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Learning from Experts in Cognitive Radio
Networks: The Docitive Paradigm

Ana Galindo-Serrano, Lorenza Giupponi, Pol Blasco and Mischa Dohler

Abstract—In this paper we introduce the novel paradigm of
docition for cognitive radio (CR) networks. We consider that
the CRs are intelligent radios implementing a learning process
through which they interact with the surrounding environment
to make self-adaptive decisions. However, in distributed settings
the learning may be complex and slow, due to interactive decision
making processes, which results in a non-stationary environment.
The docitive paradigm proposes a timely solution based on
knowledge sharing, which allows CRs to develop new capacities
for selecting actions. We demonstrate that this improves the
CRs’ learning ability and accuracy, and gives them strategies
for action selection in unvisited states. We evaluate the docitive
paradigm in the context of a secondary system modeled as
a multi-agent system, where the agents are IEEE 802.22 CR
base stations, implementing a real-time multi-agent reinforcement
learning technique known as decentralized Q-learning. Our goal
is to solve the aggregated interference problem generated by
multiple CR systems at the receivers of a primary system. We
propose three different docitive algorithms and we show their
superiority to the well know paradigm of independent learning
in terms of speed of convergence and precision.

Index Terms—Cognitive radio, aggregated interference, multi-
agent system, decentralized Q-learning, docitive learning.

I. INTRODUCTION

A cognitive radio (CR), as defined in [1], is an intelligent
wireless communication system capable of using methodo-
logies of understanding and learning to adapt its internal states
and operating parameters to the dynamics of the surrounding
environment. The most common application of this technology
is of course the exploitation of the spectrum resource for
a more efficient usage. Thanks to the advances in multiple
disciplines, such as machine learning, this technology is indeed
feasible today.

The artificial intelligence community proposes in literature
numerous cognitive approaches capable of finding optimal
decision policies in dynamical scenarios, characterized by
only one decision maker, i.e., single-agent systems. One of
them is reinforcement learning (RL), a particularly powerful
learning technique that does not require environment models
and allows nodes to take actions while they learn. Among
reinforcement techniques, Q-learning [2] has been especially
well studied, and possesses a firm foundation in the theory
of Markov decision processes (MDPs). However, the wireless
setting in general and the CR scenario in particular are not
always characterized by a node centralizing the radio resource
management (RRM) decision process, as it is the case e.g.,
for traditional cellular networks.
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As a matter of fact, there has been lately a clear trend
towards decentralizing RRM functionalities, a representative
example being the IEEE P1900.4 standardization effort [3].
Such a decentralized setting can be mapped onto the frame-
work of a multi-agent system, and modeled by means of a
stochastic game, of which a MDP would be a special case
considering a single agent. Q-learning can still be applied in
this case, in the form of the so called decentralized Q-learning.
Each node learns here independently from the other nodes,
which are assumed to be part of the surrounding environment
(i.e., paradigm of independent learning). However, with such
an hypothesis, the environment is no longer stationary, since
it consists of other agents who are similarly adapting. This
may generate oscillating behaviors that not always reach an
equilibrium and that are not yet fully understood - even by
machine learning experts. The dynamics of learning may be
long and complex in terms of required operations and memory,
with complexity increasing with an increasing observation
space. A possible solution to mitigate this problem, speed up
the learning process and create rules for unseen situations, is
to propose expert knowledge exchange among learners [4][5].

Even if the process of learning has received a considerable
attention from various research communities in the past, the
process of knowledge transfer, i.e., teaching, over the wireless
medium, however, has received fairly little attention to date. In
human society, one learns from others’ examples, experiences
and activities by taking advice or consulting with each other.
In machine learning words, people cooperate to learn. As a
result of that, similarly to human beings, CRs are not required
to learn everything from their own experiences, but in case
of being unable to represent correctly their knowledge or
to observe the surrounding environment, they can exchange
expert information with peers in order to improve the learning
process. We thus aim at introducing an emerging framework
referred to as docitive radios, from “docere” = “to teach” in
Latin, which relates to radios (or general networking entities)
which teach other radios by coordinating with them. This
paradigm will be shown to capitalize on the advantages but,
most importantly, mitigate major parts of above-mentioned
drawbacks of purely CRs.

Whilst applicable to a variety of decentralized problems in
communications, in this paper we will focus on managing the
aggregated interference at the primary receiver of a digital
television (DTV) system generated by multiple IEEE 802.22
wireless regional area networks (WRAN) cells. We will map
this scenario onto a multi-agent system, whose objective is
that the multiple agents distributively learn an optimal strategy
to control the aggregated interference at the primary receivers
generated from the secondary systems and to maintain it under
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a given threshold. We propose a solution to this problem
through a form of multi-agent RL, known as distributed Q-
learning. We will apply said docitive techniques to demonstrate
the superiority of docitive over cognitive techniques already
introduced in [6].

The outline of the paper is organized as follows. In Sec-
tion II, we describe the system model. In Section III we
present the distributed Q-learning algorithm where no docition
is considered and the nodes follow the well known paradigm of
independent learning. Then we modify this algorithm in order
to introduce different docitive techniques, which are aimed at
improving the precision and stability of the learning process.
Section IV describes the simulation scenario and Section V
presents relevant simulation results showing the superiority
of docition with respect to classical cognition. Finally, we
summarize the conclusions in Section VI.

II. SYSTEM MODEL

Following the IEEE 802.22 standard specifications, our
primary system is characterized by a DTV broadcasting station
(hereafter primary base station (BS)) located in the center of
a circular cell, and several DTV receivers (hereafter primary
receivers) randomly located in the DTV cell coverage area. In
the TV bands the primary receivers do not transmit, and only
receive signals from the primary BS with an omnidirectional
antenna. Therefore the secondary WRAN cells have to be
placed far enough from the primary receivers so that they do
not cause harmful interference to the primary receivers.

The secondary WRAN cell, with radius rSS , consists of
a centralized architecture with point-to-multipoint wireless
air interface whereby a secondary BS manages the medium
access of the associated M secondary users. Since the IEEE
802.22 standard is orthogonal frequency division multiple ac-
cess (OFDMA)/ time-division-multiple-access (TDMA) based,
we consider the simplifying hypothesis that the WRAN BS
assigns at any time all the available OFDMA resource blocks
to one secondary user, which results in only one secondary
user transmitting at any time in each WRAN cell.

Considering that the secondary system is unaware of the
position of the passive primary receivers, the secondary users
have to operate far enough from the primary BS in order
not to cause harmful interference with the primary system.
In [7] a DTV protection contour around the primary BS is
defined as a geographical limit where the primary receivers
must not receive harmful interference. Based on [7][8], the
protection contour is at RPC = 134.2 Km from the primary
BS. In addition to this, in [7][8], also a keep-out region is
defined, as a protection region where secondary users are not
allowed to opportunistically transmit. This protection region
is characterized by different radius, depending on the number
of interfering secondary cells and on whether upstream or
downstream transmission is considered. Our approach differs
from those encountered in literature, in fact, to ease the
future deployment of a secondary system, we consider that
the radius of the keep-out region RKO is the same as the
one of the protection contour, so that RKO = 134.2 Km. In
addition, we propose a smart algorithm for secondary users
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Fig. 1. Docitive scenario composed by a DTV cell and WRAN cells.

power allocation, capable of guaranteeing that the aggregated
interference at the primary receivers is maintained below a
given threshold. This scenario is depicted in Figure 1, where
the secondary system consists of N =

∑
n Ni secondary cells

located around the boundary of the the keep-out region. In
the following we will refer to the tangent point where the
ith secondary BS coverage area and the protection contour
intersect, as the control point Xi. It is assumed that the ith
secondary BS is capable of measuring the interference at its
control point Xi.

III. LEARNING AND DOCITION

The characteristics of the CR network are as follows: (1)
the intelligent decisions are made by multiple intelligent and
uncoordinated nodes; (2) the nodes partially observes the
overall scenario; and (3) their inputs to the intelligent decision
process are different from node to node since they come from
spatially distributed sources of information. This CR network
can be easily mapped onto a multi-agent system, where each
secondary BS is an independent intelligent agent. To formulate
a mathematical framework for such an environment, we have
to account for: (1) a state space that is the product of the
individual agents’ states; (2) state transitions that are functions
of joint actions taken by the agents; (3) revenue to individual
agents that depend on joint actions as well. The theoretical
framework is found in the so called stochastic games [9]
described by the five-tuple {N ,S,A,P,R}, where:

• N is the set of agents, i.e., the secondary BSs, indexed
1, 2, · · · , n;

• S = {s1, s2, · · · , sn} is the set of possible states;
• A is the joint action space defined by the product set

A1 × A2 × · · · × An, where Ai = {ai
1, · · · , ai

n} is the
set of actions available to the ith agents;

• P is a probabilistic transition function, defining the prob-
ability of migrating from one state to another provided
the execution of a certain joint action;
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• C = c1 × c2 × · · · × cn, where ci is the cost of the ith
agent, which is a function of the joint actions of all n

nodes.

The N agents have thus to distributively learn an optimal
policy to achieve the common objective of maintaining the
aggregated interference at the primary receivers below a
threshold. Known as “multi-agent learning” problem, it can
be solved by means of distributed RL approaches, when the
probabilistic transition function cannot be deduced. There exist
several RL algorithms. For our particular problem, we consider
the decentralized Q-learning algorithm as an accurate algo-
rithm to implement the learning process of a CR. However, in
this field many problems still remain open. The main challenge
is how to ensure that individual decisions of the nodes result
in jointly optimal decisions for the group, considering that
the standard convergence proof for Q-learning does not hold
in this case as the transition model depends on the unknown
policy of the other learning nodes.

In principle, it is possible to treat the distributed CR
network as a centralized one, where each node has complete
information about the other nodes and learns the optimal joint
policy using standard RL techniques. However, both the state
and action spaces scale exponentially with the number of
nodes, rendering this approach infeasible for most problems.
The Nash-Q learning algorithm proposed by Hu and Wellman
[10], extends the Q-learning to multi agent domain, by taking
into account the joint actions of the participants, so that the
experiences of both the learner itself and all the other nodes
have to be uploaded. This creates again scalability problems
in the wireless setting, although the algorithm is shown to
converge to a Nash equilibrium with probability 1, under
some conditions. Alternatively, we can let each node learn its
policy independently of the other nodes, but then the transition
model depends on the policy of the other learning nodes,
which may result in oscillatory behaviors and in slow speed
of convergence to prior set targets [11]. This introduces game-
theoretic issues to the learning process, which are not yet fully
understood [12].

As a solution to these problems, we propose a distributed
approach where nodes share potentially differing amounts of
intelligence acquired on the run. This is expected to sharpen
and speed up the learning process. Any achieved gains,
however, need to be gauged against the overhead incurred
due to the exchange of docitive information. The range of
application scenarios is vast, including infrastructure-less CR
networks, novel cellular systems such as femtocells, etc. The
distributed learning and teaching paradigm applied to these
novel networking architectures, however, raises unprecedented
questions, where we first concentrate on learning and subse-
quently on teaching issues. In the rest of this section, we first
describe with details the decentralized Q-learning algorithm
following the paradigm of independent learners, according
to which each agent learns independently, without taking
into account other agents and treating them as part of the
environment and not as responsive agents. Then, we propose
different modifications of it based on the docitive paradigm.

A. Decentralized Q-Learning: Paradigm of Independent
Learning

It is assumed that the environment is a finite-state, discrete-
time stochastic dynamical system. The interactions between
the multi-agent system and the environment at each time
instant t consist of the following sequence.

• The agent i senses the state si
t = s ∈ S.

• Based on s, agent i selects an action ai
t = a ∈ Ai.

• As a result, the environment makes a transition to the
new state si

t+1 = v ∈ S.
• The transition to the state v generates a cost ci

t = c ∈ R,
for agent i.

• The cost c is passed back to the agent and the process is
repeated.

The objective of each agent is to find a policy π∗(s) ∈
Ai for each s, to minimize some cumulative measure of the
cost ci

t = c(s, a) received over time. We define an evaluation
function, denoted by Q(s, a), as the expected total discount
cost counting over an infinite time. It is given by [13]:

Q(s, a) = E

{
∞∑

t=0

γtc(st, π(s))|s0 = s

}
, (1)

where E stands for the expectation operator and 0 ≤ γ < 1 is
a discount factor. If the selected action a at time t following
the policy π(s) corresponds to the optimal policy π∗(s) the
Q-function is minimized with respective to the current state.

Let Ps,v(a) be the transition probability from state s to
next state v, when action a is executed. Then, eq. (1) can be
expressed as [13]:

Q(s, a) = E { c(s0, a0))|s0 = s, a0 = a} +

E

{
∞∑

t=1

γtc(st, at)|s0 = s, a0 = a

}

= E { c(s, a))} + γ
∑
v∈S

Ps,v(a) ×

E

{
∞∑

t=1

γt−1c(st, at)|s1 = v, a1 = b

}

= C(s, a) + γ
∑
v∈S

Ps,v(a)Q(v, b), (2)

where C(s, a) = E{c(s, a)} denotes the expected value of
c(s, a). Eq. (2) indicates that the Q-function of the current
state-action pair can be represented in terms of the expected
immediate cost of the current state-action pair and the Q-
function of the next state-action pairs.

The principle of Bellman’s optimality assures that, for single
agent environments, there is at least one optimal stationary
policy π∗. The optimal value of state s is given by [2]:

V ∗(s) = V π∗

(s)

= min
a∈Ai

[
C(s, a) + γ

∑
v∈S

Ps,v(a)V ∗(v)

]
. (3)

In multi-agent settings where each agent learns independently
from the other agents, we approximate the other agents as
part of the environment, and we still can apply the Bellman’s
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criterion. In this case, the convergence to optimality proof
does not hold strictly, but this independent learning approach
has been shown to correctly converge in multiple applications
[6][11][14]. Applying the Bellman’s criterion, we have to find
an intermediate minimal of Q(s, a), denoted by Q∗(s, a),
where the intermediate evaluation function for every possible
next state-action pair (v, b) is minimized and the optimal
action is performed with respect to each next state v. Q∗(s, a)
is given by:

Q∗(s, a) = C(s, a) + γ
∑
v∈S

Ps,v(a)[min
b∈Ai

Q∗(v, b)]. (4)

Then, we can determine the optimal action a∗ with respect
to the current state s. In other words, we can determine π∗.
Therefore, Q∗(s, a∗) is minimal, and can be expressed as:

Q∗(s, a∗) = min
a∈Ai

[Q∗(s, a)] . (5)

The Q-value Q(s, a) represents the expected discounted cost
for executing action a at state s and then following policy π

thereafter. The task of Q-learning is to determine a π∗ without
knowing C(s, a) and Ps,v(a), which makes it well suited for
the learning power allocation in CR systems.

The Q-learning process tries to find Q∗(s, a) in a recursive
manner using available information (s, a, v, c), where s and v

are the states at time t and t + 1, respectively; and a and c

are the action taken at time t and the immediate cost due to a

at s, respectively. The Q-learning rule to update the Q-values
relative to agent i is:

Q(s, a) ← Q(s, a) + α[c + γ min
a

Q(v, a) − Q(s, a)], (6)

where α is the learning rate. For more details about RL and
Q-learning the reader is referred to [2][15].

B. Docitive Algorithms

As for teaching approaches, some early contributions in ma-
chine learning literature [5][4] suggest that the performances
of a decentralized learning system can be improved by using
cooperation among learners in a variety of ways. A node
e.g., can take advantage of the exchange of information and
expert knowledge from other nodes [5], the so-called docitive
nodes. Depending on the degree of docition among nodes, we
consider in this paper the following cases:

• Startup Docition. Docitive radios teach their policies to
any newcomers joining the network. In this case, again,
each node learns independently; however, when a new
node joins the network, instead of learning from scratch
how to act in the surrounding environment, it learns the
policies already acquired by more expert neighbors. Gains
are expected due to a high correlation in the environments
of adjacent expert and newcomer nodes. Policies are
shared by Q-table exchange.

• Adaptive Docition. Docitive radios here share policies,
based on performances. The nodes cooperate by exchang-
ing information about the performances of their learning
processes, e.g., the variance of the oscillation with respect
to the target, the speed of convergence, etc. Based on this
information, each node may learn from expert neighbors

who are performing better, i.e., are more intelligent.
Policies are shared by Q-table exchange.

• Iterative Docition. Docitive radios periodically share
part of their policies, based on the reliability of their
expert knowledge. More expert nodes share their expert
knowledge periodically, by exchanging rows of the Q-
table, corresponding to states that have been previously
visited.

The degree of cooperation, and thus the overhead, augments
with an increasing degree of docition. The optimum operating
point hence depends on the system architecture, performance
requirements, etc.

IV. SCENARIO

The scenario considered to validate the proposed approach
consists of a primary and a secondary system working in the
same region and in the same frequency band.

The primary system works at 615 MHz in the ultra high
frequency (UHF) band, with a channel bandwidth of BW = 6
MHz. The primary BS transmits at power PDTV = 1 MW (90
dBm) effective radiated power (ERP) with an antenna height
of 500 m. The primary receivers are placed randomly around
the primary BS. According to the federal communication
commission (FCC) for DTV, the limit for signal interference
noise ratio (SINR) to the primary receivers is SINRTh = 23
dB [7].

The secondary system is based on IEEE WRAN 802.22
standard. The secondary BS antenna height is 75 m. The
secondary users are located randomly around the secondary
BS, which is in charge of allocating power to them. The
available power levels are l = 20, ranging from −80 dBm and
29.8 dBm ERP. With respect to the propagation models among
nodes we consider the international telecommunication union
recommendation (ITU-R) P.1546−1 [16], where the lognormal
shadowing parameter is fixed at 5.54 dB. We consider that the
independent WRAN systems switch on randomly during the
simulation time. We study the effect of interference generated
by the secondary users uplink transmissions onto the primary
DTV system.

With respect to the decentralized Q-learning algorithm we
consider that it is implemented in each agent with a learning
rate α = 0.5 and a discount factor of γ = 0.9. Also, we
introduce a probability ε = 0.1 of visiting random states.
This parameter is used in the action selection procedure to
guarantee that the final policy is a global optimal and not a
local one.

The SINR of the primary system SINRXi
at the ith control

point Xi is defined as:

SINRXi
=

PDTVhDTV
Xi

σ2 +

N∑
j=1

PSUj
h

SUj

Xi

, (7)

where PDTV is the transmitted power of the primary BS, hDTV
Xi

is the link gain between the primary BS and the ith control
point at the protection contour. PSUj

is the transmission power
of secondary user j, h

SUj

Xi
is the link gain between secondary

user j and the control point Xi. Finally σ2 is the noise power.
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In our system, the multiple nodes with distributed learning
and docitive capabilities are the secondary BSs. We identify
the system state, action, associated cost and the next state, to
apply docition in the context of decentralized Q-learning to
this scenario:

• State. As the system uses a decentralized Q-learning
algorithm, the state is defined based on the local views of
each WRAN system. The system state of node i at time
t is defined as:

si
t =

{
Ii
t , d

i
t

}
(8)

where i ∈ {1, 2, . . . , N} is the WRAN cell index. Ii
t ∈

I represents a binary indicator to specify whether the
secondary system is generating an aggregated interference
above or below the threshold of the primary receivers.
This measure is based on the instantaneous SINR value
computed or estimated at the control point of the i−th
WRAN cell. di

t ∈ D, where D = {1, 2, . . . , d}, indicates
an approximate distance between the secondary user and
the protection contour. This information is supposed to
be reported by the secondary users to the secondary BS
together with the spectrum sensing information during the
collaborative spectrum sensing procedure [17].

• Actions. The set of possible actions is the set P of power
levels that the secondary BS can assign to the m−th
secondry user.

• Cost. The cost ci
t assesses the immediate return incurred

due to the assignment of action a at state s. The consid-
ered cost function is:

c =
(
SINR

i
t − SINRTh

)2
, (9)

where SINR
i
t is the instantaneous SINR in the control

point of WRAN cell i. Q-learning aims to minimize this
cost, so that the SINR at the control points is SINRTh,
which guarantees that interference at the primary re-
ceivers is below the threshold.

• Next State. The state transition from one state to another
is determined by the power allocation of the secondary
user.

V. DISCUSSION

The starting point for the docitive investigations are the
results presented in [6]. Here, the authors analyze a cognitive
approach based on independent learners and demonstrate its
superiority with respect to other opportunistic approaches. The
reason is that the cognitive approach is capable of capturing
and adapting to the dynamics of the environment, depending
on multiple factors such as shadowing, mobility variable
number of active WRAN systems, etc. We now compare the
performance of (1) no docition, i.e., independent distributed
learning; (2) startup docition; (3) adaptive docition; and (4)
iterative docition.

The algorithm of startup docition is implemented in such
a way that when a WRAN system switches on, it is able to
acquire the whole Q-table of its closest neighbor. The rationale
behind this algorithm is that each node does not have to learn
its policy on its own, but rather can start learning from its
neighbor’s policy. The proximity of the two nodes guarantees

that the system states of the two nodes are typically correlated
and so their decision policies.

On the other hand, the adaptive docition is implemented
periodically, so that each secondary system can acquire the
Q-table of the neighbor that is experiencing best results.
The performance of the learning process of each learning
node is analyzed by comparing the variance of the SINR at
the corresponding control point with respect to the target of
SINRTh = 23 dB.

Finally, the iterative docition is also implemented period-
ically, so that each agent acquires the Q-table rows of the
neighbor corresponding to already visited states. The decision
about which rows to learn is based on the comparison between
the set of Q-values in each row. In particular, the rows with
lower Q-values are acquired because those are expected to
have been updated more times.

Figure 2 shows the convergence curves of one of the
secondary WRAN systems for the four approaches. It can
be observed that the docitive paradigms clearly speed up
the learning process with respect to the case of independent
learners. In particular, for the represented secondary WRAN,
if we tolerate a margin of 1 dB in the algorithms’ convergence,
iterative docition needs 200 learning iterations to achieve
convergence, adaptive docition 900, startup docition 10, 900
and independent learning 14, 700 iterations.

As for the performance in terms of precision, i.e., oscilla-
tions around the target SINR, Figure 3 depicts the complemen-
tary cumulative distribution function (CCDF) of the variance
of the average SINR at the control point with respect to the
set target of SINRTh = 23 dB. It can be observed that due to
the distribution of intelligence among interactive learners the
paradigm of docition stabilizes the oscillations by reducing
the variance of the SINR with respect to the specified target.
More precisely, at typical precisions of below 1 %, we observe
that the iterative docition outperforms the adaptive and startup
docition by about an order of magnitude, and the independent
learning algorithm by several orders of magnitude.

Finally, we have utilized the entropy as one possible mea-
sure to quantify the “intelligence” of a cognitive algorithm
where a cleverer algorithm increases the order at the reference
point and hence decreases the entropy measured there. For
the four cases, we respectively obtained an entropy of 3.67
(independent learning), 3.01 (startup docition), 2.73 (adaptive
docition) and 2.13 (iterative docition). An increase in intelli-
gence − according to the entropy measure − of about 42% is
observed between the iterative docition and the independent
learning paradigms.

VI. CONCLUSIONS

In this paper we have proposed a decentralized Q-learning
algorithm to solve the problem of the aggregated interference
generated by multiple IEEE 802.22 WRAN systems, to the
primary DTV users. Due to the slow convergence behaviors
of decentralized learning schemes, we have introduced the
paradigm of docition, which facilitates the exchange of expert
information among agents in order to improve the learning
process. The idea is to make inexpert CRs able to make
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decisions in unvisited states or in situations where they would
not be capable of representing their knowledge, or correctly
observing the environment. Simulation results show that nodes
that take advantage of the knowledge previously acquired by
their neighbors speed up their learning process and experience
improved precision. Those improvements increase with the
amount of the information exchanged among nodes, so that
a tradeoff between the performances of the learning process
and signalling/complexity required has to be considered and
will be studied in future work.
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