An OpenSocial Extension for Enabling
User-controlled Persona in Online Social Networks

(Invited Paper)

Rodrigo Lopes, Hakan Akkan, William Claycomb, and Dongwan Shin
Secure Computing Laboratory
Department of Computer Science and Engineering
New Mexico Tech
Socorro, NM 87801
Email: {rodrigo, hakkan, billc, doshin} @nmt.edu

Abstract—User privacy is a challenging issue that must be
addressed urgently in current online social networking (SN) sites.
One of the fundamental problems associated with the issue is
the lack of support of a user-centric approach to managing and
sharing user profile information in current SN systems. In this
paper we present a user-centric approach based on a credential
system to enabling a user-controlled attribute (persona) sharing
in online SN sites. Specifically we extend a Google-initiated open
source project called OpenSocial, which provides a framework
to support user attribute sharing between gadgets and online
SN sites, in order to allow users to selectively share their
attributes among online SN sites. This paper details the design
and implementation of our extension.

Index Terms—user privacy; social network; opensocial;

I. INTRODUCTION

Online social networking (SN) sites have rapidly emerged,
diversified, and adopted in recent years, and the wide adoption
of the Internet contributed to the recent thriving popularity of
those SN sites. The fundamental building block for the proper
operation of most of existing social networks is personal
information or attributes. To support this, most of online SN
sites collect and process information regarding their entities,
generally individuals, and offer a variety of features such as
personalization, affinity sharing, and novel services enabled
by the third party gadgets [1]. For instance, MySpace and
Facebook allows millions of individuals to create personal
profiles and share personal information with vast networks of
friends. Hence, SN sites can create a central repository of
personal information, which is persistent and cumulative [2].
Consequently, marketers, school officials, government agen-
cies, and online predators can collect data about users through
online SN sites. It is strongly believed that one of the most
challenging problems in existing SN sites is related to this
issue, privacy, and it must be addressed urgently.

One of the fundamental problems associated with the issue
of privacy is the lack of support of a user-centric approach to
managing and sharing user profile information in current SN
systems. The basic notion of user-centricity is to give users,
not organizations, a larger degree of control over personal
information, and it has been practiced widely in the federated
identity management (FIM) domain to provide a better mech-

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8401
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8401

anism for upholding user privacy over identity attributes [3],
[4]. In order to support the notion of user-centricity in existing
online SN systems, we identified three fundamental services,
which are identity attribute management, privacy preference
management, and selective attribute sharing [5]. Further we
proposed a framework called U-Control that enables those
services, as shown in Figure 1. This paper mainly concerns
the selective attribute sharing component in the framework.

Identity Attribute Management
v Privacy Preference Management
v

Selective Attribute Sharing

Fig. 1. U-Control Framework

In this paper we present a user-centric approach based
on a credential system to enabling a user-controlled attribute
(persona) sharing in online SN sites. Specifically we extend
a Google-initiated open source project called OpenSocial,
which provides a framework to support user attribute sharing
between gadgets and online SN sites, in order to allow users
to selectively share their attributes among online SN sites.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describe the selective at-
tribute sharing approach through the use of a credential system,
followed by the discussion of our design and implementation
in Section 4 & 5, respectively. Section 6 concludes this paper.

II. OPENSOCIAL AND RELATED WORK

The OpenSocial project [6] was started to provide appli-
cation developers with a single API that would allow the
development of applications that would run across different
websites, addressing the issue of a different social application
API for each SN site. The OpenSocial API, implemented by



each provider, would allow a developer to build an application
once and deploy it on different websites without any modifi-
cation to the code. On the other hand, it would also allow
upcoming SN sites to have support to a diverse portfolio of
applications already developed for popular and established SN
websites, and at the same time saving the time and effort of
designing and building their own social application APIL.

The API is divided in three main areas according to the
functionality provided. These areas are People and Rela-
tionships, Activities and Persistence. People and relation-
ships provide functionality to access users’ information and
the relations that users have with each other. The activities
functionality allows the application developer to access the
users’ activities in the context of the website and finally the
persistence API provides functionality for the application to
store and retrieve application specific information.

The API views users from three different perspectives:
viewer, owner and friends. The viewer is the person in whose
browser the application is being rendered and displayed while
the owner is the person who owns the profile or information
being displayed. Friends refer to the social connections of
either the viewer or the owner. The owner and viewer may
be the same person if, for example, someone is looking into
his own profile and an application is running on that profile,
using the owners information who happens to be also the one
person looking at the displayed web page.

One of the main limitations in the OpenSocial is the inability
for an application to access user information from different
websites. Recently, different online SN sites have proposed
mechanisms to allow the user profile to be exported to other
websites, social networking or not. Some of these initiatives
are MySpace Data Availability and Facebook Connect [7], [8].
However, the sharing of information on these initiatives is one
way, in other words, the information can be shared from the
SN website with other websites, but not vice-versa. Also, the
source SN website is directly involved with the sharing of user
profiles, gaining the knowledge of all the services the user is
sharing his information with, and thus having an implication
of privacy violation.

A. Credential Systems

A credential system is a system in which a user can obtain
credentials (i.e., signed statements) from one organization
and demonstrate possession of them to other organizations,
and several credential systems based on number-theoretic
schemes have been proposed for different purposes in liter-
ature. Chaum’s approach to designing the digital cash system
[9], [10], based on blind signature techniques, was one of
them, also called an anonymous credential system. This system
made it possible to obtain a certified statement from an issuer
and show it to a verifier without the possibility of tracing the
use of credentials. The credential was built upon the number
theory, especially the use of an exponent that defines the
type and the value of the credential in the blind signature.
One major disadvantage of using this system is that a trusted

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8401
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8401

third party is always required that all participating entities are
dependent upon.

Similar to Chaum’s system, but a more advanced scheme
to design an anonymous credential system was presented
by Brands [11]. His credential system could support many
features such as expressions of any satisfiable proposition from
proposition logic, limitation on the number of times a creden-
tial may be used, revocable anonymity, and discouragement
of lending credentials. Camenisch et al. [12], [13] proposed
a credential system that relies heavily on proofs of knowl-
edge like Brands’ system. One of the main disadvantages in
these credential systems is obviously related to the expensive
computational aspect of their cryptographic primitives using
number theory and zero-knowledge proof (ZKP).

III. SELECTIVE ATTRIBUTE SHARING USING
AUTHENTICATED DICTIONARY

We proposed an authenticated dictionary (ADT)-based ap-
proach to designing a credential system that allows users to
selectively disclose their attributes [14], [15], and our approach
is based on skip lists. A skip list is a data structure that allows
the effective search and update of elements within a set. For
more about the skip list, please refer to [16].

Our proposed ADT is used to represent a credential holding
user attributes. Further, the credential allows the user to
disclose a subset of his attributes to a verifier. Specifically, per-
sonal attributes and corresponding random values are hashed,
ordered, and stored in the skip list as elements. Hence, ADT
will not contain any user information in it. Additionally, to
prevent an offline dictionary attack on the hash value based
on the limited domain values of some attributes, personal
attributes are salted. The running time complexity of ADT is
O(log n) for both verification and update, thereby making its
implementation very efficient. Issuing and showing credentials
are as follows. After establishing a pseudonym, the user re-
quests the issuer to issue a credential containing the attributes
the issuer can assert about the user. The issuer will calculate
the hash value of each of the attributes and a corresponding
random value that will be included in the credential and then
order them by the hash values. From here, ADT can be built,
with the last node signed by the issuer’s private key. The issuer
then sends the credential to the user along with attribute and
random value pairs. To show a credential to a verifier, upon
the request for personal attributes required for a service, the
user sends the set of pairs of requested attributes and random
values, and corresponding hash values for each of the attributes
to allow the verifier to verify the attribute. This set of attributes
corresponds to the actual value of the attributes. The verifier
will hash the attributes and corresponding random values to
verify that they are in fact part of ADT.

IV. OPENSOCIAL EXTENSION: DESIGN

Our extension of OpenSocial mainly concerns the support
of an ADT-based credential system to allow users selectively
share their attributes among OpenSocial-based SN sites as
well as gadgets running on top of them. Though our initial



design for an OpenSocial extension was proposed in [14],
it was limited in a sense that the design of a credential
issuing component was not addressed and the design of a data
structure was inefficient. The current design of our extension
approach addresses both of these issues to seamlessly sup-
port the issuance and usage of an ADT-based credential in
OpenSocial-based SN systems.

A. API Extension

We extended the functionality that allows user attributes
to be retrieved from an OpenSocial container in order to
accommodate the ADT-based credential functionality with the
minimal possible changes to the exposed interfaces in OpenSo-
cial. The data type provided by the OpenSocial specification
to allow gadget developers to obtain user attributes is the
DataRequest object, which also contains all the necessary
functions to set up request details, perform the request, and
specify the function that should be called upon response
reception. We directly extended this available object, over-
riding the relevant functions, which are all except the ones
relative to application data, which will be addressed in the
subsection B. As shown in Figure 2, our extension class,
DataRequestEXx, subclasses DataRequest, inheriting all the
functionality available in the original type and changing solely
the relevant function that calls the appropriate entity to handle
the request made by the social gadget. Note that our extended
object is slightly different from ones proposed in [14].

DataRequest

+add(request: Object, opt_key: String)
+send(opt_callback: Function)

newrF y

opt_params) : Object
opt_params) : Object
opt_params) : Object
opt_params) : Object

ppl opt_params) : Object
+newUp App ( opt_params) : Object

newFetchPeopl

newF \ppl

newFetchF

DataRequestEx

+send(opt_callback: Function)

Fig. 2. Revised UML representation of DataRequest and DataRequestEx
Objects and their relationship

In addition, our extension of OpenSocial should address the
ability to issue credentials. To this end we want to make avail-
able to the container website a set of functionality that allow
the service to add issuing capabilities, by simple calling the
functionality provided by OpenSocial. This functionality al-
lows the container to offer the user the possibility of requesting
a credential, and, according to the container definitions, issue
a credential containing all OpenSocial compatible information
for the user available in the service or allow the user to specify
what information to be included in the credential.

B. Data Structure Extension

As it is one of the main goals of OpenSocial to provide a
framework enabling developers to create social gadgets that

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8401
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8401

e | I Ao L PHONE
[COIR [NUMBER ADDRESS |
NAME Porson {EXTEED Avcress [oescremon
ADDITIONAL_NAME | [ABOUT_ME [LocaLTY {END_DATE
FAMILY_NAME ACTVITIES [LoNGITUDE FIELD
GIVEN_NAME :&'WESSES £0_BOX [NAME
HONORIFIC_PREFIX BODY. PO%TA.L_COOE FSALARY
UNSTRUCTURED 3 YPE ION |Enum.Gender|  [START DATE
CE ARS:: [STREET_ADDRESS (FFEMALE f}%"m
|CHILDREN YPE MALE WEBPAGE
LCURRENT LOCATION UNSTRUCTURED_ADDRESS
DATE_OF BIRTH
Llennicry
EMAIL FASHION
ADORESS FOOD
TYPE HAPPIEST_WHEN
HAS_APP
0
MEDWA FTEM [S05,WTEREsTs DATING ~ o el
MINE_TYPE [oes FRIENDS
v R Aoes sonEy oot S OCCASONALLY | [+OCCASIONALLY
URL HLIVING_ARRANGEMENT RANDOM QUITTING QUITTING
MOVIES REATIONSHP WREGULARLY REGURLARLY
MUSIC HSOCIALLY 'SOCIALLY
FNETWORK_PRESENCE Lves Lves
URL NICKNAME
et PETS
ADDRESS

POLITICAL_VIEWS |

LINK_TEXT PROFILE_SONG
TYPE PROFILE_URL
PROFILE_VIDEO enumeration Activity
FQUOTES Enum.Body_Type APP_ID
RELATIONSHIP_STATUS FBUILD t8oDY
e e g e R )
5, - I
SCARED_OF HEIGHT [AWAY ’,Enm -0
SCHOOLS WEIGHT 4 CHAT (MEDIA_ITEMS
FSEXUAL ( [tOFFLINE FPOSTED_TIME
FSPORTS [FONUINE FPRIORITY
STATUS [XA STREAM_FAVICON_URL
TAGS {STREAM_SOURCE URL
‘?&M%EL’URL FSTREAM_TITLE
FSTREAM_URL
TURN_OFFS TEMPLATE_PARAMS
TURN_ONS TME
TV_SHOWS TITLE_ID
URL
LUSER_ID

Fig. 3. OpenSocial Specification Person and Activity UML Diagrams

can run on any service implementing the specification, the
data definition has been specified to be as broad as possible,
delegating to services the mapping between their own data
structures and the OpenSocial Data Model (ODM). The ODM
includes information about the users, the relationships between
them and the activities. The ODM also includes another set
of information related to applications, which would allow
applications to store application specific data in the container
service. This application specific data is defined very vaguely
in the specification and is inherently dependent on the con-
tainer implementation decisions, namely if it is to be supported
and what amount of data should be made available to an a
social gadget. Since this data type is not relevant in the context
of our proposed extension, we will not cover it any further.
Other types that are very relevant to our extension are Person
and Activity. The Person type includes the basic information
about an individual, in the form of different attributes. The
Activity type contains information about particular activities or
events that were created or happened in the container service.
The connections between the different users are represented by
relationships between different instances of Person. Figure 3
shows an UML diagram representing the types of People and
Activity, as derived from the OpenSocial Specification.

In an ADT-based credential to be supported in our extension
of OpenSocial, attributes are represented as type-value pairs:
(type:value). In order to accommodate the ODM types, it is
necessary to make a mapping between these types and the
attributes inside the credential. Our design goal is to make
the control granularity the user has over the information being
shared as fine as possible so that the user can share only some
fields of attributes that he wants to be shared. To achieve this
goal, we define the ODM objects to be a hierarchy of attributes



inside the credential. A single type instance will not be a single
attribute in the credential, but rather a group of attributes. The
ODM types that can be the top level types of a hierarchy
are only, in our context, Person and Activity. The relationship
level we consider is only zero or one, that is, a credential
will only contain information on the owner of the credential
or friends of the owner of the credential, that is, people that
have direct connections with the user for whose profile the
credential was issued. To this end an extra attribute is added
to our credential which indicates which person instance in the
credential represents the person who owns the credential. All
other person instances included in the credential will represent
people with whom the owner person has direct connections
within the issuer service context.

person: <person:F002,3AAF> - E217
-name <name:2C43,0EF1> - F002
~familyname <familyname:A37A> - 2C43
-string: Doe <string:"Doe"> - A37A
-givenname: <givenname:0ADE> - OEF1
-string: John <string:"John"> - 0ADE
ick ick 1DE4> - 3AAF
-string: JDoe <string:"JDoe"> - 1DE4

Fig. 4. Sample Person instance and its mapping to an ADT credential

Detailed in Figure 4 is how a sample person object would be
deconstructed into its basic types and how the hierarchy would
be achieved. In this example we have the person instance for an
individual named John Doe. This person instance is composed
of the attributes of name and nickname, and the name itself is
a type composed of two strings, givenname and familyname.
The sample information contained on the person instance is
represented on the left side of Figure 4. On the right side of
the figure is the representation of all the attributes that would
be contained by a credential to represent the person instance.
As it can be deducted, the instance is inserted in the credential
bottom up, with the most basic types being inserted first and
the more complex types being inserted later, and with values
depending on the more basic attributes previously added to the
credential. It can also be observed that the complex types have
a value that does not correspond to the actual value of the type
but to a list of hashes of the more basic types that comprise
them. The value found for the person attribute is in fact a
list of two hash values, one for the name type and the other
for the nickname type. This representation allows a very fine
granularity. For example, it would be possible to disclose and
share only the familyname without disclosing anything else
because it can be easily seen that the familyname attribute is
a composing part of name that is a composing part of person,
and this would be done without the need to show any other
information. It would not be possible to add information to the
person object, because that would imply that we could alter the
value of the attribute person and add a new hash value for the
information an attacker may try to inject, of course inserting a
new attribute into an existing credential could not be possible,
but using the value of an existing attribute as a part of other
attribute it does not actually belong to could be attempted.
This will not work, because each type has references to all

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8401
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8401

the attributes that compose it or, the value itself in the case of
primitive types.

V. OPENSOCIAL EXTENSION: IMPLEMENTATION

Our implementation is based on Shindig, which is a Java-
based implementation of OpenSocial, originally started by
Google and now hosted and managed by the Apache Software
Foundation. The Shindig project was developed upon an
existing code base from Google and reuses many components
already in use for gadget rendering in their popular portal
iGoogle. Although a PHP version of Shindig is available, we
implemented our extension of OpenSocial in Java, since our
prototype implementation of the credential system was also

developed in Java.
Op ial
features and

Js libraries

Browser

Container
Page

Request Handler

Selector

Credential Reader

Extension
features and

Fig. 5. Server-side Extensions within Shingid

The main OpenSocial related component in Shindig is the
Gadget Data Servlet. This component handles and replies
to the request originated inside the social gadgets running on
the container SN site. The OpenSocial specification, as the
functionality exposed to developers of social applications, is
implemented as JavaScript libraries that are included in the
gadget when it is rendered and executed on the container.

A. Server-side Implementation

We implemented the functionality to issue credentials at
the core of the Shindig implementation, side by side with the
Gadget Data Servlet. All the services required to make the
credential issuing service work at the server-side is provided
by the Credential Servlet, which is added to the Shindig
architecture, as shown in Figure 5. This servlet exposes the
functionality to issue credentials as well as the functionality
that allows signature verification on credentials being used by
the user to provide data to gadgets’ requests. The credential
signature verification is one of the most important steps in
the credential usage, as it will verify the authenticity of the
credential and the acceptance of a relationship of trust between
the container service and the issuer service. The two main
components used by the Credential Servlet, also shown in
Figure 5, are the Credential Builder and Verifier and the
libraries implementing the ADT based credential, which are
used to generate the credential from the data obtained at the
container.



Plea ct a credential to submit: t information to send

© Facebook Credential
om

/2010 3
attributes ¥ bulld svelte

lor blue
olor black

eight 1.84M

t 184lbs

Jate 08/12/2011
Desc User's hiS.com attributes

Linked

Credential o
com ¥ The Cathedral & the Bazaar

Revocation is an important issue in any credential-based
system. Currently revocation is supported in our system in
two ways: 1) using validity periods and 2) using online
revocation systems like in PKI systems. We will investigate
how to remove this online dependency. Last not but least,
unlinkability is currently not fully supported in our current
prototype system, and we will investigate how this can be

06/19/2010
kedin.com attributes

MySpace Credential
myspace.com

10/04/2010
sc User's myspace.com attributes

v catch 22

3

Location

y 1975-01-01
ame Shin Digg

supported.

ACKNOWLEDGMENT

This work was supported at the Secure Computing Labo-

kut Credential
¥ value SOCIALLY v

t.com
101/14/2007
#1112 10000

Add Credential

COIRuUL

Fig. 6. Client-side Credential Selector

B. Client-side Implementation

The extension functionality on the client side, the code
called by the gadgets and by the container to issue credentials,
was implemented as JavaScript libraries, and it was added
to the set of features already implemented in Shindig. The
implemented functionality, to use a credential as a data source,
ultimately sends the requests built by gadgets to a Java applet.
This applet contains the logic to manage the user’s credentials,
handle the request, process the user’s options, verify the
credential authenticity by calling the credential verifier on
the server, build the response object and send it back to
the JavaScript function that will finally return the response
containing the data, to the gadget. Communicating directly
with the applet and being a liaison between user and the
credential logic is the credential selector, which is shown in
Figure 6.

One of the key components in our implementation is the
credential selector, which is the only component the end
user will have any contact with, apart from the credentials
themselves. The credential selector allows the user to make
choices on the information being released. This credential
selector is included in the JavaScript libraries and is embedded
in all gadgets that require our extension as a feature to be
use. The credential selector will allow the user to add new
credentials by choosing credential files from disk, and then
displaying all added credentials so that the user can choose a
credential for any particular request.

VI. CONCLUSION AND FUTURE WORK

This paper discussed an approach to enabling a user-
controlled attribute sharing in online SN sites. Our approach
was based on an authenticated dictionary (ADT)-based cre-
dential system and extended an existing open source-based
social networking framework called OpenSocial to support the
credential system. We discussed the design of our extension
attempt. Finally we presented a proof-of-concept implementa-
tion based on our design.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8401
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8401

ratory at New Mexico Tech by the grant from the National
Science Foundation (NSF-IIS-0916875).

REFERENCES

[1] R. Gross, A. Acquisti, and H. J. H. III, “Information revelation and
privacy in online social networks,” in Proceedings of the 2005 ACM
Workshop on Privacy in the Electronic Society, Alexandria, VA, Novem-
ber 7 2005.

[2] E B. Vigas, “Blogger’s expectations of privacy and accountability: An
initial survey,” Journal of Computer-Mediated Communication, vol. 10,
no. 3, 2005.

[3] G.-J. Ahn and J. Lam, “Managing privacy preferences for federated
identity management,” in Proceedings of the 2005 Workshop on Digital
Identity Management, Alexandria, VA, USA, November 11 2005, pp.
28-36.

[4] D. Shin, G.-J. Ahn, and P. Shenoy, “Ensuring information assurance
in federated identity management,” in Proceedings of the 23rd IEEE
International Performance Computing and Communications Conference,
Phoenix, Arizona, April 14-17 2004.

[5] D. Shin, R. Lopes, W. Claycomb, and G.-J. Ahn, “A framework for
enabling user-controlled persona in online social networks,” in Proceed-
ings of the 33rd Annual IEEE International Computer Software and
Applications Conference, Seattle, Washington, July 20-24 2009.

[6] OpenSocial Foundation, http://www.opensocial.org.

[71 MySpace Data Availability (DA), http://developer.myspace.com.

[8] Facebook Connect, http://developers.facebook.com/connect.php.

[9] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp.
1030-1044, 1985.

[10] ——, “Achieving electronic privacy,” Scientific American, pp. 96-101,
August 1992.

[11] S. Brands, Rethinking Public Key Infrastructure and Digital Certificates
- Building in Privacy. MIT Press, 2000.

[12] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in Proceedings of 3rd Conference on Security in Communi-
cation Networks, Amalfi, Italy, September 12-13 2002.

[13] J. Camenisch and E. V. Herreweghen, “Design and implementation of
the idemix anonymous credential system,” in Proceedings of 9th ACM
Conference on Computer and Communication Security, Alexandria, VA,
November 7-11 2002.

[14] D. Shin and R. Lopes, “Enabling interoperable and selective data sharing
among social networks sites,” in Proceedings of the 3rd International
Workshop on Trusted Collaboration, Orlando, Florida, November 13
2008.

[15] D. Shin, R. Lopes, and W. Claycomb, “Authenticated dictionary-based
attribute sharing in federated identity management,” in Proceedings
of the 6th International Conferecne on Information Technology: New
Generation, Las Vegas, Nevada, April 27-29 2009.

[16] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia, “Persistent
authenticated dictionaries and their applications,” in Proceedings of
4th International Conference on Information Security, Malaga, Spain,
October 1-3 2001.



