
8346

Online Detection ofWeb Choreography Misuses

Murat Gunestas and Duminda Wijesekera

Abstract-Web service choreographies can be misused or
abused in two different ways. The first is to exploit the
underlying choreography to attack web services, that we call
service misuses. Instantiation flooding is one such attack. The
second is using web service choreographies to conduct illegal
businesses, that we call business misuses. Ponzi and Pyramidal
schemes belong in this second category. Due to the web service
interdependencies created in choreographed web services both
these kinds are difficult to detect. We show an online detection
system that would generate alerts of both these kinds of misuses.

Index Terms-Service oriented architecture; web service;
choreography; service misuse; business misuse; detection; alert;
sense and response

I. INTRODUCTION

DYNAMIC service invocations and message content
specific operations among choreographed web servers are

being deployed across many industries. Consequently,
exploiting these dynamic inter-dependencies could lead to a
new class of mal-actors - namely those that exploit these new
features and those that use them to conduct illegal business
schemes.

In addition to legal business schemes, illegal schemes can
be implemented in service oriented architecture. Such schemes
would be difficult to understand through microscopic
observation because most of the participants of such schemes
would be unaware of the macroscopic business scam.

There can be many illegal schemes. Two popular ones­
pyramid and Ponzi schemes-are difficult to differentiate
from Multi Level Marketing that either runs real business or
invests in others. However, the basic dynamics of
Ponzi/pyramid schemes is rob Paul to pay George. Ponzi [1]
ran such a scheme in recent history. For many years he
collected money and gave papers back promising return on
investment in 90 days. He actually returned the money to the
early investors using the money invested by late joiners. He
never ran a business that produced any profit or incurred any
loss because he did not invest in any other business.

Financial institutions and their business partners are moving
to service oriented architecture; and semantic web services are
building much more promise such as dynamic brokerage over
investment firms or the stock market. The work reported in [2]

Manuscript received August 1, 2009.
Murat Gunestas was with George Mason University. He is now with the

General Directorate of Security, Ankara, Turkey, (phone: +90 312-412-1709;
e-mail: mgunestas@egm.gov.tr).

Duminda Wijesekera is with the Computer Science Department, George
Mason University, Fairfax, VA 22030 USA, (e-mail: dwijesek@gmu.edu).

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B346
http://dx.doi.org/10.41OB/ICST.COLLABORATECOM2009. B346

proposes using queries that generate evidence of web services
behavior such as legal choreographies or misusing
choreographies in the case of Ponzi/Pyramidal schemes. Those
pattern queries generate evidence out of messages stored at
repositories. Especially, illegal business schemes may keep
running and dispersing over new web services as time passes.
Rather than post mortem or late detection there is a need to
have an online detection and alert mechanism for immediate
responses, such as informing potential victim services
regarding the spreading of illegal business activity. Online
detection capabilities provide an opportunity to prevent
endpoint services from engaging in identifiable malicious
activities, such as dataflow or denial of service attacks.

Through the paper, we describe how web service
choreographies can be misused in service oriented
architectures in Section 2. Section 3 describes our framework
for online detection of choreography misuses. In Section 4 we
describe potential software design architectures for the
proposed framework. Section 5 describes our online detection
model and different types of misuses that can be detected in
real time. Section 6 describes an alert model that can warn
potential intended endpoints, such as potential investors that
can be affected. Section 7 discusses related work and Section
8 concludes the paper.

II. CHOREOGRAPHY MISUSES

We consider misuses in choreographed web services
twofold: business level choreography misuses and service
level choreography misuses.

A. Business Misuses

As described earlier, we here mention that semantic
capabilities of web services can be exploited by mal-actors in
several ways. The mal-actors may even be orchestrators of
large business schemes that abuse choreography models, or
they can play the role as a partner in a choreography that
becomes malicious, and thus, deviating from the expected
choreographic behavior.

Deviating choreographies are those in which one or more
parties behave contrary to the specification. Such behaviors
may work for some partners' benefit. For example, a travel
agency may serve their best offer list in favor of chosen hotels,
car-rental companies, etc. They may also behave in a double­
faced way to conceal the misbehavior. The external behaviors
of services have to be observed in order to detect such
behaviors.

B. Service Misuses

Here we mention the exploits of some design flaws on static
choreographic models and the importance of detecting those

8346 2

Fig. I. The EGF in online mode. Two sided arrows illustrate Pair-wise
Evidence Generation messages while one-sided arrows depict invocations
between TTP (Trusted Third Party) and both EDWS and CEGWS at service
invocation time that lead immediate alerts for endpoint services and TTPs.

I:~ ~~
\ \ I I
\ \ / I
\ \ I /
\ \ I I
\ \ / I
\ \ / I

\ "' // /

"' "'-, <, // //

"...... \.\..J) ./,/
-, - .--.. _..... ,/'........ ---.:1-- .>,,- --------

subscribe to our proposed service, the evidence layer
establishes communication channels transparent to other
parties to collect and preserve communications at the bottom
layer of our framework. In order to do so, we design evidence
adapters that intercept invocation from/to the services and
forward them to the evidence framework. In our previous
work, we stored communication evidence in cryptographically
secure repositories in order to generate and derive evidence to
substantiate or refute claims of misbehavior [3]. In this
version, we upgrade them to function online by caching
evidence streams and querying these caches. To do so, the
bottom layer passes evidence indexes into upper layers at
service invocation time, thus feeding these services with live
evidences for mining evidence of complex actions out of
them. Having employed cache based live queries onto those
layers we propose a twofold response model: alert and prevent
(see dashed arrows in Figure 1).

_ --' Application Messages

:::::I Endpoint Web Services

-0 WS-Evidence Interface

>- Evidence Adapter Module

A. Pair-wise Evidence Generation

Our previous work [5] shows a prototype implementation of
the pair-wise evidence generation model and presents many
protocols based on two types of message exchange patterns
(MEP): One-Way and Request-Response. There, we provided
non-repudiation, fairness, and timeliness in our pair-wise
evidence. We used digital signatures to provide proof of
receipt and delivery, link a message to its creator/sender and
provide message integrity.

For accountability, we use fair non-repudiation mechanisms
that utilize Trusted Third Parties (TTP because, although there
are fair exchange protocols for two participants that do not use
a TIP (for e.g. Markowitch [6]), these protocols assume that
the participants have prior knowledge of the message contents .
We do not use them because web services may not always
know expected contents prior to receipt. We require timeliness
because of the time sensitive nature of most business

exploits even if they are unavoidable. Mal-actors in those
cases abuse the inter-dependency spanning over the web
services employed by static choreography models .

A Dataflow attack is a special type of service level exploit
that is difficult to detect because the attacker leaks malicious
code into services with good data . Unless the services check
the content, malicious data would pass between the systems .
[3] Describes a XSS (cross site scripting) attack scenario that
leaves a stepping stone as a suspected attacker. Such a
scenario again increases the need for externally observable
messages flows and exculpating the stepping stones from
unjust accusations. Some receiver web services, may also
consider detection, prevention, or using an online alert
mechanism.

Instantiationflooding [4] is a typical denial of service (DoS)
attack that can be launched on web service compositions.
Here, the attacker repeatedly invokes the receiver operation of
a process at the target web service. In response, the target
services engine attempts to instantiate every request, thereby
creating a DoS attack. Mostly, the hierarchical service
compositions may experience this attack. In such a case, an
attacker that knows the involved service interdependencies can
target a specific process. The attacker floods the process and
thereby alters the state of the choreography engine, leading to
resource-consumption on the engine . More lethal attackers
may target a different web service that runs another process
invokable by a stepping stone service . As designed, the
stepping stone may invoke the process that damages the actual
target. After flooding both services either of these would
crash; in any case, the actual attacker can blame the stepping
stone . Conversely, the web services that are in need of
maximum throughput may consider a detecting and/or
preventing such misuses.

III. OVERVIEW OF EVIDENCE GENERATION FRAMEWORK

In order to facilitate and base evidence generation on a
reliable infrastructure that can convince the services that want
accountability on their transactions and fast detection when
misused, we proposed designing an Evidence Generation
Framework (EGF) that preserves appropriate evidence to
recreate the composed web service invocations independent of
the partners of the transaction. This would have a greater
chance of being accepted at any stage of disputes resolution.
EGF is based on a three level model, as shown in Figure 1.
The bottom layer provides pair-wise evidence. The middle
layer derives new evidences from pair-wise evidence. The
purpose of these derivations is to either refute or justify claims
of SLA violations or to prove violations of their partners. EGF
will provide on-line evidence management capabilities to
other web services as a web service itself. To gain these
capabilities, the EGF would be integrated (see WS-Evidence
interface and evidence adapter modules) with endpoint web
services that require their services - referred to as member
web services of EGF. In order to do so, it provides a
centralized service access point to its customer web services.
This information, retained by EGF acting as a trusted third
party, can be directly given to their members, assigned
arbiters, or forensic examiners.

In order to be successful, other web services need to use our
evidence generation framework as a neutral third . If all parties

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8346

8346 3

Fig. 3. WS-Evidence as a layer for web services stack. Notice that security
specifications such as WS-SecureConversation and WS-Trust underpin WS­
Evidence as well as it can underpin any upper level specifications (e.g. WS­
BPEL for business processes and WS-CDL for choreography modeling)
represented by WSDL (Web Service Definition Language).

Figure 3 shows how WS-Evidence is applied to a message
that flows through web services and their existing stacks
Flows 1 and 6 show the activity performed by the agents;
flows 2 and 5 show the wire communication at SOAP level;
and 3 and 4 represent inputs and outputs in TTP. Therefore,
TIPs can manage the protocols between web service pairs.

misuses, thus leading to immediate feedbacks to the bottom
layer for probable prevention.

C. Comprehensive Evidence Generation

The top layer can use a rule engine or mining system to
generate global (multi-party) facts, thereby being able to
reveal misuses that are not directly evident in pair-wise
message records (first layer) and cannot be revealed by
deriving the evidences at the second layer. Through the paper,
we demonstrate how online evidences of complex scenarios
can be mined from evidence of observed interactions of pair­
wise communications. We generate alerts for potential
victims, investigators, or arbiters of such global misuses so
that they can take immediate actions .

D. WS-Evidence Layer

The following are necessary for EGF systems to function as
required:

--A new layer called WS-Evidence is along with the
XML schema for used messages and stored records.

-- A specific evidence generation adapter module to re­
route all transactional messages of member web services of
the FWS framework through FWS servers . Those adapters
absorb WS-Evidence alert messages so that the endpoint web
service can take appropriate actions

--A specific evidence generation adapter module to re­
route all transactional messages of member web services of
the FWS framework through FWS servers . Those adapters
absorb WS-Evidence alert messages so that the endpoint web
service can take appropriate actions .

--The underlying layer to WS-Evidence should be
applied to provide a trust base and cryptographic services (e.g.
any WS-Security module).

--Specific patterns and the queries are designed to
provide evidence generation at various levels. Online versions
of those detection queries are designed for generating
evidence against service misuses and global misuses .

--An alert and prevention model is designed to keep
relevant member services up-to-date regarding misuse
activities currently emerging.

Sender WS Receiver WS

WS-BPELIWS-CDL...

WSDL

) WS-Evidence

f'/S-SecConvIWS-Trust

• SOAP

(6

4)

FWS(TTP)

... WS-Evidence

I WS-SecConv.
WS-Trust

• SOAP
)

(3..
(2

WS-BPELIWS-CDL...

WSDL

WS-Evidence (1)

WS-SecConvIWS-Trust

SOAP

~ ~
~ IE" denceModylelSender! I I FWS:TTPI I IE, jdenceModylelRecejver!Ii

: Envelope(Message) : . . : '
~ -+! creates essonaeqcest I Ir- - - - - - - - -+ - - - - - - -t>:

, CreateSessionResponse II+- I

, OnaWay I I

! .~: ::> Store(O neWay) i :
:. OneWayAck ~ ~ Onaway . i Envelope(Message) :

~ T~rm~t~..!QJl.~ '~lc:(~e~y:~ --:
I I I '
I I I '
, I I I

, I I '
I I I '
, I I I

, "I I:

Figure 2 illustrates a one-way SELP protocol and follows
the steps below :

1. The evidence module in the Sender side intercepts the
request of an envelope and pause the message.

2. Creates and sends a CreateSessionRequest to the receiver
web service for the target operation.

3. On receipt, the evidence module on the receiver side
receives creates and sends a response message back to the
sender. It also creates a session.

4. Sender sends a one way «#sessionl #message
I#signaturesender-K (#sessionl"4"1# env ») message to the
TIP.

5. The TIP receives the one way message, stores the
message, and forwards it to the intended receiver. It also
creates, signs, stores, and sends OneWayAck
«#sessionl#messagel#signatureTTP_K (#sessionl"5"
I#env») to the sender.

6. The receiver's side evidence module intercepts the
message , validates and extracts the message envelope to
release it to the expected receiver operation.

7. Sender's evidence module creates and sends a
TerminateSession message to the receiver web service for
the related session, thus, terminating the session.

B. Evidence Derivation

In the second layer, endpoints can gather evidences from
TIPs at any time rather than service invocation time. In order
to generate evidences from TTPs for specific time intervals we
rely on the evidences stored at TIPs. Evidences gathered this
way can be used by a web service to exculpate it from
accusations. Depending upon the service level agreements, the
number of evidences would increase. Our prev ious work [5]
explains samples for evidence of violations against time-out
agreements and scheduled invocations between two endpoints.
We here demonstrate how Evidence Derivation Services
(EDWS) can derive evidences regarding service level online

Fig. 2. The sequence diagram illustrates Pair-wise Evidence Generation.
Notice the scenario is one-way using inline TTP.

transactions. We base our evidence records on time observed
atTTPs.

Evidence servers gather pair-wise transactional evidence
that flows between sender and receiver web services,
employing inline TTPs using the Simple Evidence Layer
Protocol (SELP) or offline TIPs using Optimistic Evidence
Layer Protocol (OELP) of Herzberg's [7]. SELP and OELP
are two protocols used by end-points to obtain non-repudiable
evidence by using a specific message format and digital
signatures.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.org/10.4108//CST.COLLABORATECOM2009.8346

8346 4

Fig. 5. Online CEGWS architecture. Notice MEl tuples are processed along
with abstraction tables for the sake ofmore generic detection of misuses.

Misuse Abstraction Tables (e.g.
messa e types, web service roles)

V Abstraction Input Adapters

8 Abstraction Tuples

The CEG (Comprehensive Evidence Generation) Web
Service collects MEl records from other FWS-TTP stations.
These records are stored and sent to MEl input adapters to be
processed for evidence of business misuses or generating other
comprehensive evidence. The web service accepts one way
WS-Evidence messages including MEls from TTP stations.

The MEl Input Adapter is a live input adapter accepting
SOAP messages and emit MEl tuples in real time into
applications that detects misuses. As the StreamBase input
adapter, this API (e.g. JMS, IBM MQ) can extract index
records from WS-Evidence SOAP messages and pass the MEl
records into StreamSQL for querying. MEl tuples are
produced by MEl input adapters. The Sort Operator, using an
on-demand window size, sorts incoming records before they
are fed to StreamSQL based queries.

Misuse Pattern Queries are based on a particular pattern
query language , streamSQL, and as shown earlier, discover
misuse. Alert outputs are mostly designed in SELECT parts
of streamSQL queries that mine for misuse patterns. The type
of detected misuse is the essential part for any alert output so
that the alert output adapter can take appropriate action and
the alert client can invoke web services that might be affected.
The schema below shows the essential fields for a typical alert
output.

IV. ONLINE EGF ARCHITECTURE

The EGF introduces two potential architectures for online
detection, prevention, and alerting. The first is for business
misuses, thereby employable remotely on a central system that
gathers all messages. The second is for service misuses,
employable at TTP stations mostly for prevention purposes or
marking the malicious activity for detection purposes.

A. Business Level Design

A central online web service called CEGWS generates
comprehensive evidence of business misuses. As shown in
Figure 5, during alerts, CEGWS collects Message Evidence
Index records from TTPs at their service invocation times .
CEG alert clients send alerts to relevant web services that
could become a potential victim .

I 0·'o 0
o 0

K)•••••[ii]..-------------, = -
.p MEl Input Adapter - 0-
••• MEl Tuples 0 \\.))

B Misuse Pattern Queries ~ ~

Q Alert Output Adapter

5! Alert Outputs

CEGWS

Receiver

TABLE I
MESSAGE EVIDENCE INDEX TABLE (MEl)

ID Time Sender Receiver Msg Content
63.. 21 A B r <..order..>
67.. 22 B C m <...>
68.. 23 C B k <..pay..>

In order to enrich the EGF with online capability, we
propose enhancing the pair-wise evidence generation process
at TIPs (remember step 5 in section lILA) . The pseudo BPEL
diagram in Figure 4 shows a typical delivery process
connecting to online services at service invocation time, thus
leading to online detection, prevention, or alert mechanisms
on demand .

The pseudo BPEL process above shows sender-receiver
interactions and live detection invocations rather than detailed
activities through the process . The delivery process at TTPs
extracts each message received (notice the first Receive in
Figure 4) in MEl format where sender and receiver fields are
extracted from #session-msg and content fields from the
#message parts of a WS-Evidence application message (e.g.
OneWay in Figure 2); and ID and time fields are assigned by
the process itself-and stores them at FWS stations . In order
to glue the process to online services for detection, prevention,
and alerting we enrich the process as described above. That is,
we forward MEls into EDWS (notice the Invoke after first
Receive) and CEGWS (notice the Invoke before Reply) thus
empowering the EGF framework live detection capabilities.

Fig. 4. Deliver process running at TTP for online EGF. Notice activities
invoking both EDWS and CEGWS for online detection .

•
Reply

Sender

E. Delivery Process for Online EGFs

The EGF provides online detection by means of two
services: CEGWS (Comprehensive Evidence Generation Web
Service) and EDWS (Evidence Derivation Web Service). The
former generates evidence against global and complex misuses
and the latter generates evidence against service misuses .

in{ Oke

Rec~ive
I

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8346

8346 5

.fO Local Input Adapter

o8 Query Parameter Tuples

Q Invoked by Deliver Process

_ Invoking Deliver Process

D Invoking GEG Web Service

I'- . . -
II

II

II

II

II

I I

II

II

II

II

I I
. _. _. _ . _. _. _ . _. - II

. _._._._. _._._._._..
I

..... ..{> alerts

- -I> detects
«uses»

--{> uses

-

EDWS is invoked by the Deliver processes at TTPs at
service invocation times . The records are processed by the
StreamSQL pattern queries for service misuses such as
instantiation flooding or malicious content. The tuples are
marked if they feature the misuse pattern and in accordance
with the policies, the deliver process either terminates those
sessions or lets them run.

The architecture employs Regex readers to read malicious
signatures from a signature file and the related query loads
them into a memory table for further lookup in the detection
process.

Other types of readers or local input adapters parse other
service level agreement (SLA) files in order to load significant
threshold values into lookup tables queried during detection.

The EDWS Message Client marks the messages involved
in any misuse . As a typical web service client invokes the
deliver process back addressing the second receives activity
(recall Figure 4) in the process.

The EDWS Alert Client is different from the CEG alert
client because it connects only to CEG web services rather
than endpoint web services. It creates messages in MEl format
with a specific msg value "alert" and the content value as
defined in the defined alert message . Unlike TIP stations,
EDWS clients send alert messages in MEl format inside store
messages.

V. THE ONLINE DETECTION MODEL

Most intrusion detection either detects anomalies or
misuses, of which we use the latter . In addition, we categorize
the misuses over web services. We classify them as service
misuses that are targeting services directly. Denial of service is
the most common technique to misuse any services, thus very
likely to target web services. Dataflow attack is another way
of employing a misuse mostly exploiting vulnerability at
endpoint web services. The most complex misuses over web
services would be business misuses.

I l)o 0
o 0
o '""Ii=. =.=""'. '---------'

cIIo··~hnbl · · : · .:···0'-
r---,-------- - = ~

-0 Message Input Adapter ~ =
••• Message Tuples U 0

IB Misuse Patter n Queries~"\.I "\.1
0 , Alert Output Adapt er .' .. .
Ii Alert Outpu ts .

••• Marked Tuples

Evidence modules at endpoints or specifically designed
XML firewalls can absorb the alert messages in the above
format. They can take immediate actions such as creating a
rule ignoring messages coming from suspected malicious
actors or creating a black list of web servers .

B. Service Level Design

A local online evidence derivation web service , that we
refer to as the EDWS generates service level evidences. As
shown in Figure 6, it receives the envelopes from the deliver
process at TIPs prior to their service invocations, and
prevents or marks relevant messages. EDWS Alert clients
send alerts to CEG web services so that they might be used in
further investigations.

We propose an application level prevention model, that is,
the Deliver process conducts early detection by invoking the
EDWS . The process pushes messages into locally
implemented EDWS that run StreamSQL queries that in tum
can invoke a local detection service that marks suspected
messages.

As described in Figure 4, one option is to terminate
suspicious instance or branches of the choreography or
continue with the rest of the process. However, in either case,
an alert message is produced and sent to CEGWS for further
investigation. This is done by the alert client as illustrated in
Figure 6.

The Alert Output Adapter processes over the alert outputs
and based on the type of misuse it calls Alert WS-Client to
send alert messages.

The Alert Client is a typical WS client called by the Alert
Output Adapter when a misuse is detected. It creates a SOAP
message stream with endpoint web services using WS­
Evidence alert messages. It fires one-way alert messages as
including the details described below.

Alert messages contain information related to a business
misuse . Business misuses may be in several types
(misuse_type) and each types of misuse may feature various
schemes (misuse_code). We, therefore, propose coding each
scheme distinctly. Each misuse scheme consists of one or
more malicious actors , and can be of the following form.

Local Resources (e 9 signature
fli es thr eshold va lues. SLA s)

Fig. 6. Online EDWS architecture . Notice that local resources are involved
in the process of detecting service misuses. Fig. 7. Business misuse case. Notice a malicious service (WSI) misuses

others using particular illegal business schemes. Timely invoked CEGWS
detects the malicious activity and produces alerts.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8346

8346 6

TABLE III
WEB SERVICE ROLE TABLE (WSRT)

Given Table III we achieve abstract the roles using the
following queries:

A. Online Detection ofBusiness Misuses

Web services build choreographies and perform illegal
business activities such as Ponzi schemes, pyramid schemes,
or global money-laundering schemes. Our detection model
looks for specific misuse patterns featuring such activities. We
propose a heuristic algorithm for discovering Ponzi-like
misuse of choreographies in our previous work [2]. However,
we need more abstract patterns to detect business level
misuses without being dependent on any specific scenarios.

ID Service

1 A
2 A
3 C
4 D
5 A

Role

Investee
Investor
Investor
Bank
BankCustomer

regexmatch(".*"+payMEI.receiver +".*", investMEI.content) (3)

Using More Abstract Content Linkage
Our previous work uses exact XPaths of linkage parameters

through the message. Here we generalize this by using regular
expression matching through the entire message content. The
following example searches for a promoter reference through
an invest message without binding to a specific path of a
specific schema.

Hereafter we show how to mine business misuse instances
of given patterns over live MEIs of all observed web
transactions using streamSQL [8] and a StreamBase platform
[9]. StreamSQL is an event pattern language that can be used
to defme queries over streams of data and StreamBase is an
event processing platform that can run those queries over live
input streams from a file or a database and produce outputs.
StreamSQL has several commands, ofwhich we describe a few
that we used. CREATE INPUT STREAM creates data streams
from a named file pre-configured in a known schema.
CREATE OUTPUT STREAM creates an output stream pre­
configured according to a schema. The PATTERN phrase is
used to define the search criteria from multiple input streams.
A WITHIN phrase is used to create the maximum size of a
window that moves along a collection of aligned streams
searching for a pattern. Query 1 is in streamSQL and that can
detect an abstract misuse pattern, say, of what happens in real
time. For example, below, we can define a real life Ponzi-like
pattern for "B robs A to pay C" using invest and pay message
types:

WSRT.service==MEI.receiver AND WSRT.role=="Investee"
WSRT.service==MEI.sender AND WSRT.role=="Investor"

(4)

(2)

and
and

invest.sender=A
pay.sender=B

invest; pay where
pay.reciever=C and
invest.reciever=B and
invest.recruiter=pay.reciever

Given Table II and a MEl record, instead of
MEI.msg=="invest" or MEI.msg=="pay", we abstract invest
and pay message types using the following pattern queries:

1 PayInput Pay
2 SendPay Pay
3 PayRequest Pay
4 Investment Invest
5 InvInput Invest

Abstracting Misuse Patterns
The query proposed in [2] is concrete and can be strictly

applied to a specific domain of misuses. For example, our
heuristically discovered patterns would apply only to one
specific orchestrator of the scheme. Here, we propose
abstracting those concrete patterns to address more misuses
that may occur than those based on a single orchestrator. To
achieve this, we use role based abstraction to generalize the
endpoint web services' involvement in the service
choreography. We also use type based abstraction to
generalize messages flowing between endpoints. In order to
determine the roles and types of web services and messages
pertain, we propose using two methods; the first is to mine
past data and learn their classes and the second is to get their
roles at registration time. Using these techniques, we create
type and role tables for messages and web services,
respectively. Through this paper, we assume we already have
those classification tables and PEG services having access
those tables.

TABLE II
MESSAGE TYPE TABLE (MTT)

ID Message Type

Mapping Messages to Types
SOAP envelopes carry message names. But different XML

schemas may use different names for the same entity, such as
a pay activity being called "payInput" or "sendPay" in Table
II. Hence, we use a type table that is a one-to-many mapping
ofnames to types.

Mapping Web Services to Roles
Similarly, we need to map we services to roles for which we

use a role table that maps a service to its potential roles. A
(WSRT) is a one-to-many mapping of web service to roles. As
shown in Table III, service A acts as an investment company
accepting invest messages from investors and as an investor
investing in others.

MTT.message==MEI.msgAND MTT.type=="Invest"
MTT.message==MEI.msgAND MTT.type=="Pay"

(1) invest; pay notation in (4) denotes that invest message type
is required to observe before pay message type where the rest
of the criteria in (4) should also meet. Query 1 looks up invest
and pay types using actual message names over MTT as in (1)
as well as investor and investee roles using actual sender and
receiver service names over WSRT as in (2) for abstraction. In
order to fmd recruiter link between invest and pay message,
the query uses abstract content linkage method as in (3).

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B346
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B346

8346 7

. ..

Fig. 8. Detecting Ponzi-like patterns. Notice two rectangles illustrating
snapshots of detected invest;pay patterns.

- . 1 , 1 1 1 , 1 9

987

invest pay pay
C~O O~ B X~Y

-<..: 8 .>-

65432

order invest buy pay ship
X~Y B ~ O X~Y O~A Y~X

'< ..»A., ' ""

invest
A~O

pay

Figure 8 shows how two Ponzi-like recruits are detected
using the window of size 3 from a collection of 9 MEls. It
depicts how messages in a MEl table come into the query and
are processed as two separate streams shown as pipes, where
transparent rectangles represent two different snapshots of the
query window; one that arrived at time 5 and the other that
arrived at time 8.

Detecting few Ponzi-Iike recruits may provide little
confidence in declaring that a Ponzi scheme was detected. In
order to increase the confidence we can define some minimum
support value as threshold thus alerting only when it meets.
The query below can be added to strengthen the previous
detecting query along with a predefined minimum support
value. Query 2 alerts each time at least 6 Ponzi-like recruits
are detected over the output of the previous query. Query 2
can be added to Query 1 to decrease the number of false
positives.

DeteetRecruits
Description: Glides over MElsusing window size 3 to detect
pattern (4) along with the predicates specified in WHERE clause,
Input:MEI tuples
Out ut: Emits Ponzi-Iike recruit MEl airs

Query I. Detecting recruits ofPonzi schemes.

1 CREATEINPUTSTREAMMEl($MEIschema);
2 CREATE INPUTSTREAMMessageTypesln (

10 intomessage string. type string);
3 CREATE INPUT STREAMWSRolesln (

10 lnt, service string. role string);
4 CREATEOUTPUTSTREAMPonziDetectOut ;
5 CREATE MEMORY TABLEMessageTypesTable (

10 int, message string. type string) PRIMARYKEY(IO) USINGbtree;
6 CREATE MEMORY TABLEWSRolesTable (

10 lnt, service st ring. role string) PRIMARYKEY(lD)USINGbtree;
7 INSERTINTO MessageTypesTable (10. message, type)
8 SELECT10. message, type FROM MessageTypesln;
9 INSERTINTO WSRolesTable no. servi ce, role)
10 SELECT10,service. role FROMWSRolesln ;
11 CREATESTREAMInvestFilterOut ;
12 CREATESTREAMPayFilterOut ;
13 SELECT* FROMMEl, MessageTypesTable AS MTT.

WSRolesTable ASWSRTlnvestee, WSRolesTable ASWSRTlnvesto r
14 WHERE MTT.message==MEl.msg AND MTT.type=="invest" AND

WSRTlnvestee.service == MEl.receiver AND
WSRTlnvestee.role=="lnvestee"

15 INTO InvestFilterOut
16 WHERE MTT.message==MEl.msgANDMTT.type=="pay" AND

WSRTlnvestor.service == MEl.receiver AND
WSRTlnvestor .role=="lnvestor"

17 INTO PayFilterOut;
16 SELECT"Ponzi-Iike recruit" ASdetected. investtime AS lnvest'I'ime,

pay.time AS payTime, pay.receiver AS recruiter,
investsender AS recruitee

17 FROMPATTERN(lnvestFilterOut AS invest THEN
PayFilterOut AS pay)

18 WITHIN 3 (days) ONtime
19 WHERE invest receiver==pay.sender AND

regexmatch(".*"+pay.receiver -".". investcontent)
20 INTO PonziDetectOut;

Query 1 accepts live MEl records sorted in ascending order
of timestamp by a sort operator. It also accepts message type
table in line 2 and web service role table in line 3 from the
local source and loads them into memory tables in lines 7-10.
In order to successfully process the abstracted pattern query, it
filters the records into two: invest and pay, employing the
predicates defined in lines 14 and 16. Notice the WHERE
clauses in these predicates employ abstractions by looking up
type and role tables as described earlier. Having invest and
pay streams separate, the query, now, employs the appropriate
template (see THEN phrase) in line 17. That is, invest
messages are expected before pay messages. Predicates
defmed in line 19 say that the receiver of the invest message
should be equal to the sender of the following pay message
and the promoter value in the content of the invest message
should be the receiver of the following pay message, The
window size is arbitrarily set to 3 in line 18. The SELECT part
gathers the required information about the detected pattern and
emits the result to the PonziDetectOut table.

AlertRecruits
Description: Counts over detected Ponzi-Iike recruits using
window size 6 as minimum support Emits Ponzi alerts when
minimum support is reached
Input:PonziDetectOut from detectRecruits
Out ut:Ponzi alerts

1 SELECT"Ponzi Alerts", counq) AS minSup
2 FROMPonziDetectOut [SIZE6 TUPLES]
3 INTO PonziAlerts;

Query 2. Enhancing Ponzi detection.

B. Online Detection ofService Misuses

Unlike business misuses, service misuses do not need a
global perspective to indicate illegal intent. Even only one
malicious message can launch an attack or exploit some
vulnerability at a target web service. Or a specifically
designed set of messages can employ exploits at a target web
service. For both cases below we briefly describe malicious
content and instantiation 0/flooding techniques and propose
detection queries for them.

Malicious Content
Here the signature of the misuse would be malicious content

carried inside the messages. A typical example would be XSS
attack described in our previous work [3]. Detecting such
attacks needs less complicated queries than scanning the
content using a comprehensive library of malicious scripts.
Assuming we already have such a library, Query 3 detects
messages that contain malicious scripts. Those script

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8346

8346 8

Query 3. Detectingmaliciouscontent.

TABLE IV
SIGNATURE TABLE (ST)

signatures might be derived from some prevention cheat
sheets such as OWASP's (Open Web Application Security
Project) [17].

DetectMalicousContent
Description: Checks every message content if there is a
malicious content.
Input: MEltuples
Out ut: Emits matched attacks

Query 4. Detecting instantiationflooding

VI. THE ALERT MODEL

Having generated enough evidences regarding a misuse, our
framework sends targeted alerts. In order to introduce a stable
and robust alerting framework we have to address two issues:
First, we need to defme the domain of web services that can
benefit from such alerts. Second, we need to tune the queries
to produce only one alert for each detected misuse and
minimize false positives. Our answer to the first question is
that alert type can be used to determine the web services that
can benefit from the alert. As an answer to the second
question, we describe a method to scale down the number of
alerts.

A. Scaling Down the Alert Domain

We describe three ways to narrow the alert recipient
domain. First, depending upon misuses we consider alerting
only dependent web services - that is those that depend on the
services of a potentially misbehaving service. In order to
determine that, given a message we create a dependency tree

DetectInstantiationFlooding
Description: Usingtime based window checks if there is a set
of messages targeting at same receiver exceeding its
threshold in number.
Input:MEI tuples
Out ut: Emits alert containin the count and time interval

1 CREATEINPUT STREAM MEl ($MEI schema);
2 CREATEINPUT STREAM Thresholdsln (

ID int, service string, threshold int);
3 CREATEOUTPUT STREAM DoSsOut ;
4 CREATEMEMORYTABLEThresholdTable (

ID int, receiver string, threshold int
) PRIMARYKEY(ID)USINGbtree;

5 INSERT INTO ThresholdTable (ID, receiver, threshold)
6 SELECTID,service, threshold FROM Thresholdsln;
7 CREATESTREAMAggregateByTimeOut ;
8 SELECTsender, receiver, countf) AS count,

firstval(time) AS startTime, lastval(time) AS endTime
9 FROM MEl [SIZE 8 ADVANCE 1 TIME OFFSET 0]
10 GROUP BY receiver, sender INTO AggregateByTimeOut;
11 SELECT"Instantiation Flooding" AS misuse, a.sender AS attacker,

a.receiver AS victim, count, a.startTime, a.endTime
12 FROMAggregateByTimeOut a, ThresholdTable t
13 WHERE count>t.threshold ANDa.receiver==t.receiver
14 INTO DoSsOut;

Query 4 accepts live messages in MEl tuples and loads
service thresholds prior to its run in lines 5-6. Service
thresholds may reside in a database table or a regular
expression file. In either case, there are readers and database
clients to pass tuples into the input adapter, thus allowing them
to be used in matching thresholds. Because actual frequency
of the messages determines whether a set of messages is
declared malicious, Query 4 uses a time window rather than
timestamp values that are inserted inside records. That is,
messages incoming every 8 seconds are processed by the
query, and the window shifts every second as coded in line 9.
For every 8-second sets of messages the query groups the
messages in sender and receiver fields in line 10 and selects
the count values for each group in line 8. The WHERE clause
in line 13 detects if there is an "Instantiation Flooding"
attempt from a certain "sender" (called attacker) based on
"receiver" (called victim) services' threshold criteria in a 8­
second window of live MEl records. Finally the matching
result is emitted in line 14.

<script>
Ish
Ibash
<script>

Signature

1 XSS
2 BufferOverFlow
3 BufferOverFlow
1 XSS

ID Misuse

TABLE V
WEB SERVICE THRESHOLD TABLE (WSST)

ID Service Threshold

1 A 4
2 B 19
3 C 99
4 D 23

1 CREATEINPUT STREAM MEl ($MEI schema);
2 CREATEINPUT STREAMAttackSignaturesln (

ID int, name string, signature string);
3 CREATEOUTPUT STREAMAttacksOut;
4 CREATEMEMORYTABLESignatureTable (

ID int, name string, signature string
) PRIMARYKEY(ID)USINGbtree;

5 INSERT INTO SignatureTable (ID, name, signature)
6 SELECTID,name, signature FROM AttackSignaturesln;
7 SELECTSIG.name AS misue FROM SignatureTable AS SIG,MEl
8 WHERE regexmatch(".*"+SIG.signature+".*", MEI.content)
9 INTO AttacksOut;

Query 3 accepts live messages in MEl tuples and loads
attack signatures prior to their run in lines 5-6. Attack
signatures may reside in a database table or a regular
expression file. In either case, there are readers and database
clients to pass tuples into the input adapter, thus allowing them
to be used in expression matches at line 8.

Instantiation ofFlooding
Another service level misuse is denial of service. Below the

SOAP layer the problem is the same with typical DoS over
HTTP services. However, for web services, the transport layer
may vary, thus a SOAP layer solution would be helpful.
Assuming that TTP processes run over hardware with high
computation power, we address instantiation floods targeting
receiver services. Each receiver web service may declare
different thresholds for its processes depending upon their
business logic or memory usage. Therefore, as shown in Table
5, there is need to have a table at TTP stations storing web
services, and relevant threshold values of maximum
throughput, say, per second, against probable instantiation
flooding attacks.

Digital Object Identifier: 10.410811CST. COLLABORATECOM2009. 8346
http://dx.doi.orgl10.41081ICST.COLLABORATECOM2009. 8346

8346

starting from that message as the root. Second, for some
misuses we may need to know the types ofweb services that
have the potential to become a victim. As described earlier,
Ponzi schemes target investor web services (i.e. that have the
type of investor). The third is that some actors that may invoke
other Use Cases also need to be alerted . Now we provide the
details .

MEl
Tuples

Query
Outputs

lnve st ord er Inve st buy Inves t inve st pay ship Invest pay
A ~O A ~B B --)K K ?O O -)L X -)Y L -)M O-)A Q -)O Y ~X

•••..............••.............•.............•..............•.............••
4 5 6 8 9 10

9

GenerateDependencyTree
Description: Tracing forward the MEls, outputs an appropriate
table to create tree-view of the downstream dependents.
Input: MEl tuples
Out ut:

1 CREATEINPUT STREAM MEl ($MEIschema);
2 CREATEINPUT STREAM Dependentsln (service string);
3 CREATEOUTPUT STREAM DependentsOut (

time timestamp, invoker string. dependent string);
4 CREATEMEMORY TABLE DependencyTable (service string)

PRIMARYKEY(service) USINGbtree;
5 INSERT INTO DependencyTable (service)
6 SELECTservice FROM Dependentsln;
7 INSERTINTO DependencyTable (service)
8 SELECTdependent FROM DependentsOut;
9 CREATESTREAM NotlnTreeOut;
10 SELECTMEL', dt_outservice AS inTree
11 FROMMEl OUTERJOIN DependencyTable ASdt_out
12 WHERE MELreceiver == dt.out.servlce INTO NotinTreeOut;
13 SELECTNITO.time AS time, NITO.sender AS invoker,

NITO.receiver AS dependent
14 FROM NotlnTreeOut AS NITO, DependencyTable ASdt
15 WHERE NITO.sender==dtservice ANDisnull(NITO.inTree)
16 INTO De endentsOut;

Query 5. Generating dependency tree (forward)

Dependency Tree Generation
Learning dependencies over past message interactions help

in detecting potentially affected services . First, one can trace
back to learn possible web service invocations causing the
suspicious activity; and second, tracing forward could allow
one to learn downstream invocations possibly caused by the
misbehaving service. However, the observed messages in
these two directions may not necessarily be linked to each
other. For example, when A sends a message to Band B sends
a message to C, the first message may not have to be the cause
of the second. Authors work to exactly correlate message
sequences in choreographies [10]-[11]. Basu, Casati, and
Daniel [12] proposes a probabilistic model that attempts to
predict message correlations with various probabilities.
However, we do not need exact causal correlations to obtain
the downstream dependents of a message. Instead, we propose
Query 5 that learns downstream dependencies of a web
service. The query expects to start from a record in the past
and traverses the records forward generating a table of
dependents.

Query 5 accepts MEl records and a root web service as
shown in line 2. The query loads (lines 5-6) the root service
into the DependencyTable which is created in memory and
is appended each time a new dependent service is found. The
SELECT in lines 10-12 retrieves the MEl even if the receiver
of the MEl is not in the table and adds a new field, inTree, as
null. The next SELECT checks if the inTree value is null and
the sender is in the DependencyTable. If the criteria meet in
line 15 the output stream (notice "FROM DependentsOut")
inserts a new dependent service into the table in lines 7-8, thus
building a downstream dependency table.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8346
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8346

Invoker

A A A A A /Dependency
/ / \ / \ /\ / \Trees Depend ent0 o BOB o B o B

\ / \ / \ ~ NewK L K L K Depend ent

I 'A' Inserted

M

Fig. 9. Generating dependency tree in action. Notice Query Outputs and
corresponding Dependency Trees as query traverses forward In time over
MEl records .

Figure 9 illustrates the actions that Query 5 takes over a set
of MEl tuples listed at the top. Tuples at times 1,2,3,5, and 7
meet the criteria of the query, and. it emits outputs including
invoker and dependent fields. These two fields lead to
building dependencies in tree form.

Web Service Types
The EGF requires web services to register under specific

role types, such as "investor", "investee" or "bank". This
could be associated with related misuse types. That is, an
investor web service might be a victim, promoter, or a
prospective victim for a Ponzi-like misuse as defined earlier.
This could help the EGF to alert the exact web services when
a specific misuse is detected by looking up the potential web
services of the associated type. For example, only investor
web services would be alerted for detected Ponzi-like misuses.

Potential Members
When a suspicious activity is observed with respect to a

choreography model, all possible web services that can
participate in the choreography are candidates to be alerted .
This might be achieved in two ways: First, early association
with choreographies (use patterns) and second extracting
choreographies along with all possible branches of choice
points and branches of such choreographies.. The first can be
performed during the first registration of use pattern. The
latter requires that the syntax of the choreographies be
examined in detail, with all logical splits, choice points, loops,
etc.

VII. RELATED WORK

Luckham [13] proposes Rapide, an event pattern language
that defines complex patterns and has been implemented in
some service oriented architectures. To the best of our
knowledge, none of them provide non-repudiable messages.
Luckham [13] also provide rules to specify business
collaborations compliant with the ISO 15022 standard.
Although complex event processing (CEP) is a wide
application area, most of the efforts do not derive global
behavior from external observations.

Widder, Ammon, Schaeffer, and Wolff [14] proposed a new
approach based on the discriminant analysis of events,
grouping them if they represent an unknown pattern. They

8346

expect their approach to recognize new patterns of credit card
transaction use case scenarios and the fraudulent activities
related to them. Their approach depended on having an
accurate account of events. They implement an experimental
environment based on a CEP engine.

Sense & response service architecture (SARESA) of [15]
provides real time business intelligence (BI). SARESA
introduces a comprehensive process to detect, interpret,
automate, and respond to business partners. Unlike collecting
externally observed events, it proposes using an event-driven
architecture that collects the events from member services.
Therefore, it is incapable of preventing misuses. Conversely,
giving the partners the freedom to send events records to the
system would allow the partners to control the misuses that
can detected. However, SARESA has the advantage of
serving diverse IT architectures and is not bound to only web
services.

Ari [16] describes a data mining model management system
that addresses model outdates, scalability of management
structures, semantic differences between models, and business
process integration for real time BI over SOA. Although the
work reported in [16] does not propose or address specific real
time architectures, it helps those systems to be multi
dimensional in time, syntax and semantics.

VIII. CONCLUSIONS

In this paper we have shown a method to detect and
potentially prevent the harm caused by service
choreographies. We do by abstractly specifying service
choreographies. Then we used several criteria to determine
potential benefactors of detected misuses. And reduce the
number of alert messages that can be sent to chosen web
services. Finally we proposed potential software architectures
that may be constructed to host our detection mechanisms.

IX. REFERENCES

[1] M. Zuckoff, Ponzi's scheme: the true story ofa financial legend. New
York: Random House, 2005.

[2] M. Gunestas and D. Wijesekera, "Detecting Illegal Business Schemes in
Choreographed Web Services: The PonzilPyramidal Case," to appear in
Sixth Annual IFIP WG 11.9 International Conference on Digital
Forensics, Hong Kong, 2010.

[3] M. Gunestas, D. Wijesekera, and A. Singhal, "Forensic Web Services,"
in Fourth Annual IFIP WG 11.9 International Conference on Digital
Forensics Kyoto, Japan, 2008.

[4] M. Jensen, N. Gruschka, and N. Luttenberger, "The Impact of Flooding
Attacks on Network-based Services," in Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on, 2008, pp.
509-513.

[5] M. Gunestas, D. Wijesekera, and A. Elkhodary, "An Evidence
Generation Model for Web Services," in The IEEE International
Conference on System ofSystems Engineering (SoSE '09),2009.

[6] S. Kremer, O. Markowitch, and 1. Zhou, "An Intensive Survey of Non­
repudiation protocols," Computer Communications, vol. 25, pp. 1606­
1621,2002.

[7] A. Herzberg and I. Yoffe, "The Delivery and Evidences Layer,"
Cryptology ePrint Archive Report 2007/139,2007.

[8] StreamSQL, available at http://blogs.streamsql.orgj
[9] StreamBase Technical Documentation, available at

http://www.streambase.com
[10] A. Barros, G. Decker, M. Dumas, and F. Weber, "Correlation Patterns in

Service-Oriented Architectures," in Fundamental Approaches to
Software Engineering, 2007, pp. 245-259.

[11] W. De Pauw, R. Hoch, and Y. Huang, "Discovering Conversations in
Web Services Using Semantic Correlation Analysis," in Web Services,

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B346
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B346

10

2007. ICWS 2007. IEEE International Conference on, 2007, pp. 639­
646.

[12] S. Basu, F. Casati, and F. Daniel, "Toward Web Service Dependency
Discovery for SOA Management," in Proceedings of the 2008 IEEE
International Conference on Services Computing - Volume 2: IEEE
Computer Society, 2008.

[13] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Reading, MA: Addison­
Wesley Publishing Company, 2002.

[14] A. Widder, R. v. Ammon, P. Schaeffer, and C. Wolff, "Identification of
suspicious, unknown event patterns in an event cloud," in Proceedings
of the 2007 inaugural international conference on Distributed event­
based systems Toronto, Ontario, Canada: ACM, 2007.

[15] N. Tho Manh, S. Josef, and A. M. Tjoa, "Sense \& response service
architecture (SARESA): an approach towards a real-time business
intelligence solution and its use for a fraud detection application," in
Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP Bremen, Germany: ACM, 2005.

[16] I. Ari, J. Li, A. Kozlov, and M. Dekhil, "Data Mining Model
Management to Support Real-Time Business Intelligence in Service­
Oriented Architectures" HP Software University Association Workshop,
Morocco, June 2008.

[17] Open Web Application Security Project, Cross Site Scripting Prevention
Cheat Sheet, available at http://www.owasp.orgjindex.php/XSS_Cross_
Site_Scripting_Prevention_Cheat_Sheet

