
Enforcing Relationships Privacy through
Collaborative Access Control

in Web-based Social Networks
(Invited Paper)

Barbara Carminati and Elena Ferrari
DICOM, Universita degli Studi dell'Insubria

Varese, Italy
Email: {barbara.carminati.elena.ferrari}@uninsubria.it

Abstract-Web-based Social Networks (WBSNs) are today one
of the hugest data source available on the Web and therefore data
protection has become an urgent need. This has resulted in the
proposals of some access control models for social networks (e.g.,
[1,4,5,15,16]). Quite all the models proposed so far enforce a
relationship-basedaccess control, where the granting of a resource
depends on the relationships established in the network. An
important issue is therefore to devise access control mechanisms
able to enforce relationship-based access control by, at the same
time, protecting relationships privacy. In this paper, we propose
a solution to this problem, which enforces access control through
a collaboration of selected nodes in the network. We exploit the
EIGamal cryptosystem [11] to preserve relationship privacy when
relationship information is used for access control purposes.

I. INTRODUCTION

The last few years have witnessed the explosion of Web­
based Social Networks (WBSNs). Just to give an exam­
ple, Facebook (http://www.facebook.com) now claims to have
more than three hundred million of active users.' The op­
portunities made available by WBSNs in terms of informa­
tion sharing and knowledge management are terrific in that
WBSNs make available an information space where each
social network participant can publish and share information,
such as personal data, annotations, blogs, and, generically,
resources, for a variety of purposes. However, the availability
of this huge amount of information within a WBSN is both an
opportunity and a danger w.r.t. user privacy and confidentiality
requirements. Recently, social network users have started to
become more and more aware of the risk of the exposure
of their personal information and resources trough social
networking services, as witnessed by the recent complaints
received by Facebook for the use made by some of its services
of user personal data [2, 6]. These events have animated several
online discussions about privacy in social networkings, and
government organizations have started to seriously consider
this issue [7,8, 12, 14].

To partially answer users concerns, some social networks,
e.g., Facebook and Videntity (http://videntity.org), have re­
cently started to enforce quite simple protection mechanisms.
Additionally, some research proposals have recently appeared

1http://www.facebook.com/press/info.php?statistics.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B339

[1,4,5,15,16], able to provide users with more advanced
tools to customize and enforce their privacy and confiden­
tiality requirements. One of the common characteristics of the
access control models proposed so far is that they enforce
relationship-based access control. According to this paradigm,
the release of a resource to a user is related to the existence
of a specific path in the network, modelling the existence of a
direct or indirect relationship of a particular type (e.g., friend­
of, colleague-of) between the resource requestor and another
user in the network, not necessarily the resource owner. Since
in some social networks, users can specify how much they
trust other users, by assigning them a trust level, some models
(e.g., [1,4]) use also the trust level of the relationships as a
further parameter on which access control is based.

Relationship-based access control poses the challenges of
protecting relationship information and their trust level during
access control enforcement. Indeed, on the one hand, relation­
ship information is needed to decide whether an access request
should be granted or not but, on the other, users may have
some concern about the release of their personal relationships.
It is very common in many application scenarios that a user
would like to keep private the fact that he/she has a relationship
of a given type with a certain user.

To cope with such requirements, we believe that the naive
solution of relying on a trusted reference monitor hosted by the
Social Network Management System (SNMS) is not suitable
for the WBSN scenario, because it implies to totally delegate
to the SNMS the administration of user data/relationships and
access control policies and therefore to fully trust it. It is
thus necessary to investigate alternative ways of performing
access control w.r.t. the traditional centralized one. Therefore
in [3] we have proposed a protocol that, starting from the
access control model presented in [4], enforces access control
through the collaboration of selected nodes in the network.
The collaboration is started by the resource owner, on the
basis of the access rules regulating the access to the requested
resource. Relationships are encoded through certificates and
their protection requirements are expressed through a set of
distribution rules, which basically state who can be aware of
the relationship. The aim of the collaboration is to provide
the owner with a path, proving that the requestor has the

relationship required to gain access to the resource. Since
each node taking part in the collaboration is aware of the
relationships existing among the other nodes taking part in
the process, the process is driven by the specified distribution
rules: a node is invited to collaborate only if it satisfies
the distribution rules of the other nodes taking part in the
collaboration. Encryption and signature techniques have been
used to avoid trust levels disclosure and forgery, as well as
to make a node able to verify the correct enforcement of
distribution rules.

However, the protocol proposed in [3] has the following
shortcomings. First, it requires the specification and enforce­
ment of distribution rules. Second, the encryption and sig­
nature techniques used in [3] are not meant to avoid that a
node discloses relationships information to nodes which are
not authorized by distribution rules. Rather, they make each
node in the path able to verify whether the previous nodes in
the path have correctly enforced the distribution rules.

A protocol similar to [3] has been proposed in [10].
The main contribution of [10] w.r.t. [3] is to exploit the
multiplicative property of EIGamal encryption [11] to make
users participating in the collaborative process (i.e., users with
a relationship in the traversed path) able to collaboratively
compute an anonymous trust value of the traversed path.
However, this collaborative process does not take in account
the depth of the traversed path, as such this can not be used
as a proof for a relationship-based access control enforcing
rules with constraints on the depth and type of the required
relationships.

To overcome these drawbacks, in this paper, we propose
an alternative protocol to perform collaborative access control
that does not require the specification and enforcement of
policies to protect relationship disclosures. Rather, the protocol
makes use of the homomorphic properties of the EIGamal
cryptosystem to build an anonymous path. An anonymous path
is a path where the path participants are not disclosed but that
makes, at the same time, the resource owner able to verify that
the path matches the access rules associated with the requested
resource. A similar data structure is used to make the resource
owner able to compute relationship trust in a private way, that
is, by not disclosing the trust of each relationship in the path.

The remainder of this paper is organized as follows. Next
section introduces some backgrounds on the EIGamal cryp­
tosystem and the access control model proposed by us in [4].
Section III presents our collaborative access control protocol,
whereas Section IV presents its security analysis. Finally,
Section V concludes the paper and outlines directions for
future work.

II. BACKGROUND

A. ElGamal

The EIGamal [11] encryption system is a public key encryp­
tion algorithm based on the Diffie-Hellman [9] key agreement.
EIGamal encryption can be defined over any cyclic group
G. Its security depends upon the difficulty of the Decisional

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8339
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8339

Fig. 1. A portion of a WBSN

Diffie-Hellman (DDH) problem in G related to computing
discrete logarithms. It is based on the following components:

• Configuration. A cyclic subgroup G = (g) of Zp is
chosen generated by g, with order q, where qlp - 1 (q
has to divide p - 1) for two prime numbers p and q. p,
q and 9 are public.

• Key Choose sk E Z~ at random, and publish pk =
gSkmod p.

• Encryption. Encrypt message mEG. Take r E Z~ ran­
domly, compute R; = grmod p and s = m · pk rmod p.
The ciphertext is Er(m) = (R , s) . r is secret.

• Decryption. Given the secret key sk and the ciphertext
Er(m) = (R, s), the plain text is given by: m =
pmodp.

EIGamal encryption system is multiplicatively homomor­
phic. That is, given Er 1 (ml) = (gr1, ml . pk r1) and
Er2(m2) = (gr2,m2 ' pk r2) two encryptions of ml and m2 ,
we can obtain an encryption of mdm2 and ml x m2 as:

E r 1 (ml) _ (gr 1 ml ' pk r1) _ (rl-r2 ml kr1- r2)- -, - 9 _ .p
Er2(m2) gr2 m2' pk r2 ' m2

Er 1 (ml) x Er2(m2) = (gr1 . gr2, ml . pk r1 . m2 ' pk r2) =
(gr1+r2,ml x m2 . pk r1+r2).

B. The reference access control model

Before briefly presenting the access control model pro­
posed in [4], we introduce how we model a WBSN.
In what follows, we model a WBSN SN as a tuple
(VSN', ESN , RTsN', TsN', <PEsN)' where VSN and ESN are,
respectively, the nodes and edges of a graph, RTsN' is the
set of supported relationship types, TsN' is the set of sup­
ported trust levels, and <PEsN : EsN' ---+ RTsN' x TsN' is a
function assigning to each edge e E ESN a relationship type
rt E RTsN and a trust level t E TSN.

Given an in/direct relationship of type rel between nodes v
and v' , the trust level of such relationship denotes how much
v trusts v' w.r.t. relationship rel. In this paper, for simplicity,
the trust level associated with a path is computed by multiply
the trust levels associated with all the edges in the path, even
if other formulas to compute the trust level can be used as
well (e.g., [13]).

The model presented in [4] protects each WBSN resource
rsc trough a set of access rules, specified by the resource
owner. Each access rule is a pair (rid, AC) , where AC is

a set of access conditions that need to be all satisfied in
order to get access to rid. An access condition is a tuple
(v, rt, dm ax , t m in), where v is the node with whom the re­
questor must have a relationship of type rt, whereas dm ax and
tmin are, respectively, the maximum depth, and minimum trust
level that the relationship should have. The set of access rules
protecting the resources of a node are stored and managed
locally.

Example 1: A simple example of WBSN is depicted in
Figure 1. In the figure, the initial node of an edge is the node
which established the corresponding relationship. Labels asso­
ciated with edges denote, respectively, the type and trust level
of the corresponding relationship. So for instance, A (lex) is
friend-of (fof) of both C (arl) and M (ark). However, A

trusts C more than M. A and T (ed) are indirect friends due
to the f of relationships existing between A and M and M and
T. C is also a colleague-of (cof) A, and the trust assigned
to this relationship by C is 0.7. Now suppose that A wishes
to release his resource res to his direct and indirect friends
of maximum depth four with a trust level of at least 0.5. To
specify such requirements he can specify the following access
rule AR = (res I { (A, fof 14 I 0 .5) }) .

In this paper, we constrain the access conditions contained
into an access rule by assuming that v can be only equal to the
owner of the resource to be protected. As it will be clarified
in what follows, this assumption makes the resource owner
able to start the collaborative process needed to answer an
access request. Additionally, this is not a too strong restriction
because it is very common that most of the access control
requirements in a sN are expressed by a resource owner in
terms of the relationships it holds with other nodes in the
network, rather than in terms of relationships in which it is
not involved.

Moreover, in order to adopt the EIGamal cryptosystem, we
assume the presence of a trusted party TP, which only imple­
ments key management functionalities. Note that the presence
of a TP is not equivalent to have a centralized solution, Le., a
central node hosting the access control reference monitor. The
encryption keys generated by the TP are only used to generate
the anonymized path (see Section III). In contrast, the TP is
not be able to access users resources nor their policies.

III. COLLABORATIVE ACCESS CONTROL

In this section we illustrate our proposal for enforcing access
control while preserving WBSN relationship/trust privacy.

A. Overview

Access control is enforced through a collaboration among
selected nodes in the SN. The collaboration is needed to
prove the owner that the node requesting a resource satis­
fies the requirements (in terms of relationships it holds and
corresponding trust levels and relationship depths) stated by
the owner access rules. If the result of the collaboration is
the identification of a path with the requirements stated by
the owner access rules, then the access is granted. Otherwise,

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B339

it is denied. The collaborative process is started by the re­
source owner, on the basis of the access rules regulating the
access to the requested resource. The owner contacts its direct
neighbours with which it has established a relationship of the
type required by one of the access control rules associated
with the requested resource. It asks them whether they have
a relationship of the required type with the requestor node.
If a resource is protected by more than one access rule, the
process is iterated till the access can be granted or till all the
access rules protecting the resource have been considered. For
simplicity, in the following, we assume access rules consisting
only of one access condition. The protocols can be easily
extended by iterating the described operations for all the access
conditions contained into an access rule. Once a node different
from the requestor receives a request for collaboration, it
propagates the request to those of its neighbours with which it
has established a relationship of the type required in order to
get access to the resource. This process is iterated until a node
having a relationship of the required type with the requestor
is reached, or until the request can no longer be propagated
along the network.

To verify whether an access can be granted or not the
owner must be provided not only with a path of the required
type and depth, but it also must know the path trust level.
Therefore, when propagating the request for collaboration,
a node forwards also the trust level of its relationship. If
relationships information and associated trust levels gathered
during the collaborative process are sent in clear to all the
collaboration participants, then all the nodes taking part to the
collaboration are aware of all relationships and corresponding
trust values belonging to the traversed path, which obviously
breaches relationships privacy. To overcome this problem, we
propose a private collaborative process, during which infor­
mation on the traversed path is collected in an anonymized
way. This is achieved by means of two data structures, namely,
anonymous relationship path and anonymous trust value (see
Section III-B). By exploiting the EIGamal cryptosystem (see
Section II), these data structures make the owner able to verify
whether the traversed path and its trust level satisfy the access
rules associated with the requested resource, without hav­
ing direct access to relationships information and associated
trust levels. Moreover, they prevent each intermediate node
taking part to the collaboration to acquire information about
path relationships and associated trust levels. Since also the
resource owner will have no access on clear-text data, the
EIGamal encryption scheme has to be configured by a third
party, Le, the TP entity. In particular, each time a resource
owner receives an access request, it contacts the TP that,
as a consequence, configures two different pairs of EIGamal
keys, say (sk,pk) and (sk',pk'), with relative public parameters
p, q, g and p', q', g'. As it will be described in Section III-C,
these keys will be used to collaboratively generate anonymous
relationship path and anonymous trust value.

In the next sections, we will first present the devised data
structures. Then, we describe the access control protocol.

E no End e.; Diffno Diffrt
Areh (grlmod p, A· pkr1mod p) (gr"L.mod p, M . pkr"L.mod p) (gr:-3 m od p, fof . pkr:-3 m od p) 0 0
Arel2 (gr4 m od p, M . pkr4mod p) (gr5 m od p, T . pkr5mod p) (gr6 m od p, fof . pkr6mod p) r4 - r2 r6 - r3
Arel3 (gr7 mod p, T· pkr7mod p) (gr8 m od p, C . pkr8mod p) (gr9 m od p, fof . pkr9mod p) r7 - r5 r9 - r6

TABLE I
AN EXAMPLE OF ANONYMOUS RELATIONSHIP PATH

B. Anonymized data structures

As stated in the previous section, access control enforcement
is obtained through a collaboration among nodes in the SN.
The collaboration has the aim of identifying a path in the SN
satisfying the requirements stated by the access rules specified
for the requested resource. The notion of path is formalized
as follows.

Definition 3.1 (Relationship path): [3] Let sN =
(VSN, ESN, RTsN, TSN, ¢ESN) be a WBSN. Given a
relationship type rt E RTsN, a relationship path P
in sN of type rt is an ordered list (rell,"" relk),
such that for each relj E P, j E {I, ... , k}, (1)
rei, = (no, nd), where no, nd E VSN, (2) there exists
an edge (no, nd) E ESN labeled with rt, and (3)
reij.no = relj-l.nd, Vj E {2, ... , k}.

Hereafter, given a relationship path P, we denote with Pdepth
and Prt the depth and the relationship type of the path,
respectively. Moreover, we use the dot notation to refer to
specific components within a tuple.

In general, a relationship path and the corresponding rela­
tionship type are not enough to prove that a given node satisfies
an access condition. Indeed, access conditions pose constraints
also on the associated trust value.i More precisely, to verify
whether a relationship path P, built during the collaborative
process, satisfies an access condition AG, the owner needs to
verify the following characteristics of the path: (a) whether
all relationships in P have type equal to the one required in
AG; (b) whether the first node (resp. last node) of the first
relationship (resp. last relationship) in P is equal to the owner
(resp. the requestor); (c) whether P's depth is less than or
equal to the maximum depth required in AG; (d) whether the
trust value of P is greater than or equal to the minimum trust
value required in AG. Additionally, it must verify whether
the path satisfies Definition 3.1, that is, (e) whether all
relationships relj in P have the node whose established it
equal to the node with which the preceding relationship relj-l
has been established, that is, relj.no = relj-l.nd.

Therefore to protect relationships privacy and associated
trust levels during the collaborative process, we have devised
two separate data structures, namely anonymous relationship
path and anonymous trust value, formally defined in what

2We recall that, in case of indirect relationships, we compute the corre­
sponding trust value as the multiplication of the trust values associated with
each relationship rel j in the path P modelling the indirect relationship, j E
{I, ... ,Pdepth}.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B339

follows.

Definition 3.2 (Anonymous Relationship Path): Let pk and
sk be a public and secret key, generated according to
the EIGamal cryptosystem, and let p,q, and 9 be the cor­
responding parameters. Let P be a relationship path for
a social network SN. The Anonymous Relationship Path
Anonymous-path(P), generated for path P is a set contain­
ing, for each rei, in P, j E {I, ... , Pdepth}, an anonymous
relationship of the form:

Arelj = (Eno, End' E rt, Diffno' Diffrt)

where:

• if j =1= 1, E no is the encryption of rei, .no us­
ing the random number r_noj E Z~, that is,
E no = (Rr_noi,S_nOj) = (gr_noimod p.reij.no .
pkr_noimod p); E no = reu.no, otherwise;

• if j =1= Pdepth, End is the encryption of relq.nd
using the random number r_ndj E Z~, that is,
End = (Rr_ndi,S_ndj) = (gr_ndimod p.relj.tul .
pkr_ndimod p); End = relj.nd, otherwise;

• Ert is the encryption of the relationship type rt of
the edge (relj.no, relj.nd) E ESN using the random
number r.rt, E Z~, that is, E rt = (Rr_rti,S_rtj) =
(gr_rtimod p, relj.rt. pkr_rtimod p);

• for j E {2, ... , Pdepth}, Dif fno is the difference
r_noj - r_ndj_ 1 ; it is 0 otherwiser'

• for j E {2, ... ,Pdepth}, DifI« is the difference r_rtj­
r_rtj-l; it is 0 otherwise;

Example 2: Let us consider the WBSN in Figure 1, and
the relationship path A ---+ M ---+ T ---+ G. The corresponding
anonymous relationship path is shown in Table I, where each
row represents a different anonymous relationship, whereas
columns represent its components.

As it will be described in Section III-C, the Anonymous
Relationship Path data structure is used to verify properties
(a), ... , (e), and (e). However, it is not enough to check
the trust value of the relationship path. To overcome this
limitation, we propose another anonymized data structure, Le.,
Anonymous Trust Value, whose definition is inspired by the
work reported in [10].

3Note that these and the following differences are needed to verify the
correctness of the retrieved anonymous path (see Section III-C for more
details).

Definition 3.3 (Anonymous Trust Value): Let pk' and sk'
be a public and secret key generated according to the EIGamal
cryptosystem, and let p' ,q', and g' be the corresponding
parameters. Let P be a relationship path of type rt for a
social network SN. Let reut be the trust value associated
with relation rei, E P. The Anonymous Trust Value of P is
defined as follows:
E r 1 (rell.t) x Er2(rel2.t) x ... X EPdepth-l(relPdepth-l.t)

X EPdepth (reldepth .t)
where

Erj(relj.t) = (Rrj,S_rj) = (grjmodp,relj.t·pkrjmodp),
with rj E Z~" j E {I, ... , Pdepth}.

C. Algorithms

Collaborative access control is enforced by a process ini­
tialized and handled by the algorithm in Figure 2. According
to this process, upon receiving an access request the owner
contacts the TP by sending the access request (step 1). As a
consequence, the TP generates two sets, namely par, and par',
containing the EIGamal parameters and the public keys. These
sets, together with just one of the corresponding secret key, are
sent back to the owner (steps 2-4). During the collaborative
process these two sets are passed to all the participants, since
they are used to generate the anonymous relationship path (see
Definition 3.2) and the anonymous trust value (see Definition
3.3), respectively. Then, the owner retrieves from its Policy
Base the access rules regulating the release of the requested
resource (step 5).4

Then, in step 7, the owner identifies the set of neighbours
with which it has established a relationship of the type rt
required by the access condition contained in the considered
access rule. It iteratively considers each node in this set (step
9). For each one of these nodes, the algorithm generates
two random numbers Trid and Trt. from parameters par (step
9.b) and a random number rt from parameters par' (step
9.c). The first is used to compute the first anonymous re­
lationship, Le., Arell (step 9.e). In contrast, rt is used to
encrypt the trust value of the relationship the owner has with
the considered node. The algorithm sends then a message
to the considered neighbour node to start the collaboration
process. This contains the two sets of parameters par, par',
the requestor identifier, the needed relationship type AG.rt,
and the anonymous relationship path and anonymous trust
value computed so far. The message is sent by function
SendCollReq() in step 9.m. Moreover, the message contains
the random numbers rnd and rrt used to generate E rnd(n) and
E r r t (rt), that is, the EIGamal encryption of the receiver node
and of the requested relationship type. These random numbers
are needed by the neighbour node to compute Arel2.Dif fno
and Arel2.DifI«. Once the message has been sent, the
algorithm waits for the node reply, which consists of the

4For simplicity, the algorithm assumes a single access rule consisting only
of one access condition. The algorithm can be easily extended to more access
rules, each one consisting of more than one access condition, by simply
iterating the steps described in the algorithm.

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B339
http://dx.doi.org/10.41OBI/CST. COLLABORATECOM2009. B339

value 0, if no path can be found, or the number of identified
paths, otherwise. In case SendCollReq() returns a non zero
value, for each identified path a separate message is sent
to the owner by the requestor (see procedure path_builder()
in Figure 3 explained next). More precisely, each message
contains the anonymous relationship path and anonymous trust
value generated during the collaborative process by the nodes
belonging to the path connecting the owner to the requestor.
The message also contains the Trust; variable, storing the
sum of random numbers used by each collaborative node to
encrypt the trust values (see procedure path_builder() in Figure
3). The algorithm elaborates each received message (step
9.n.ii). It first verifies whether the anonymous relationship path
corresponds to a valid path (step 9.n.iL2). This is done by
function check () in Figure 4, explained later. If the check
succeeds, the algorithm computes the depth of the anonymous
path, by counting the number of items in the path, that is,
the number of anonymous relationships. Then, by using the
private key associated with parameters par' and the Trust;
value, it decrypts the anonymous trust value (step 9.n.iL3.b).
The algorithm checks whether the depth and the decrypted
trust value satisfy the constraints stated in the access rule, as
well as, whether the first and last node of the anonymous path
are the owner and the requestor, respectively (step 9.n.iL3.e).
In this case, the access is granted. Otherwise the process is
iterated on the next received message, until there are no more
message to be processed. Then, if the access has not been
granted, the collaboration is requested to the next node in the
set identified in step 7, until the access is granted or all the
nodes in the set have been contacted, without finding a suitable
path. In this case, the algorithm denies the access and sends the
error message received by the check() function to the requestor
(step 10).

Once a node n receives a request for collaboration, it exe­
cutes procedure path_builder(), presented in Figure 3. The aim
of this procedure is to elaborate the received message and send
the request of collaboration to n's neighbours. The procedure
starts by initializing variable TOT_FOUND to zero (step 2).
This variable is used to store the number of identified paths.
Procedure path_builder() then verifies whether node n is the
requestor stated in the message. In this case, the requestor
forwards the received message directly to the owner. Note
that, similar to other nodes participating to the collaborative
process, the requestor is not able to decrypt information in the
anonymous relationship path and anonymous trust value, as it
is not provided with the corresponding private keys. In case
n is not the requestor, the procedure identifies the nodes with
which n has a relation of the type rt specified in the received
message (step 3.b). If this set is empty, path_builder() halts by
returning 0 to the sender, since no other path can be found (step
3.c.i-ii). Otherwise, for each neighbour node 'ii, it generates
the random numbers to be used to compute the anonymous
relationship (Arelj) and to encrypt the corresponding trust
value. path_builder() also checks whether n is the requestor.
If this is the case, a path is found, and, to keep trace of it, the
procedure sets variable flag to 1 (step 3.d.vLl).

The collaborative access control protocol
INPUT: An access request (req, res) submitted to node own by req
OUTPUT: res, if req satisfies the access control requirements of own,

an access denied message, otherwise.
1 own submits to T P the access request (req, res)
2 Let par = (p, q, g, pk) be the first set of EIGamal public parameters returned by T P
3 Let par' = (p', q', o', pk') be the second set of EIGamal public parameters returned by T P
4 Let sk' be the secret key returned by T P corresponding to par'
5 own retrieves from its Policy Base the access rule AR associated with resource res
6 Let AC be the access condition in AR
7 Let C_nodes be the set of nodes with which own holds a relationship of type AC.rt
8 Let TOT_error be initialized empty
9 Foreach n E C_nodes:

a TOT_FaUND:= 0
b Generate random rnd, T'rt. E Z;ar.q
c Generate random rt E Z;arl.q
d Generate the EIGamal encryption Ernd(n) and Errt (rt)
e Let Arell= (own, Ernd(n), Errt (rt), -, -)
f AnonymousPath := Arell
g Let t be the trust value of the relationship of own with n
h Generate the EIGamal encryption Ert (t)
i AnonymousTrust := Ert (t)
I Trust; := rt
m TOT_FOUND :=SendCollReq({par,par', req, AC.rt, AnonymousPath, AnonymousTrust, rnd, rrt, Trustr} ,n)
n If TOT_FOUND i= 0:

i Let TOT_msg_rec be the set of the TOT_FOUN D messages received from req,
where each message contains the AnonymousPath and AnonymousTrust data structures

ii Foreach msg E TOT_msg_rec:
1 Let error be NULL
2 error :=check(msg)
3 If error = NULL

a Let depth be the number of items in msg.AnonymousPath
b Let trust be the decryption of msg.AnonymousTrust with sk' and meqTrust;
c Let own be msg.AnonynousPath.Arell.Eno
d Let req be msg.AnonynousPath.Areldepth.End
e If trust ~ AC.tmin, depth ~ AC.dmax, own=own and req=req

i Return (res, msg.AnonymousPath)
EndIf

Else
f TOT_error:=TOT_error Uerror

EndIf
EndFor

EndIf
EndFor
10 Return (denied, TOT_error)

Fig. 2. The collaborative access control protocol

Then, it updates the anonymous relationship path contained
in the received message by appending Arelj. Note that,
according to Definition 3.2, in case the neighbour is the
requestor, the second component is not encrypted. Moreover,
to update the anonymous trust value contained in the received
message, in step 3.d.x the procedure multiplies it by the
EIGamal encryption of the trust value of the relationship with
the neighbour. The received Trust; value is updated too, by
adding to it the random number used to encrypt the trust value
(step 3.d.xi). As such, at the end of the collaborative process,
this variable will contain the sum of all the random numbers
used to generate each EIGamal encryption of a trust value. This
sum is needed by the owner to decrypt the anonymous trust
value (see step 9.n.ii.3.f) of the algorithm in Figure 2. Once
updated the anonymized data structures, the procedure sends

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B339

to the neighbour iff the collaboration request. It then waits for
the node reply, which consists of the value 0, if no path can
be found, or the number of identified paths, otherwise. This
number is stored into variable TOT_FOUND that is updated
each time a new neighbour is considered. Once all neighbours
have been considered, the procedure sends back to the sender
the TOT_FOUND variable, increased by one in case the
procedure has verified that n is connected to the requestor.

The verification that an anonymous path is valid is done
by function check() illustrated in Figure 4. This function takes
as input the message received by the requestor and returns
null, in case the anonymous relationship path is valid, a set of
error messages, otherwise. More precisely, the procedure has
to verify that the anonymous path satisfies properties (a) and
(e), in that properties (b), (c) and (d) are verified directly by

Procedure path_bullder(n,msg)

1 Let sender be the node from which message msg has been received
2 TOT_FOUND:= 0
3 If n= msg.req:

a Send msg to own
Else

b Let C_nodes be the set of nodes with which n has established a relationship of type msg.AC.rt
c If C_nodes= 0:

i Send 0 to sender
ii Return

Endlf
d Foreach n E C_nodes:

i Generate random rno, rnd, T'rt. E Z:nsg.par.q
ii Generate random rt E Z:nsg.parl.q
iii Generate the EIGamal encryptions Erno(n) and Errt (rt)
iv Diffrt = T'rt: -meq.r,«
v Diffno = Tmo -msg.rnd
vi Ifn = req

1 flag:=1
2 Arelj := (Erno(n), req, Errt (rt), Dif frt, Dif fno)

Else
3 Generate the EIGamal encryption Erno(n)
4 Arelj := (Erno(n), E rnd(n), Errt (rt), Dif frt, Dif fno)

Endlf
vii AnonymousPath = msg.AnonymousPathllArelj
viii Let t be the trust value of the relationship of type msg.AC.rt of n with n
ix Generate the EIGamal encryption Ert (t)
x AnonymousTrust= msg.AnonymousTrust x Ert (t)
xi Trust; := msq.Trust; + rt
xii FOUND :=SendCollReq({par,par', req, msg.AC.rt, AnonymousPath, AnonymousTrust, rnd, rrt, Trustr}, n)
xiii TOT_FOUN D := TOT_FOUND + FOUND

EndFor
Endlf
4 Send (TOT_FOUND + flag) to sender

Fig. 3. Procedure path_builder()

Procedure check(msg)

1 Let TOT_error_msg be initialized empty
2 If (1re~2.~rt i= EArel2.Diffrt (1))

re 1· rt
a error_msg :="mismatch between the type of the first and

second relationship"
b TOT_error_msg := TOT_error_msg Uerror_msg

Endlf
3 Let AnonymousPath' be a copy of msg.AnonymousPath
4 Remove the first item, i.e., Arell' from AnonymousPath'
5 ForEach Arei, E AnonymousPath'

a If (Arelj .Eno .: E . (1))Arelj-1. End r: Arelj.D~ffno

i error_msg :="mismatch between rel.j.no and relj-l.nd"
ii TOT_error_msg := TOT_error_msg Uerror_msg

Endlf

b If (A~;l:l~~~~~t i= EArelj.Diffrt (1))
i error_msg :="mismatch between the type of the j-th and

(j-l)-th relationship"
ii TOT_error_msg := TOT_error_msg Uerror_msg

Endlf
EndFor
6 Return TOT_error_msg

Fig. 4. Procedure check()

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B339

the algorithm in Figure 2 (see steps 9.n.iL3.a-e). We recall that
these properties require to verify: (a) whether all relationships
in the path have type equal to the one required in AC; (e)
whether all relationships rei, in the path have the node whose
established it equal to the node with which the preceding
relationship relj -1 has been established, that is, relj .no =
relj_1.nd. To check property (a) the procedure starts to verify
whether the encryption of rel1 type (Le., Arel1.Ert) is equal
to rel2 type (Le., Arel2.Ert). This is performed according to
the EIGamal cryptosystem in step 2. If this check succeeds,
it means that the second relationship in the path has the
correct relationship type. To check the remaining relationships,
the procedure iterates the above check for each anonymous
relationship (see the cycle in step 5). Here, given the input
path P, it verifies whether the encryption of relj type (Le.,
Arelj.Ert) is equal to relj-1 type (Le., Arelj-1.Ert), for each
j = {2, ... , Pdepth}. Note that all these checks are possible
since, by Definition 3.2, the anonymous relationship path data
structure contains the differences r_rtj - r_rtj -1, for each
j = {2, ... , Pdepth}. If all these checks succeed, the owner
is ensured that all relationship types in the path are equal
to the one required by AC, in that they are all equal to the
one of reli, which has been generated by the owner itself,

otherwise an error message is stored in the error variable.
Property (e) is checked in a similar way. Indeed, in the for
cycle the procedure verifies whether the encryption of relj .no
(Le., Arelj.Eno) is equal to node relj-l.nd (Le., Arelj.End),
for each j = {2, ... ,Pdepth}. Procedure ends sending back
to the owner the error variable, which is NULL in case no
error occurs.

IV. SECURITY ANALYSIS

In this section, we discuss the robustness of our system
against possible attacks. As adversary model, we assume that
the adversary is a node in the sN which can collude with
other network nodes to attack the system. We assume a semi­
honest model, that is, that each node in the network adheres
to the protocol but tries to learn extra information from the
exchanged messages.

Under this adversary model, the main attacks that a node
can perform are: (1) learn the trust level of previous nodes
in the path, and (2) learn the relationships established in the
network, from the data structures received during the execution
of the access control protocol.

Let us consider these two attacks in details. Information on
the trust level of a path is received by the owner through the
anonymous trust value data structure (cfr. Definition 3.2). By
using the information in this data structure, an intermediate
node is not able to decrypt it, because it does not know the
corresponding secret key. However, an intermediate node could
be able to retrieve the random number rt used to encrypt
the trust value from the Trust; component of the received
message. Moreover, the second node in the traversed path
receives rt directly by the owner (see step 9.m of the algorithm
in Figure 2). By using rt, an intermediate node could infer
the real trust value. To avoid this inference, the owner could
send to its direct neighbours a distorted random number. More
precisely, the algorithm has to be modified thus to add a noise
X to rt before the owner sends it to a neighbour. This noise
has to be subtracted to Trust; by the resource owner before
decrypting the anonymous trust value. As a consequence, any
intermediate node is not able to infer the real random number
rt. Note that, the same solution can be adopted also for
avoiding inferences on the other random numbers (Le., rrt,

rnd).
In contrast, the owner is able to know the product of the

trust levels associated with the edges in the path, since it knows
the corresponding secret key. However, by knowing this value,
the owner is not able to know which are the nodes belonging
to the path, nor the trust level of any single arc in the path,
except in one case explained at the end of this section.

Let us consider the attacks that can be performed against
user relationships by inspecting the anonymous path data
structure. By Definition 3.2, information on the relationship
types and the involved nodes are encrypted using the EIGamal
cryptosystem. Since the corresponding secret key is not known
by any node in the network, information on the relationships
existing in the network cannot be inferred. However, an

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B339
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B339

inference is still possible even if relationship information are
encrypted, as the following example shows.

Example 3: Consider the WBSN in Figure 1, suppose that
A is the owner of a resource requested by R and that, in
order to verify whether the access can be granted, A sends
the request of collaboration to M, that then forwards it to T.

The request of collaboration received by T from M contains
the required relationship type (fof in this case). Moreover, by
inspecting the received anonymized trust path, T verifies that
it contains only two components. T may also infer that the
first component refers to a relationship established by A, Le.,
the resource owner. Therefore, it can infer that a relationship
of type fof exists between A and M.

This inference can be avoided by simply let the owner insert
into the anonymous path structure a certain number of fake
encrypted relationships. As such, a node receiving from one
of the owner's neighbours a request of collaboration cannot
know, by inspecting the received data structure, the length of
the path traversed so far.

This strategy avoids inferences from intermediate nodes.
However, we have also to consider the inferences the owner
could do by reading the anonymous path. This may happens
when the anonymous path contains two items, that is, two
anonymous relationships. Let us consider, for example, the
path A----+M----+T in Figure 1, where A is the resource owner
and T is the requestor. The corresponding anonymous path
contains the anonymous relationship corresponding to relation­
ship (A,M), generated by A, and the anonymous relationship
for (M,T), generated by M. Thus, by accessing the anonymous
path, the owner understands that M has a direct relationship
with T of the type specified in the collaboration request, even
if the corresponding anonymous relationship is anonymized.
Moreover, it can also infer the trust of the relationship con­
necting M to T, since it knows the trust level of relationship (A,

M) and the product of this trust level with the trust of relation
(M,T). As such, with paths of depth 2, the relationship/trust
privacy of owner neighbours may be violated. However, it is
important to note, that this kind of inference is possible in any
relationship-based access control enforcement. Indeed, if the
owner knows that a given user has been granted the access to
one of its resources protected by an access rule that requires
a relationship of depth 2, the owner could infer that one of
its neighbours has a direct relationship of that type with the
requestor. Let us consider, for example, Figure 1 and assume
that node Mstates for a given resource rid the following access
rule ({rid, (M, fof , 2 , 0 . 1) }) . Moreover, let assume that
M knows that C has been authorized to access rid. Since M has
a unique fof relationship with T, M is able to infer that T has
a direct fof relationship with C.

To manage this situation, we can extend our protocol such
that the neighbour whose privacy can be violated by the above­
described inference is aware about this violation and it can
decide whether agreeing or not to the relationship disclosure.
This can be obtained by assuming that, once received by
the requestor, the anonymous path/anonymous trust value is
forwarded directly to the TP. TP can verify the length of

the anonymous path, by simply counting the numbers of
anonymous relationships it contains, and, in case of path
of length 2, TP can ask to the interested owners neighbour
whether it agrees or not in the disclosure of its relationship
with the requestor. Accordingly with neighbour decision, the
TP will forward the received messages to the owner or not.
Actually, in order to make the TP able to compute the length of
the anonymous path and to eventually contact one of the owner
neighbours, it has to be aware of the neighbour that has to be
contacted and of the number of fake anonymous relationships
the owner has inserted in the path. Both this information can
be safely provided to the TP by assuming the owner encrypts
both these values with the public key of TP and attaches the
resulting encrypted values to the request of collaboration.

V. CONCLUSIONS

In this paper, we have presented a protocol on support of
privacy-aware access control in WBSNs, based on a collabo­
ration of selected nodes in the network. The protocol exploits
the homomorphic properties of the EIGamal cryptosystem
to ensure relationships and trust privacy. The access control
protocol relies on the use of the anonymous path and anony­
mous trust value data structures that make the owner able to
verify whether a path satisfies an access rule without knowing
the exact relationships and trust levels composing the path.
Such data structures also prevent the nodes taking part in the
collaboration to acquire information on the relationships/trust
levels in the path.

We plan to extend the work reported in this paper along
several directions. First, we plan to implement the protocol to
test the feasibility of the proposed method for different social
network topologies and application domains. We also plan to
investigate how our method should be extended to work under
the malicious model.

ACKNOWLEDGEMENTS

The work reported in this paper is partially funded by
the Italian MIUR under the ANONIMO project (PRIN­
2007F9437X).

REFERENCES

[6] L. Chen, "Facebook's feeds cause privacy concerns. the amherst
student", Available at: http://halogen.note.amherst.edu/ astudent/2006­
2007/issue02/news/0l.html., October 2006.

[7] C. P. Commission, "Social networking and privacy",
http://www.privcom.gc.ca/information/sociaVindex_e.asp. 2007.

[8] F. T. Commission, "Social networking sites: a parents guide",
http://www.ftc.gov/bcp/edu/pubs/consumer/tech/tec13.shtm, 2007.

[9] W. Diffie and M. E. Hellman, "New directions in cryptography," IEEE
Tran. on Information Theory, vol. 22, no. 644-654, 1976.

[10] J. Domingo-Ferrer, A. Viejo, F. Sebe, and U. Gonzalez-Nicolas, "Pri­
vacy homomorphisms for social networks with private relationships",
Computer Networks Journal, Elsevier, vol. 52, no. 15, pp. 3007-3016,
2008.

[11] T. EIGamal, "A public-key cryptosystem and a signature scheme based
on discrete logarithms", IEEE Transactions on Information Theory,
vol. 31, no. 4, pp. 469-472, 1985.

[12] EPIC Center, "Epic social networking privacy",
http://epic.org/privacy/socialnet/default.html, 2008.

[13] J. A. Golbeck and J. Hendler, "Inferring binary trust relationships in
Web-based social networks", ACM Transactions on Internet Technology,
vol. 6, no. 4, pp. 497-529, Nov. 2006.

[14] G. Hogben, "Security issues and recommendations for online social net­
works", Position Paper 1, European Network and Information Security
Agency (ENISA).

[15] S. R. Kruk, S. Grzonkowski, H.-C. Choi, T. Woroniecki, and A. Gzella,
"D-FOAF: distributed identity management with access rights delega­
tion", in Proceedings of the 1st Asian Semantic Web Conference (ASWC
2006). LNCS 4185, 2006.

[16] M. A. Philip W. L. Fong and Z. Zhao, "A privacy preservation model
for facebook-style social network systems", in Proceedings of the 14th
European Symposium on Research In Computer Security (ESORICS'09),
Saint Malo, France, September, 2009, LNCS, Ed.

[1] B. Ali, W. Villegas, and M. Maheswaran, "A trust based approach
for protecting user data in social networks", in Proceedings of the
2007 Conference of the Center for Advanced Studies on Collaborative
research (CASCON'07), 2007, pp. 288-293.

[2] S. Berteau, "Facebook's misrepresentation of beacon's
threat to privacy: tracking users who opt out or
are not logged in", Security Advisor Research Blog.
http://community.ca.com/blogs/securityadvisor/archive/2007/11/29/facebook­
s- misrepresentation-of-beacon-s-threat-to-privacy-tracking-users-who­
opt-out-or- are-not-Iogged-in.aspx.

[3] B. Carminati and E. Ferrari, "Privacy-aware collaborative access control
in web-based social networks", in Proc. of the 22nd IFIP WG 11.3
Working Conference on Data and Applications Security (DBSEC2008),
London, UK, July 2008.

[4] B. Carminati, E. Ferrari, and A. Perego, "Enforcing access control in
web-based social networks", ACM Trans. on Information & System
Security, in press.

[5] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thu­
raisingham, "A semantic web based framework for social networks",
in Proc. of the 14th ACM Symposium on Access Control Technologies
(SACMAT'09), Stresa, Italy, ACM, Ed., 2009.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B339
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B339

