parameters and associated
geometric description. After that, the client is redirected to
a suitable streaming edge-server (Client A and Client B to
the Node D, whereas Client C is redirected to Node E ). The
streaming edge-servers act as agents for their clients, fetch-
ing the additional streams as needed to support client inter-
action with the scene. Here, we assume that the extracted
scene-geometry streams provide enough local information for
the view interpolation algorithm to support a continuous
blending between the corresponding original streams.

Reducing the 3D-server bandwidth cost. Clients A and
B are navigating the scene region between Camera 1 and
Camera 2, while Client C is currently at a position between
Camera 2 and Camera 3. The 3D-server transmits the re-
quired video streams and their associated geometry streams.
Note that each stream is transmitted only once, while the
Streaming-CDN replicates the streams where needed. This
way, the server-bandwidth cost depends on the number of ac-
tive viewpoints, but is independent of the number of clients.
Effectively, this scenario illustrates a multicast delivery im-
plemented at the application layer. In view of the large
number of streams compared to conventional 2D streaming,
the benefits of efficient delivery schemes in 3D systems will
be substantial.

Accommodating client heterogeneity. The remote render-
ing (Section 2) is an effective method to enable 3D-video
on resource-constrained devices. Streaming-CDNs and their
distributed architecture provides the opportunity to imple-
ment this approach in a scalable fashion. In this case, each
node only handles a fraction of the total number of viewers.
The main idea is to equip a number of streaming edge-servers
with specialized rendering facilities and configure them for
on-demand remote rendering. These servers can be strate-
gically placed in a network – e.g., at the gateway between
the network’s wired and wireless parts. In Figure 2, Node D
performs the viewpoint adaptation by remote rendering on
behalf of the Clients A and B.

Enhancing client QoS. Stream propagation through a well-
managed Streaming-CDN is possible with a lower delay and
higher reliability than in the public Internet [10]. Further-
more, a proper selection of the streaming edge-server results
in a low latency between the edge server and the client. Due
to the interactivity requirement, QoS in 3D streaming sys-
tems has the latency as an important parameter. Finally,
the view interpolation algorithms, requiring a synchronized
access to multiple streams, may significantly benefit from
bounding the delay jitter.

In conclusion, our proposed architecture is efficient in band-
width because of the multicast delivery aspect, and the selec-
tive streaming driven by the clients. Moreover, the network
is modified with an extra stream-processing function, i.e.,
view interpolation, which is facilitated by distributing ren-
dering capabilities to specific network nodes.

Internet

Unicast/

Multicast

RECEIVER

View

Rendering/

Auto-

stereoscopic

3D display

MPEG-4

Decoder

MPEG-4

Decoder

RTP/RTCP

De-Packetizer

RTP/RTCP

De-Packetizer

RTP/RTCP

Packetizer

RTP/RTCP

Packetizer

SENDER

Depth/Right

view encoder

MPEG-4

Left view

encoder

MPEG-4

Figure 3: Example of a dual-layer stereoscopic video
streaming system.

4. IMPLEMENTATION
In this section, we describe our implementation of the

main building blocks of a 3D-video streaming system. The
processing modules and protocols are designed to support
an integration into a distributed delivery model of Section 3.
More specifically, we present our choices for the data repre-
sentation format, compression scheme, transmission proto-
cols and the rendering algorithm. We emphasize that our
implementation is based on ongoing work and is not yet as
complete as the architecture presented in the previous sec-
tion.

4.1 3D-Video format
3D-Video in our experimental system is represented as

a set of original camera streams and depth maps - one for
each original camera [27]. For every pixel in a video frame,
a depth map conveys the distance between the camera plane
and the nearest surface point in the scene. Using a single
video frame and its depth map, multiple nearby perspec-
tive views can be rendered by re-projecting the pixel values
driven by the depth map. For an overview of algorithms for
automatic extraction of depth maps from video frames, the
reader is referred to a recent survey [21].

4.2 Content coding
We currently rely on established coding standards to com-

press the data for transmission. Both the video streams and
the associated depth streams are encoded using an MPEG-4
Simple Profile (SP) encoder. All camera and depth streams
are encoded independently from each other. We acknowl-
edge that in certain cases a higher compression gain would be
possible if an inter-stream compression was performed in ad-
dition. This would be particularly effective for dense multi-
camera systems, where the recordings of neighboring cam-
eras largely overlap. However, the gain decreases for sparser
camera arrangements [6]. A standardization activity inves-
tigating these issues is currently underway [21]. Once more
efficient coding schemes become available, we will easily in-
corporate them in our layered transmission model. At the
time of writing, we investigate the applicability of MPEG-4
AVC to our proposal. Lastly, an independent coding ap-
proach has its own benefits, especially from the system per-
spective. It allows a parallelization of the encoding process
and a distribution over multiple processors [15]. Equally im-
portant is the backward compatibility with the legacy broad-
cast systems in the Internet. Namely, live streaming systems
commonly employ real-time hardware encoders at the server
back-end, and forward the compressed bitstreams to clients
directly [3]. Therefore, the 3D-video representations can be
supplied to the deployed coding systems as multiple inde-
pendent streams.



View

Interpolation

/

GPU

Rendering

Framebuffer

readout

SENDER

RECEIVER

Interactive Viewpoint Change

MPEG-4

Encoder

(SP/ASP)

RTP/RTCP

Packetizer

(RFC 3016)

RTP/RTCP

De-Packetizer

(RFC 3016)

MPEG-4

Decoder

(SP/ASP)

Internet

(Unicast)

Display

(2D)

Left view

Right view

Virtual views

Depth map /

Occlusion regions

Figure 4: Multiple-perspective video streaming.

4.3 Layered streaming
For the real-time transport of 3D-video streams over IP

networks, we employ unreliable transport service (UDP)
and application-layer packetization [19]. According to IETF
recommendations for the carriage of MPEG-4 elementary
streams over IP networks [8], multiple encoded streams are
transmitted as separate RTP sessions, i.e., using different
RTP/RTCP ports. Therefore, our experimental 3D-video
system is a multi-stream application where each compressed
video/depth stream is transmitted in a separate RTP session
(Fig. 3). The receiver application relies on RTP transport
services (sequence numbers and time stamps) to ensure a
synchronized decoding and display of the multi-stream data.

4.4 Virtual view rendering
The view interpolation algorithm integrated into our sys-

tem [4] enables a continuous horizontal blending between
pairs of original cameras. For each pair of adjacent cam-
eras, the input to the algorithm includes: (1) the left cam-
era stream, (2) the right camera stream, (3) per-pixel depth
maps, and (4) occlusion information (pixels flagged as vis-
ible to one of the cameras only). The algorithm creates a
virtual view at an arbitrary position between the cameras
by weighting their respective contributions at every pixel
location (Fig. 4). To achieve real-time performance, the
view interpolation module partly relies on hardware acceler-
ation, i.e., it uses the OpenGL API [1] to take advantage of
the hardware-rendering capabilities of today’s PC graphics
cards.

4.5 Streaming prototype
Our prototype implementation demonstrates two aspects

of 3D-video streaming: (a) stereoscopic video streaming, (b)
monoscopic video streaming with remote multiple-perspective
rendering.

For the implementation of stereoscopic video streaming,
two layers are instantiated - either one video stream and its
depth stream, or both the left and the right camera streams
(Fig. 3). The streaming experiments were performed on a
high-speed LAN in our department. We achieve real-time
end-to-end system performance with both half-SDTV (Stan-
dard Definition broadcast TV, 720×288) and VGA-type res-
olution sequences (e.g., 800×600), while running the receiver
application on a 3GHz desktop PC. The depth effect while
viewing a real-world 3D scene is compelling with an auto-
stereoscopic display [2].

Our current multiple-perspective streaming prototype is
a remote rendering application in which the sender creates
the interpolated views, compresses and streams them to the
client in real time (Fig. 4). The depth maps and occlusion
layers are computed in a pre-processing step and stored at
the sender. The receiver navigates a remote scene by moving
the mouse pointer inside of its video display window. The
sender renders and streams a sequence of original and virtual
frames, matching the client viewing parameters. As only a
monoscopic video stream is transmitted, the receiver ap-
plication can be any media-player with streaming support.
The viewpoint change is effective with a delay of 500ms
(mainly the buffering delay in the player software), thereby
demonstrating the interactive properties of our system.

5. CONCLUSIONS AND FUTURE WORK
We have proposed a scalable model for the delivery of

3D-video streams over IP networks, leveraging a Streaming-
CDN. The model accommodates heterogeneous clients by
implementing 3D-video-specific functions in a distributed
fashion. In our model, view interpolation can be imple-
mented either at the server, or at an intermediate node, or at
the client. To support such a delivery model, a layered con-
tent representation and streaming framework is developed.
The layering in our system allows to aggregate the selected
data at the node which performs the actual processing. Our
current operational prototype demonstrates that highly het-
erogeneous clients can coexist in the system, ranging from
auto-stereoscopic 3D displays to resource-constrained de-
vices.

Our current implementation of multiple-perspective stream-
ing assumes that all the data required for view interpola-
tion is locally available. A natural extension is to explore
the scenario where view interpolation is performed on the
data streamed from a remote location. In the context of the
implemented view interpolation scheme, two video streams,
one depth stream and a sequence of occlusion masks would
have to be delivered to the view interpolation process in real-
time. As our model assumes best-effort IP networks and an
unreliable transport protocol (UDP), an interesting avenue
for future research would be to explore adaptive streaming
algorithms. The adaptation in a 3D-video system will have
to apply optimizations that cut across its multiple layers of
information.



6. REFERENCES
[1] OpenGL. http://www.opengl.org/.

[2] SeeReal Technologies. http://www.seereal.com/.

[3] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold,
A. F. Lippman, and Y. A. Reznik. Video coding for
streaming media delivery on the internet. IEEE Trans.
Circuits & Systems Video Technol., 11(3):269–281,
Mar. 2001.

[4] D. Farin, Y. Morvan, and P. de With. View
interpolation along a chain of weakly calibrated
cameras. In IEEE Workshop on Content Generation
and Coding for 3D-Television, June 2006.

[5] C. Fehn, P. Kauff, M. O. de Beeck, F. Ernst, W. A.
IJsselsteijn, M. Pollefeys, L. V. Gool, E. Ofek, and
I. Sexton. Evolutionary and optimised approach on
3D-TV. In Proc. Int. Broadcast Conf. (IBC), pages
357–365, Sept. 2002.

[6] M. Flierl, A. Mavlankar, and B. Girod. Motion and
disparity compensated coding for multi-view video.
Submitted to IEEE Transactions on Circuits and
Systems for Video Technology, Special Issue on
Multiview Video Coding, 2007.

[7] R. Jain and K. Wakimoto. Multiple perspective
interactive video. In Proceedings of the International
Conference on Multimedia Computing and Systems,
pages 202–211, May 1995.

[8] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, and
H. Kimata. RTP payload format for MPEG-4
audio/visual streams. RFC 3016, IETF, Nov. 2000.

[9] D. Koller, M. Turitzin, M. Levoy, M. Tarini,
G. Croccia, P. Cignoni, and R. Scopigno. Protected
interactive 3-D graphics via remote rendering. ACM
Trans. Graphics, 23(3):695–703, 2004.

[10] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong,
R. Kleinberg, B. Mancuso, D. Shaw, and D. Stodolsky.
A transport layer for live streaming in a content
delivery network. Proceedings of the IEEE,
92(9):1408–1419, Sept. 2004.

[11] S. Kum and K. Mayer-Patel. Real-time multidepth
stream compression. ACM Transactions on
Multimedia Computing, Communications, and
Applications, 1(2):128–150, May 2005.

[12] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp.
Interactive transport of multi-view videos for 3DTV
applications. Journal of Zhejiang University: Science
A, 7(5):830–836, 2006.

[13] J. Lou, H. Cai, and J.Li. A real-time interactive
multi-view video system. In Proceedings of the 13th
annual ACM international conference on Multimedia,
pages 161–170, Nov. 2005.

[14] I. Martin. Hybrid transcoding for adaptive
transmission of 3d content. In IEEE International
Conference on Multimedia and Expo (ICME), pages
373–376, July 2002.

[15] W. Matusik and H.-P. Pfister. 3D TV: A scalable
system for real-time acquisition, transmission, and
autostereoscopic display of dynamic scenes. In Proc.
Comp. Graphics (SIGGRAPH’04), pages 814–824,
Aug. 2004.

[16] D. E. Ott and K. Mayer-Patel. Coordinated
multi-streaming for 3D tele-immersion. In Proceedings
of the 12th annual ACM international conference on
Multimedia, pages 596–603, Oct. 2004.

[17] G. Petrovic and P. de With. Near-future streaming
framework for 3D-TV applications. In IEEE
International Conference on Multimedia and Expo
(ICME), pages 1881–1884, July 2006.

[18] S. R.McCanne. Scalable compression and transmission
of internet multicast video. Ph.D. dissertation,
University of California Berkeley, 1996.

[19] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for real-time
applications. RFC 3550, IETF, July 2003.

[20] H. Shum, S. Kang, and S. Chan. Survey of
image-based representations and compression
techniques. IEEE Trans. Circuits & Systems Video
Technol., 13(11):1020–1037, Nov. 2003.

[21] A. Smolic and P. Kauff. Interactive 3D video
representation and coding technologies. Proceedings of
the IEEE, 93(1):98–110, Jan. 2005.

[22] H. Towles, S.-U. Kum, T. Sparks, S. Sinha, S. Larsen,
and N. Beddes. Transport and rendering challenges for
multi-stream 3D tele-immersion data. In NSF Lake
Tahoe Workshop on Collaborative Virtual Reality and
Visualization, Oct. 2003.

[23] S. Wee, J. Apostolopoulos, W. Tan, and S. Roy.
Research and design of a mobile streaming media
content delivery network. In IEEE International
Conference on Multimedia and Expo (ICME), 2003.

[24] Z. Yang, B. Yu, K. Nahrstedt, and R. Bajcsy. A
multi-stream adaptation framework for bandwidth
management in 3D tele-immersion. In 16th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), May 2006.

[25] I. Yoon and U. Neumann. Ibrac: Image-based
rendering acceleration and compression. In
Eurographics, volume 19, pages 321–330, 2000.

[26] C. Zhang and T. Chen. A self-reconfigurable camera
array. In Proceedings of the Eurographics Symposium
on Rendering, June 2004.

[27] L. Zitnick, S. B. Kang, M. Uyttendaele, S.Winder, and
R. Szeliski. High-quality video view interpolation
using a layered representation. ACM Trans. Graphics,
23(3):598–606, Aug. 2004.




