
A Collaborative Framework for Enforcing Server
Commitments, and for Regulating Server Interactive

Behavior in SOA-based Systems
Tin Lam, Naftaly Minsky

Department of Computer Science - Rutgers University
110 Frelinghuysen Road, Piscataway, NJ 08854

Email: {tinlt, minsky}@cs.rutgers.edu

Abstract-We are presenting a collaborative framework to
enforce server commitments, and to regulate server interactive
behavior in SOA systems. Trusted components collaborate to
establish a network of enforcement components, one per server, to
maintain proofs of what servers have committed with their clients
and peer servers. The trusted components and the enforcement
components also collaborate to make servers accountable for
their commitments, and to enforce policies on the interactions
between the servers and their clients/peer servers. In our frame
work, such collaborative efforts are explicitly stated in the form
of policies to ease the management of collaborative processes.
Our implementation is based on the LGI mechanism, complies
with SOA standards, and does not require any change of the
conventional SOAP-based protocol, the UDDI server, or the
programs employed by servers and their clients.

I. Introduction
There are several well-known incidents in which servers

(service providers) have violated their privacy commitments
with clients (service consumers). In August 1998, the website
Geocities released its users' personal data to advertisers [1].
Another example, in August 2006, the search queries of around
650,000 users were disclosed [2] with the intention of being
used by third-party researchers [3]. There are possibly many
more violations that are still not known by the public. How
ever, besides commitments announced before the occurrence of
the client-server interaction such as privacy assurance or SLA,
servers may make additional commitments with clients during
their interactions. It is hard or even impossible for clients
to determine whether such commitments would be satisfied.
Therefore, clients need verifiable confidence that servers will
abide by their commitments.

Moreover, the misbehavior or poor performance of a server
may create worse effects to the whole system, compared to
that of a typical client. Therefore, to protect the integrity
of the whole system, it may be necessary to impose stricter
constraints on servers. By continuously monitoring/auditing
the interactive behavior of servers when they interacts with
their clients and peer servers, trusted components, e.g. the
programs employed by system administrators or accountants,
can detect if servers violate system constraints, and react
promptly to remedy the situation. Such remedies may be
temporarily stopping poor-performance servers, or revoking
server privilege of bad servers, to name a few.

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B347

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B347

To ensure that servers conform to policies, policies must
be enforced out of the control of servers. There are a num
ber of research projects that attempt to enforce policies on
interactions between components in a system, e.g. [5], [4].
Unfortunately, they require the modification of existing appli
cations. Since even a simple modification may result in many
inter-related changes to a variety of software artifacts, people
are not willing to adopt these approaches. Moreover, SOA
systems may be large and heterogeneous, and servers may be
dispersed throughout a distributed environment. Therefore, in
SOA systems, system authorities need a systematic vehicle
to remotely manage enforcement components and policies
without requiring any change of existing applications. Finally,
the fact that enforcement components are maintained and
operate independently out of the control of the server helps
convince clients of their neutrality and reliability.

We are presenting a collaborative framework to enforce
server commitments, and to regulate server interactive be
havior in SOA systems. Trusted components collaborate to
establish a network of enforcement components, one per
server, to maintain proofs of what servers have committed with
their clients and peer servers. The trusted components also
collaborate with the enforcement components to make servers
accountable for their commitments, and to enforce policies
on the interactions between the servers and their clients/peer
servers. In our framework, such collaborative efforts are explic
itly stated in the form of policies to ease the management of
collaborative processes. Our technique employs Law Governed
Interaction (LGI)-based middleware, and does not require any
change of the conventional SOAP-based protocol, the UDDI
server, or the programs employed by servers and their clients.

The rest of this paper is organized as follows: In section (II),
we introduce an example of policies we seek to support. In
section (III), we provide an overview of the LGI mechanism
for SOA systems. We describe the implementation of our
framework in section (IV), and demonstrate the use of our
framework in a case study in section (V). A discussion about
the implementation of our framework is presented in section
(VI). We discuss related works in section (VII), and conclude
in section (VIII).

II. Motivating example
Assume in an SOA system, besides servers and clients,

there is a system administrator S A, an accountant Acct,
a certification authority CA, and a UDDI server. All of
them (except servers and clients) are considered as trusted
components in the system.

A. GrantlRevoke server privilege

We consider providing services as server privilege. Suppose
there is a policy concerning server privilege as follows.

AI. A server must present to SA a certificate
signed by CA to authenticate that it (1) has a
particular name SPname, (2) provides services at
the endpoint EP, and (3) operates under a policy P.
After successful authentication, SA will grant the
privilege of providing services to the server. How
CA issues such a certificate to the server is beyond
the scope of this paper.

A2. If SA revokes the server privilege of a
server, the server must stop providing services to
clients in the system.

B. Retain server privilege

There are certain requirements a server must satisfy to
retain the server privilege. Below is an example of such
requirements:

B1. A server must report its average response
time (ART) to Acct every 60 minutes.

B2. Each server must provide audit information
about interactions with its clients if it receives a
command initAudit from Acct. The audit informa
tion includes the name of the service to be invoked,
the time the request is received, and the time the
corresponding result is returned. The audit process
is stopped when the server receives a endAudit
command issued by Acct.

B3. A server is allowed to invoke services pro
vided by other servers up to h times within an hour.

The requirement (B3) above prevents a server from abusing
services. To enforce this requirement, for each server, the
system must maintain a counter which saves the total number
of services invoked by the server across the entire system.

c. Server policy

A server's policy can be considered as the server's contract
with its clients. In that contract, the server makes specific
requirements and/or commitments regarding the services it is
providing. The interaction between a server and a client may
involve a sequence of messages exchanged in a predefined
order, called conversation [6]. In this paper, we consider two
types of server commitments.

The first type is announced before the client-server inter
action occurs. Privacy assurance is one commitment which
belongs to this type. Given a client's request, a server can
determine the client's sensitive data which may include (1)
the IP address of the client's application, and (2) the client's

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B347
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B347

identity extracted from the request's content. As soon as the
server receives the client's request, the client no longer has
control over its sensitive data. To assure clients that their
sensitive data are not misused, the server announces its privacy
policy, and must adhere to this policy.

The second type of server commitments is made by the
server during a conversation, and the server generally promises
that it will satisfy those commitments. Since the terms ex
changed between the server and the client are unknown before
their conversation starts, there is a need to record important
notes of the conversation. If a dispute occurs, the conversation
records serve as proofs of what the server promised, and will
make the server responsible for their words.

Suppose there is a "travel agent" server which supports a
"ticket selling" conversation. Below is an example of a server
policy consisting of both requirements and commitments.

C1. Client Identification: A client has to submit
its certificate signed by CA to identify itself when
it reserves or buys a ticket from the server.

C2. Commitment before conversation starts: the
server will not release the client's certificate and
IP address of the client's application to other third
parties.

C3. Commitment during a conversation: during
their conversation, a client may request to reserve
the right to buy a ticket at a particular price p with
a grace period g. If the server agrees, it is obliged
to sell this ticket to the client for p, if the client
pays for the ticket within period g. Moreover, the
server commits itself to not sell the reserved ticket
to anybody else before the end of the grace period.

Note that in the scenario above, the server needs to link
messages belonging to the same conversation in order to
determine who have reserved/bought a particular ticket.

D. Discussion

The requirements in (A) and (B) affect all servers in the
system, while (C) is only applicable to one server. Therefore,
(A) and (B) can be considered as system constraints which
will be expressed in a global policy; and (C), expressed in a
server policy, are specific constraints applied to one particular
server.

Servers are not trusted in the sense that they do not always
conform to policies. For example, a server may not voluntarily
give up the server privilege as commanded by SA, or a server
may report wrong audit information to Acct. Such examples
show that policies must be enforced out of the control of the
server.

To enforce (AI) and (A2) in our framework, SA col
laborates with the UDDI server to assign an enforcement
component for a server. The server has to interact with other
components in the system through its enforcement component.
In other words, getting the server privilege means the server's
interactive behavior is under supervision of its associated
enforcement component. SA revokes the server privilege by
collaborating with the UDDI server to revoke the enforcement

component of the server. This collaboration is described in
section (IV.B).

To enforce (Bl),(B2), and (C3) the enforcement compo
nent collaborates with Acct by reporting truthful data about
interactions between the server and its clients. Note that the
enforcement component can enforce (Cl) and (C2) on its own.
How the enforcement component intercept the client-server
interaction is described in section (IV.C).

To enforce (B3), two enforcement components of the two
involved servers need to collaborate. This collaboration is
explained in more details in section (IV.D).

III. An Overview of LGI mechanism for SOA
LGI is a coordination and control mechanism for hetero

geneous distributed systems. The reader is referred to [14]
for a detailed description of LG!. We have modified the
standard LGI mechanism to make it work for SOA systems.
Specifically, each server ser is associated with an enforcement
component, called controller T.c, which is trusted to enforce a
policy E on the interaction between ser and its clients. In our
framework, a policy is expressed as an LGI law maintained by
a law server. From now on, we use the terminologies "law"
and "law server" instead of "policy" and "policy server".

The purpose of £ is to decide what should be done in
response to the occurrence of certain regulated events, such as
the receipt or the sending of a message at Tr: This mandated
response, called the ruling of £, is a function £(E, CS), where
CS is the control state of T.c at the time of the occurrence
of the event E. Such a ruling is a sequence of zero or more
control operations, which can cause such things as forwarding
of messages, and updating the control state CS of Tr:

Under LGI mechanism for SOA, a controller has a
name "server@machine-name". For example, a controller
started on the machine "compops.rutgers.edu" is identified as
"server@compops.rutgers.edu". Note that we assume there is
only one controller running on a machine.

An LGI law consists of a sequence of events. Each
event is expressed as a rule of the form UPON (event)
I F (condition) DO (action) where (condition) is a general
expression defined over the event and the control state CS of
T.c, and (action) is one or more operations mandated by the
law. We introduce here briefly the definition of four regulated
events which will be demonstrated in our case study in section
(V).

adopted(): the first event in the life of a controller.
sent(m): T.c receives a response m sent by the server ser.
arrived(m): a request m of a client arrives at Tr:
arrived(src, m, dest): message m is forwarded from controller
"src" to "dest", where "src" and "dest" are LGI names of the
two controllers.
obligationDue(obl): an obligation named obl is fired. Typi
cally, obligations are set to occur sometime in the future to
ensure that some actions are carried out in a timely manner.

The body of a rule may contain two distinguished types of

Digital Object Identifier: 10.410BI/CST.COLLABORATECOM2009.B347
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B347

operations. The first type has the form t@CS, where t is
any Prolog term. It checks to see if the term t exists in the
control-state of T.c. The second one is a primitive-operation.
Commonly used primitive operations include:

add(s(v)): T.c adds a term s with value v to its cs.
remove(s): T.c removes a term s from its cs.
replace(Tl, T2): T.c replaces Tl in its cs by T2 .
release(m, host, port): T.c sends a message m to an applica
tion which is waiting for messages at (host,port).
forwardRequest(m): T.c forwards message m to ser.
forwardResponse(m): T.c forwards message m to a client.
forwardNext(m, Tn) T.c forwards its server's request to Tn,
the controller of another server. This operation will cause the
firing of event arrived(src, m, dest) at controller Tn.
grant(SPName,EndPoint,lawURL): T.c must be ready to
enforce law of a server whose name is "SPName", endpoint
is "EndPoint", and law text is available at "lawURL". We will
use this operation to assign a controller to a server. This is a
controller management interface. More details about controller
management interfaces are presented in section (IV.A).

An http server, called law server, is responsible for maintaining
all law texts, and making them available online. A complete
list of LGI regulated events and primitive operations is avail
able in [10].

Law Hierarchy
Consider a hierarchy, or tree, of laws H(£o), rooted at a given
law £0. Each law in the hierarchy can define the manner
in which it can be refined. Specifically, the presence of a
delegate(g) statement in a law invites a law refinement to
propose operations to be added to the ruling being computed.
Consider a law £ with the following rule r:

UPON event DO ..., delegate(g), ...
If a law £' is directly subordinate to E, then every eval

uation of a ruling of £' will start with the rules in E: If
this evaluation gets to the delegate(g) statement of the rule r
above, then goal 9 is submitted to the law refinement £1 for
evaluation. This evaluation will produce a set of operations
we call this set the ruling proposal of £1 for goal g.

The structure of law refinement: A law refinement com
ponent £1 of a law £' from £ looks pretty much like the
root-law £0, with two distinctions. First, the top clause in the
component is law L' refines L. Second, the names of the rules
in £1 need to match the goals delegated to it by L.

Rewriting a ruling proposal of a law refinement: £ can
regulate the effect of a law refinement on the eventual ruling
of the law E by rewriting the ruling proposal. Specifically, the
rewrite rules in E determines what is to be done with each
operation proposed by a law refinement: whether it should be
blocked, included in the ruling, or replaced by some list of
operations.

Finally, a statement protected can protect a term in the
control state from modification by law refinements. For exam
ple, if the statement protected(ID(), nick()) appears in the
"preamble" of E, then no refinement of E can propose an

Fig. 1. Framework Overview

B. GrantlRevoke Server Privilege

8
Law Server

IT]88
/ r ,

I- I ss!'t'"
UDDI serve r ~ ~

""

Note that £i, in tum, defines how the management interfaces
can be invoked. Since £i conforms to £g , we can prevent
the management interfaces from being misused in £ i by
specifying in £g who can invoke what interfaces under which
conditions. For now, we only implemented these two interfaces
(grant/revoke). Other interfaces can be added if necessary in
the future . Having the capability to manage the controller
through management interfaces, system authorities have the
power to manage all servers in the system.

To join the system, first SPi requests that SA do two things:
(1) appoint an available generic controller T to become Ti ,

i.e. to enforce £i, and (2) publish SP/s service description to
the UDDI server using Ti 's address as the service's endpoint.
This way, a client who wants to invoke SP/s services sends
its requests to Ti , and gets a corresponding response from Ti .

In the SPi'S service description published to the UDDI
server, SA also records the URL of £ i (i.e. SPi'S law URL).
Currently, we have this value saved in the optional field named
description of SP/s businessEntity structure. In fact, we can
save the URL of £ i in any optional element of SPi'S service
description.

SA collaborates with the UDDI server to assign a controller
for SPi' This collaboration is described in a law called £s a.
Specifically, SA is a controller operating under law £sa
(for "system administration" law). That law instructs how to
process a "ServerPrivilege" request from SPi, as described
above .

A client can query the UDDI server about SPi'S law URL,
based on which it can examine the law text (maintained by the
law server). Moreover, since T; is out of the control of SPi,
the client can be confident that £ i will be strictly enforced
(i.e, SPi 'S commitments will be satisfied).

In our framework, the security infrastructure is comprised
of SA, CA, Acct, law server, UDDI server, and controllers.
One important note to make is that the process of appointing a
controller to enforce a server's law does not require any change
to the applications of the server, the client, and the UDDI
server - three main components in SOA systems. More over,
their normal behaviors are preserved: (1) the UDDI server

operation that modifies terms of the form (ID, nick) . Strictly
speaking, such protection can be carried out via rewrite rules,
but the "protected" statements are more convenient for this
purpose.

On the effects of cascading delegation: To this point, our
discussion has focused on the interaction between a law and
its immediate law refinement. Consider now a chain of law
refinements, where £1 refines a root-law £0 to form £1> £2
refines £1 to form £2, and so on. The invocation of a delegate
clause in £0 can lead to the invocation of a delegate clause
in £1> which in tum can lead to the invocation of a delegat e
clause in £2, and so on. Suppose this process eventually stops
in 12m , where a delegate is not invoked as part of the ruling.
Then, 12m will eventually return a ruling proposal to 12m - I ,

which will be subjected to rewrite rules in 12m - I . Eventually,
£m-l will return a ruling proposal to £m-2, which will be
subjected to rewrite rules in £ m-2 . This process repeats until
£1 returns a ruling proposal to £0, where it will stop.

Complete specification of LGI law hierarchy and its demon
stration can be found in [8], [9].

IV. Framework Overview
Figure (1) gives an overview of our framework. This figure

consists of one server, one UDDI server, CA, SA, Acct, and
one law server. However, our framework is applicable to any
system which has multiple servers. We use the term SPi to
refer to a server in the system, L , is the law of the server, and
T; is the controller of the server.

We use a two-level LGI law hierarchy to organize laws
in our framework. The global policy and the server policy
discussed in section (II.D) are expressed in £g and £ i,
respectively. £g is on the top level, and £i is on the second
level. £i is formed by refining £ g with £i' The interaction
between a client, Ti, and SPi is regulated according to £ i'

A. Controller management interfaces

Controllers are generic in the sense that they are capable of
enforcing any law. Initially, a generic controller T operates
under a generic law called £gen . Generally speaking, the
"generic" law defines who can use the set of management
interfaces to manage controllers. How system authorities de
cide the constraints in £gen is beyond the scope of this paper.
We, however, present an example of the generic law in section
(V) for demonstration purposes.

Below we consider two important interfaces in set of man
agement interfaces.

1. grant(SPname, endPoint, lawURL): upon receiving a
"grant" message, the generic controller T verifies if this
message is issued by a right system authority as defined in
£ gen . If this is the case , then T becomes T; to enforce the law
of the server whose name is "Sl'name" and physical address is
"endl'oint", The law text will be retrieved from the law server
based on lawURL.

2. revoke(): similarly, if T; receives a "revoke" message
from SA, T, is back as a generic controller operating under
£ gen .

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8347
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8347

Fig. 2. T; handles a client's request

c. T; handles a client's request

5

2
--+

-
Fig. 3. Dual mediation

v. Case study
In SOA systems, three main components (UDDI server,

client, server) communicate with each other by exchanging
SOAP messages. So, we also have SA and Acct communicate
with controllers by SOAP messages.

There is an implicit constraint in £ g. That is, for each
command in the set {initAudit, endA udi t , r evoke} sent to
Ti, the SOAP request has a field Cert whose value contains
the certificate of the one who sends the command. T, verifies
that certificate to determine if the command has been issued
by the right authority.

While interacting with its clients, a server decides the
structures of the SOAP requests and responses in its WSDL
file. Therefore, typically the server can take the specific format
of the SOAP request/response into account when it specifies
its law, as we will see in £.

Law £gen and £sa shown below are just for demonstration
purpose. They can be more complex in real scenarios.

D. Dual mediation

Figure 3 explains how a request sent from a server S Pj

to another server S Pi is treated, as well as how the response
from SPi is sent back to SPj .

Each time a server S Pj needs to invoke a service provided
by BPi, SPj creates a SOAP message according to SP/s
service description retrieved from the UDDI server. SPj also
updates the header of the SOAP message to indicate that the
final receiver of the SOAP message is T; Here, our framework
makes use of the SOAP intermediary feature described in the
SOAP message header. In step 1, SPj sends the SOAP request
to its controller T j which in tum decides if S Pj is allowed
to send such a message according to £j . If this is the case,
in step 2, Tj removes the SOAP intermediary field from the
header of the SOAP request, and forwards it to Ti. Finally,
T; forwards the request to S Pi after evaluating the message
according to £ i in step 3. The SOAP response is sent back
to S Pj using the same path but in reverse order. The SOAP
response is also mediated by £i, and then £j , respectively.

In this interaction, a SOAP request or response is regulated
by both Tj and T i , hence the terminology dual-mediation. The
requirement (B.3) described in section (II.B) is implemented
by dual-mediation, as shown above. The implementation of
(B.3) is shown in section (V.C).

A. Generic Law

Law £gen is shown in figures 4. Its "preamble" specifies that
£ gen accepts certificates from CA represented by keyHash.

2

3

Tj

1 arnvedlIl '~
4 @Js"'~n"""t---~

IUDDI server I

1
0

@,

allows authorized entities (SA, as assumed here) to update
server descriptions, (2) the client queries the UDDI server to
get the server descriptions, (3) the controller plays the role of
the server when interacting with the client, (4) the controller
acts as a client of the server. Therefore, we expect that our
approach is easily integrated into any existing SOA system.

Finally, £g defines who can use the "revoke" management
interface. This ensures the "revoke" command is applied to all
servers under the same condition. Laws £ gen , £ sa , £ g, and
£ i are shown in section (V).

The interaction between a client c, Ti , and SPi is presented
in figure 2. In step 0, C contacts the UDDI server to get SPi'S
service description. c only needs to query the UDDI server
once to get S Pi'S service description the first time it wants to
use SP/s services.

In step 1, based on SP/s service description, c creates a
SOAP message to invoke a desired service. It establishes a
connection, conn l , to send a request to Ti. T; accepts and
maintains connl through which T; can return the response
back to c. T; generates a unique identifier, reqID, to identify
the request. The arrival of m to T; leads to the firing of an
arrived event at Ti . T; evaluates the ruling of the law £ i for
the arrived event, and produces a list of operations to be car
ried out. If that list contains an operation forwardRequest(m),
T; will forward m to SPi' Note that m may be c's original
request, or a modified version of the original message, or a
newly-created one.

In step 2, T, acts as a client of SPi . It initiates a connection,
conn2, to send m to SPi' SPi processes the request m, and
returns the response through conn2 in step 3. As soon as T;
receives the response, a sent event is fired at Ti . Similar to
step 1, the seut event is evaluated, and a list of operations to
be carried out is generated. If this list contains an operation
forwardResponse(m) , m will be returned to c through connl
in step 4.

Since T; associates connl with conn2 using the same
reqID mentioned above, and since conn l is kept until c
receives the response, our framework supports asynchronous
service invocations. Finally, since c's request is not sent
directly from c, SPi cannot locate c from conn2 . Therefore,
c's location (host, port, etc.) is inherently hidden from SPi .

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8347
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8347

Preamble:
law £"gen
authority(CA, keyHash)

Rl)
UPON arrived(_, [reqID, s, reqent] ,self) DO

cert = SearehST("Cert", reqent)
IF(eert[issuer(CA),subjeet(SA)])DO

IF (s=="grant")
{

SPName = SearehST("SPName", reqent)
EP = SearehST("EndPoint", reqent)
lawURL = SearehST("lawURL", reqent)
grant (SPName, EP, lawURL)

}

Fig. 4. Law £"gen - Generic Law

£gen is very simple, and it has only one rule. This rule
specifies that a generic controller T has to stop working
under the generic law £gen if T receives a grant command
from SA. The "grant(SPName,EP,lawURL) signifies that the
controller should be ready to enforce the law of a server whose
name is SPName, endpoint is EP, and law text is available
at lawURL.

B. Law c.;

Preamble:
law £"sa

authority(CA, keyHash)

Rl)
UPON arrived([reqID, s, reqent]) DO

cert = SearehST("Cert", reqent)
IF(eert[issuer(CA) ,subject (SP) ,attr(EP,
lawURL])DO

IF (s=="ServerPrivilege")
{
T=getController()
forwardNext([grant(SP,EP,lawURL)] ,T)
updateUDDI(SP,T,lawURL)

}

Fig. 5. Law £"sa - System Administration Law

Law £sa is shown in figures 5. Its "preamble" specifies
that £sa accepts certificates from CA represented by keyHash.
Recall that SA is a controller operating under law £sa. Rule
R 1 of £sa describes how SA processes a "ServerPrivilege"
SOAP message sent from a server. First, SA verifies the
server's certificate. If the certificate is valid, it will choose a
generic controller T. Then, it uses the operation "forwardNext"
to send a "grant" command to T. This will cause the firing
of event "arrived" at T, which is operating under £gen. T
becomes T; (as defined in the generic law £gen in figure 4).
Finally, SA publishes the server's description to the UDDI
server using T's address as the endpoint. For the sake of
simplicity, the code of the function "updateUDDI" is not
shown here.

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009. B347
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B347

Preamble:
law £"g

authority(CA, keyHash)
protected(lnv(reqU,serU,tU))
protected(numOflnvU)
protected(totaIPTU)
protected(Acct(hostU, portU))
protected(lnvPerHU)

Rl)
UPON adopted () DO

imposeObligation ("ReportART", 60x60)
imposeObligation("InvReset", 60x60)
add (Aeet (host (host) , port(port)))
add (InvPerHr (0))

R2)
UPON arrived([reqID, s, reqent]) DO

IF (s @ (command set of £g)) DO
{
eert SearehST("Cert", reqent)
IF (eert[issuer(CA),subjeet(Aeet)]) DO
{

IF (s =="initAudit") DO add (audit)
IF (s =="endAudit") DO remove(audit)

}
ELSE IF(eert[issuer(CA),subjeet(SA)])DO

II a II revoke II management interface
IF (s =="revoke") DO grant (_,_,genlaw)

}
ELSE DO
{
eert = SearehST("Cert", reqent)
IF (eert[issuer(CA),subjeet(Self)]) DO
{

II request from the server
InvPerHr(k) @ CS
IF (k < 1000) DO
{

inc (InvPerHr, 1)
Tn= SearehTn(reqent)
reqent = RemoveTn(reqent)
forwardNext(reqent, Tn)

}
ELSE DO

forwardResponse (lILimit reached II)

}
}
ELSE DO II a normal client's request
{
add(Inv(req(reqID) ,aet(s) ,T(eurTime)))
delegate (arrivedCont, [reqID,s,reqent])

}

R3)
UPON arrived(peer, [reqID,s,m,flag] ,Self) DO

IF (flag=="next") DO
{

11m is a request from another server
add(Inv(req(reqID), aet(s), T(eurTime)))
delegate (arrivedCont, [reqID, s, m])

}
ELSE DO
{
11m is a response from another server
lito answer a request of this server

forwardResponse(m)
}

Fig. 6. Law £"g - Global Law

'R,4)
UPON sent([reqID, respcnt])) DO

inv(req(reqID),act(s),T(t)) @ CS
tl=curTime,
inc (totaIPT,tl-t)
inc (numOflnv, I)
remove(inv(req(reqID),act(s),T(t)))
IF ("audit"@CS) DO
{

Acct (host (h) , port(p))@ CS
release (Self, [s, t, tl], h, p)

}
delegate (sentCont)

'R,S)
UPON obbilationDue(obl) DO

IF (obI == "ReportART") DO
{

Acct (host (h) , port(p)) @ CS
numOflnv(num)@CS
totalPT(time)@CS
release (Self, num/time, h, p)
imposeObligation ("ReportART", 60x60)

}
IF (obI == "InvReset") DO
{

remove (InvPerHr)
add (InvPerH, 0)
imposeObligation("InvReset",60x60)

}

Fig. 7. Law £g - Global Law (continued)

c. Global Law c,
Law £g is shown in figures 6 and 7. Its "preamble" specifies

that £g is a root law, and accepts certificates from CA repre
sented by keyHash. The control state has five protected terms
'inv(req(reqID), act(s), T(t))', 'numtlflnvinum)' 'totalPT(pt)',
and 'Acct(host(h), port(p))', 'InvPerH(h)'. They are used to
record the time t the controller T, receives a request reqID to
invoke a service s of SPi, the number of requests processed by
S Pi so far, the total processing time, the (host/port) of Acct's
application, and the number of service invocations requested
by SPi, respectively.

In arrived/sent events, the parameters reqcntlrespcnt are
the original client's SOAP request and SPi'S SOAP response,
respectively. The parameter reqID is used to identify a partic
ular client's request and its associated response. The client's
certificate cert, and the name of the service s the client wants
to invoke are extracted from reqcnt. s's parameters and their
corresponding values are in reqcnt.

Rule R 1 is the specification of £g'S adopted event, the
first event in the life of Ti, R 1 imposes an obligation to have
T; report SPi'S ART to Acct every hour. The (host,port)
of Acct's application is also added to T/s control state OSi.
Another obligation "InvReset" is also imposed to reset the
number of service invocations of the server every hour.

Rule R 2 , the first £g'S arrived event, is fired upon the
arrival of a request to Ti . T, first checks the request's type.
If this is a command from SA or Acct, T; updates OSi
accordingly, and the updated 0 S, will affect Ti's behavior. The
calling of the primitive operation "grant(-,-,genlaw)" signifies
that a controller revocation command is issued, and it is the

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B347

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B347

time T, is back as a generic controller and works under the
generic law £gen.

Otherwise, if this is a request from its associated server S Pi
for a service provided by S Pj , T; checks whether S Pi has
reached the invocation limit (1000 invocations) : if "yes", T,
returns a message "Limit reached" to SPi; if "no", T, extracts
and removes the "SOAP intermediary" value (called Tn) kept
in the SOAP request header, and forwards the modified SOAP
request to Tn using the operation ''forwardNext''. Recall that
Tn is the controller of S Pj • If this is the request from a client
of SPi, T; records the request's information by adding a 3
tuple (reqID, act, t) to 0 Si, and this arrived event is delegated
to a law refinement £i for further rulings. Specifically, the
delegate statement indicates that the goal arrivedCont is open
for refinements.

Rule R 3 , the second £g'S arrived event, is fired when a
message m is forwarded from a peer controller (called "peer")
to T; (called Self). Based on the parameter ''flag'', T; checks
if m is aforwarded request from Tj , i.e, SPj wants to invoke
a service of SPi and Tj has used the operation ''forwardNext''
to forward the request to Ti, If this is the case, T; will treat
m as a request from a normal client. Otherwise, i.e, m is a
response sent back from S Pj through Tj , T; will forward m
to SPi.

Rule R 4 , £g'S sent event, occurs when the response of a
request is sent back from SPi. Based on reqID and the term
inv(req(reqID),ser(a),T(t)) in OSi, T; calculates the request's
processing time and updates OSi. If SPi is under an audit,
i.e, there is a term "audit" in OSi, T; will report the request's
auditing information to Acct. Like R 2 , R 3 has a goal named
sentCont which can be refined by an £g'S subordinate.

Rule R 5 is discharged when the obligation "ReportART"
is due. This obligation requires T, to report SPi'S ART to
Acct every 60 minutes (60 x 60 seconds). Another obligation
"ReportART" is set to fire in the next 60 minutes. Similarly,
the obligation "InvReset" is fired each hour to reset the
number of service invocations of SPi, and T, re-imposes this
obligation.

D. Server Law t:
A conversation between SP and its client involves three ser

vices: "asks", "reserves", and "pays". The client c invokes the
"asks" service to query SP about available tickets (uniquely
identified by tkIDs) and their corresponding prices. We view
SP's response for the "asks" service as just for the client's
reference. c can use service "reserves(tkID, pp)" to propose
to buy the ticket tkID from SPat an exact price pp if it
makes a payment within a period of 20 minutes. Note that
pp can be different from the ticket's price returned from the
"asks" service. T does not influence SP regarding how to
deal with c's proposal. Therefore, if SP agrees, SP must be
accountable for its decision. c uses service "pays(tkID)" to
pay for its reserved ticket.

£, is shown in figure 8. £"s preamble states it is a law
refinement of £g. To record that client c successfully re
serves ticket tkID for a price p at time t, T saves a term

Preamble:
law £ refines £g
authority(CA, keyHash)

Rl)
UPON arrivedcont([reqID, s, reqcnt]) DO

add(Inv(req(reqID),act(s),T(curTime)))
IF (s=="asks") DO forwardRequest(reqcnt)
ELSE DO
{
id = searchST("TicketID", reqcnt)
cert = searchST("Cert", reqcnt)
IF (rs(tID(id) ,cl(),tP(),T(t))@CS) DO
{ --

-- cancel expired reservation of "id"
IF (curTime - t > 20 x 60) DO
remove(rs(tID(id) ,cl(_) ,tP(_),T(t)))

}
IF (s == "reserves") DO
{
IF (rs(tID(id) ,cl(_),tP(_) ,T(_))@CS) DO

forwardResponse("Somebody else has
reserved this ticket.")

ELSE IF (cert[issuer(CA),subject(c)]) DO
{

p=searchST("ProposedPrice",reqcnt)
add(pr(req(reqID) ,tID(tkID),

cl (c) ,tP(p)))
II create or find in CS c's nickname
n=findNick(c) ;
reqcntl=replaceST(n, "Cert",reqcnt)
forwardRequest(reqcntl)

}
}
ELSE IF (act == "pays") DO

IF (cert[issuer(CA), Subject(c)]) DO
{
IF ! (rs (tID (id) ,cl (c) ,tP (p) ,T ()) @CS)
DO

forwardResponse("Cannot pay for
a non-reserved ticket.")

ELSE DO
{
tl = curTime
add(paid(tID(id),cl(c),tP(p),T(tl)))
Acct(host(h) , port(p))@ CS
release (Self, [paid], h, p)
II create or find in CS c's nickname
n=findNick(c) ;
reqcntl=replaceST(n, "Cert",reqcnt)
forwardRequest(reqcntl)

}
}

}

R2)
UPON sentcont([reqID, respcnt]) DO

inv(req(reqID),act(s),T(_))@CS
IF (act == "reserves") DO
{
ans=searchST("ReservesResult",respcnt)
IF (ans == "Reservation Accepted.") DO
{
pr(req(reqID) ,tID(tkID),cl(c),tP(p))@CS
t= curTime
add(rs(tID(tkID) ,cl(c),tP(p),T(t)))
remove(pr(req(reqID),tID(tkID) ,

cl (c) ,tP(p)))
}

}
forwardResponse(respcnt)

Fig. 8. Refinement £,

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B347

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B347

rs(tID(tkID),cl(c),tP(p),T(t)) in OS. Rule R 1 refines the goal
arrivedCont delegated from £9 's arrived event. When c
"asks" SP for available tickets, T simply forwards c's inquiry
to SP. In both "reserves" and "pays" cases, T first cancels
expired reservation of the involved ticket, if any. It does so
by calling the function searchST("TicketID", reqcnt) to
extract the value tkID of the field TicketID in the SOAP request
reqcnt. Then, T removes any 4-tuple rs(tkID, client, price,
time) of which the elapsed time (curTime-time) is greater than
20 minutes.

Consider the case when c uses "reserves(tkID,pp)". If there
is a valid reservation for tkID, T returns to c the message
"Somebody else has reserved this ticket" and drops c's re
quest. This way, T prevents a ticket from being reserved
by more than one client at the same time. If there is no
reservation for tkID and if c presents a valid certificate, T
calls the function searchST(" ProposedPrice", reqcnt) to
extract the value pp of the field ProposedPrice in c's SOAP
request reqcnt. T saves c's proposal by adding into OS the
term pr(req(reqID), tID(tkID), cl(c), tP(pp) (which will
be used in rule R 2 of £), and forwards c's request to SP.

Consider the case when c invokes "pays(tkID)". If c's
certificate is valid and its reservation is still effective, Twill
sell the ticket to the client on SP's behalf. Specifically,
T adds the term paid(tID(tkID) , cl(c), tP(p), T(tl)) into
OS. This term serves as a receipt stating that c buys the
ticket tkID at price p at time tl. Next, T reports c's re
ceipt to Acct. Finally, T forwards the request to SP. Note
that T cannot control what S P would actually do with
the forwarded request "paysitkID)", but T can confidently
confirm that the ticket tkID has been sold to c. The receipt
paid(tID(tkID),cl(c),tP(p),T(tl)) kept by both T and
Acct will support c if any dispute arises.

Rule R 2 of£ refines the goal sentCont delegated from £9'S
sent event. If this is the response for a "reserves" request,
T extracts SP's decision ans which is kept in the field
ReservesResult of respcnt. If S P agrees, based on the term
pr(req(reqID),tID(tkID),cl(c),tP(p) in OS, T records
c's reservation rs(tID(tkID), cl(c), tP(p) , T(t)). Finally, T
forwards SP's response to c.

Note that we also implements the privacy assurance in Rl
of £. The main idea is to generate a unique nickname for
each client and keep a pair(client, nick) in OS. Each time T
receives a request, it checks whether there is a nickname nick
associated with client by looking for the pair(client, nick) in
OS. If this is the case, T replaces the client's certificate in the
SOAP request by nick and forwards the modified request to
S P; otherwise, T generates a unique nickname nick for the
client, adds term "(client, nick),' into OS, replaces the client's
certificate (in the SOAP request) by nick, and forwards the
modified request to SP. This way, even though SP does not
receive the client's certificate, S P is still able to determine
if the request is from a returned client based on the client's
nickname. In Rl of £, we uses the function "findNick" to deal
with the searching/creating a nickname for a given client.

VI. Discussion

A. Controller Service

To support large numbers of servers, which may operate
under a variety of laws, there is a need to provide a large set
of generic controllers that can be widely trusted to operate
in compliance with any valid law loaded into them. Such
a collection of controllers would serve the role of a trusted
computing base (TCB). But unlike the traditional TCB, which
is usually centralized, our collection of controller is designed
to be decentralized, and is thus referred to as decentralized
TCB, or DTCB. Such a DTCB needs to be provided by a
reliable service, called a controller service (CoS), which cre
ates, maintains, continuously tests, and certifies a distributed
collection of controller.

Such a CoS can be operated by an enterprise for its own
internal use; by a federation of enterprises for the use of its
members; or by a regional authority, such as a municipality,
for the use of servers in its range. The current implementation
of LGI provides an experimental version of a CoS. And
there is an ongoing research on techniques for protecting the
controllers maintained by a CoS from various kinds of attacks;
in particular, by intrusion detection, by making it harder to
target specific servers, or specific law; and by other means.

It should be pointed out that if our framework is to be
used by arbitrary servers all over the Internet, then the CoS
needs to be managed by a reputable commercial company or
governmental institution, whose business it is to provide its
customers with trustworthy controllers. This organization must
be willing to vouch for the trustworthiness of its controllers,
and to assume liability for their failures. Such an Internet wide
CoS is yet to be established.

B. Client Cooperation Prevents Servers From Cheating

In our current framework, for the sake of simplicity we
assume only SA can publish a server description to the UDDI
server. This way, SA can assure that only registered servers
are made known to clients through the UDDI server. Since
this assumption is described in laws, it it straightforward for
system designers to write laws to allow other principals to
access to the UDDI server. Such laws serve as access control
policies to the UDDI servers.

It is possible that a client may know a server's physical
endpoint, and sends a request directly to the server. In that
case, since messages exchanged between the client and the
server are not regulated by the controller, there is no guarantee
that the server's law is enforced. Here, our framework requires
the client's cooperation to make its interaction with the server
secure. The client cooperates by using the server's description
retrieved from the UDDI server. In our point of view, this is a
reasonable requirement because generally clients would act to
secure their benefits. If this requirement is satisfied, the client
server interactions are regulated by controllers, and servers are
not able to cheat.

Digital Object Identifier: 10.410BI/CST.COLLABORATECOM2009.B347

http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B347

VII. Related works

Some approaches have recently been proposed to verify
whether a service implementation conforms to its service
level agreement, as seen in the works of [12], [13]. These
two projects share our goal to provide assurances to clients
that servers in SOA systems honor their commitments. Both
of these provide means for verifying that certain promises
made by a server are actually satisfied. The verification is done
by inserting assertions into the code of the server program.
Although both projects employ a Trusted Platform Module
architecture, the clients of a given server cannot be really
sure that the correct verification has been done, because this
verification is very specific to the code of the server, which is
generally unknown to the clients. In our framework, server
commitments are explicitly stated in laws, which can be
examined by clients.

Other projects, e.g., [16][17][18], focus on verifying the
service behavioral contracts which are defined by the visible
interface of services. In [16], boolean formula associated with
messages help verify if a given message exchange is legal.
The works [17], [18] uses run-time monitoring to validate the
functional and non-functional requirements of web services.
However, in these works, non-functional requirements like
(C2) and (C3) presented in section (II) are not addressed.

There are several research projects which address the testing
phase of services, such as [19][20]. In these works services
are assumed to be honest, but their implementation may not
be correct. These frameworks provide useful tools for web
service developers. Such tools are also useful for clients who
want to verify the correctness of the service before using the
services. However, these works do not address one of our main
concerns: "would servers behave as they specified?". Note that
passing the test phase does not mean a server would always
operate as it committed.

The use of law hierarchy allows us to impose global
constraints on the interactive behavior of servers. Global
constraints ensures that certain system properties are met, and
in our opinion, is very necessary for SOA systems which
may consist of multiple heterogeneous servers, and may be
managed under different administrative domains. However,
imposing global constraints is not considered in the research
projects mentioned above. Moreover, our framework provides
a systematical vehicle to remotely manage the network of
controllers according to explicitly stated laws. This is a major
technical advantage when we need to deploy enforcement
components for servers which may be distributed over a wide
area of network.

This work is a significant extension of our previous one [11]
in the following aspects. First, we introduce and implement the
concept of using policies to specify how trusted components
collaborate to establish a network of LGI controllers to enforce
server commitments. Second, we show how LGI controllers
collaborate with the trusted components mentioned above to
regulate server interactive behavior which also includes server
server interaction, a common interaction in SOA systems

which is not considered in [11]. In this interaction, the two
controllers of the two involved servers dual-mediate messages
exchanged between a server and its peer server. Finally, all
collaborative actions are explicitly specified in LGI laws,
which makes the management of collaboration easier.

VIII. Conclusion

We propose a framework in which trusted components col
laborate to create a network of enforcement components, one
per server, to maintain proofs of what servers have committed
with their clients and peer servers. In tum, those enforcement
components collaborate with the trusted components men
tioned above to enforce server commitments, and to regulate
the interactive behavior of servers. Server commitments and
collaborative actions are explicitly stated as LGI laws, and are
strictly enforced by LGI mechanism.

We demonstrate the feasibility of our framework through a
case study. Our framework supports standards in SOA systems
and does not require any change to existing applications in the
system or to the SOAP-based protocol. We conclude that our
framework is practical and easy to integrate into existing SOA
systems.

REFERENCES

[1] J. Clausing. Trade commission says geocities violated privacy rules. New
York Times, August 1998.

[2] EFF. Aols massive data leak. http://w2.eff.org/Privacy/AOL/, August
2006.

[3] EFF. Eff complaint to ftc regarding aols massive data leak.
http://w2.eff.org/Privacy/AOL/, August 2006.

[4] T. Ryutov and C. Neuman. Representation and evaluation of security poli
cies for distributed system services. In DARPA Information Survivability
Conference and Exposition, April 2000.

[5] J. Vitek and C. D. Jensen. Secure Internet Programming: Security Issues
for Mobile and Distributed Objects. Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[6] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Businessoriented man
agement of web services. In Communications of the ACM Proceedings,
October 2003.

[7] N. Minsky and V. Ungureanu. Law-governed interaction: A coordination
and control mechanism for heterogeneous distributed systems. In ACM
Transactions on Software Engineering and Methodology (TOSEM), July
2000.

[8] X. Ao and N. Minsky. Flexible regulation of distributed coalitions. In the
8th European Symposium on Research in Computer Security (ESORICS),
October 2003.

[9] X. Ao, N. Minsky, and T. Nguyen. A hierarchical policy specification
language, and enforcement mechanism, for governing digital enterprises.
In IEEE 3rd International Workshop on Policies for Distributed Systems
and Networks Proceedings, June 2002.

[10] N. Minsky. Law governed interaction (lgi): A distributed coordination
and control mechanism. http://www.moses.rutgers.edu/, October 2005

[11] T. Lam and N. Minsky. Enforcement of Server Commitments and
System Global Constraints in SOA-based Systems. In IEEE Asia-Pacifc
Services Computing Conference (IEEE APSCC 2009), December 2009.

[12] J. Lyle. Trustable remote verification of web services. In 2nd Interna
tional Conference on Trusted Computing, April 2009.

[13] H. Rajan and M. Hosamani. Tisa: Towards trustworthy services in a
service-oriented architecture. In IEEE Transactions on Services Comput
ing Proceedings, December 2008.

[14] N. Minsky. Law governed interaction (lgi): A distributed coordination
and control mechanism. http://www.moses.rutgers.edu/, October 2005.

[15] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable bootstrap
architecture. In IEEE Symposium on Security and Privacy, May 1997.

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B347
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B347

[16] D. Kuo, A. Fekete, P. Greenfield, S. Nepal, J. Zic, S. Parastatidis, and
J. Webber. Expressing and reasoning about service contracts in service
oriented computing. In IEEE International Conference on Web Services,
September 2006.

[17] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed
services. In IEEE International Conference on Web Services, July 2004.

[18] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time mon
itoring of instances and classes of web service compositions. In IEEE
International Conference on Web Services, September 2006.

[19] W. T. Tsai, X. Wei, Y.Chen, B. Xiao, R. Paul, and H. Huang. Developing
and Assuring trustworthy Web services. In International Symposium on
Autonomous Decentralized Systems, April 2005.

[20] A. Betin-Can, T. Bultan. Verifiable Web Services with Hierarchical
Interfaces. In IEEE International Conference on Web Services, July 2005.

