
A Decentralized Mechanism
for Application Level Monitoring of Distributed Systems

Constantin Serban
Applied Research

Telcordia Technologies
One Telcordia Drive, Piscataway, NJ 08854

serban @research.telcordia.com

Abstract-For a complex distributed system to be depend
able it must be continuously monitored, so that its failures
and 'imperfections can be discovered and corrected in a timely
manner. This work is concerned with the monitoring of large,
open and heterogeneous systems, at their application level. Our
objective is a monitoring technique that satisfies the following
properties: scalability with respect to the size of the system
and with the complexity of the monitoring task; the ability to
deal reliably with heterogeneous components; and the ease and
flexibility of deployment.

Our approach to monitoring is based on a middleware called
Law-Governed Interaction (LGI), which is a decentralized
coordination and control mechanism.

Keywords-collaborative monitoring; self management; LGI;

I. INTRODUCTION

It is widely recognized that the run-time monitoring of the
operations of distributed software systems, which attempts
to identify undesirable, suspicious, or unusual behavior, is
critical to the integrity and dependability of the systems. This
is true in a variety of ways: (a) monitoring is a necessary
complement to the testing of a system [1], (b) it is required
for the detection of intrusions, from within the system or
from the outside [2], and (c) it is a critical element of any
system management activity [3].

In this paper we introduce a mechanism designed for the
application level monitoring of large and open distributed
systems. By "open" we mean a system that consists of
a distributed and heterogeneous collection of autonomous
components, which are loosely coupled, may be written
in different languages, running on different platforms, and
designed, constructed, and even maintained by different or
ganizations, as it often happens in collaborative applications.

Given the lack of knowledge of, and control over, the
internals of the various components of such an open system,
we adopt a black-box view of these components. That is,
we assume no knowledge of, or control over, the internals
of the components of the system to be monitored. And we
intend to monitor only the flow of messages into and from
the components engaged in collaboration.

We take the main purpose of such monitoring to be the
speedy detection of improper system behavior, where the

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B336
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B336

Wenxuan Zhang, and Naftaly Minsky
Department of Computer Science

Rutgers University
110 Frelinghuysen Rd., Piscataway, NJ 08854

{wzhang,minsky}@cs.rutgers.edu

proper system behavior is assumed to be specified by a
set of normative properties. These properties are assumed
to be specified via predicates defined over the exchange of
messages between various system components, and between
them and the outside; and they may be sensitive to the his
tory of such exchange. It is the violations of such properties
that needs to be detected by the monitoring mechanism':
we will often refer to the detection of violations of a certain
property p, as the monitoring of this property. This general
approach has been called specification-based monitoring by
Inverardi et. al. [2].

The monitoring mechanism introduced in this paper has
been designed with the following set of objectives in mind:

1) Generality: The violation of arbitrary properties de
fined over the message exchange, and over the history
of such exchange, should be detectable.

2) Minimal and Scalable Detection time: The delay be
tween the violation of a normative property and its
detection should be minimized; and should be made as
independent as possible of the size of the system, and
of the message traffic in it, thus providing scalability.

3) Non-intervention: The behavior of the system to be
monitored should be shielded from interference from
the monitoring activities (except, perhaps, of minor
effects on the performance of the system).

4) Ease of deployment: The monitoring mechanism, and
its detection logic should be easy to deploy; and it
should be modular and flexible with respect to the
addition of new components, and the changing of the
API of existing components of the system system
being monitored.

5) Range of applicability: The monitoring mechanism
should be independent of the application domain, and
of the language used for programming the system to
be monitored.

1However, with a suitable definition of what we call "normative prop
erties," this mechanism can be used for blanket monitoring, intended for
gathering statistics about system behavior, if such is desired.

Figure I . EP:Enterprise Purchasing Activity

(c omponent)

(ComponentJPurchase.
Order

Budget Office

~ -r-,~ (c omponent) Purchase.
1J Order

Udget 4 sss ·
IgOllJen t

~'"'«'-- ---' ;S>.,
'1"''''

"'~"''''e ,

Purchasing
Office

• P is a given set of normative properties {Pi,,, ,,Pn},
defined over the exchange of b-messages. These are
properties that the base system needs to satisfy, and
whose violations are to be detected by the monitoring
mechanism.

• I is the monitoring instrumentation associated with the
base system, and whose purpose is to detect violations
of properties in P.

The immediate purpose of the monitoring is the unintrusive
detection of any violation of any of the properties in P , and
the reporting of such a violation to a designated component
(or components) of the instrumentation I . We are aware of
the fact that some of the detected violations would require
corrective actions to be applied to the base system-which
is, indeed, one of the main purposes of monitoring. But
although such corrective actions are part of our research
plan, they are beyond the scope of this paper.

Several additional comments about this model are in order.
First, we make no assumptions about the base systems,
except that the various b-components send and receive b
messages via the Moses (LGI-based) middleware. This, is
required for reasons outlined in the Introduction. Second,
we do not specify in this paper, the source of the normative
properties. But the general expectation is that they would
be formulated by such stakeholders as the programmers
of the various components, the system architects, and the
people who maintain the systems throughout its evolutionary
lifetime. Finally, although this model does not specify the
structure of the instrumentation I, this is an important part
of our mechanism, which will be addressed in Section IV-A.

B. A Case Study

We will coach further discussions of this model in terms
of a case study we conducted for experimenting with our
monitoring approach and for evaluating its efficacy. In this
case study we monitored various purchasing activities in
a simulated distributed enterprise, to which we refer as
the Enterprise Purchasing (or EP). A somewhat simplified

Our approach to achieving these objectives is motivated by
two observations that rule out most conventional approaches
to monitoring the type of systems we have in mind.

First, since we assume no knowledge of, or control
over, the internals of the various system components, we
cannot instrument the components themselves for sensing
the message exchange-as it has been done in [4]. Moreover,
we cannot rely on each component to provide a monitor
ing interface, as employed by most conventional system
management standards-such as SNMP (Simple Network
Management Protocol) [5], and WSDM (Web Services Dis
tributed Management) [3].

Second, since the system to be monitored may be widely
distributed over the Internet, we cannot rely on instrumenting
the network for sensing the messages-as it has been done
in [6], in particular.

Thus, we have to rely on a middleware to sense the
flow of messages in the system, and to facilitate the de
tection of violations of the given normative properties. Such
middleware needs to satisfy the following requirements in
order to be consistent with our objectives: (a) it needs to
be decentralized, in order to be scalable, as required by
objective 2 above; (b) it needs to be stateful, in order to
be able to handle properties defined over the history of
communication, as required by objective 1; and (c) it needs
to be secure, to protect against malicious attacks. A mid
dleware that satisfies these requirements is a decentralized
control mechanism called Moses (based on the concept of
Law Governed Interaction (LGI)[7], [8] . We have chosen
this middleware as the basis for our monitoring mechanism.

The rest of this paper is organized as follows. Sec
tion II introduces an abstract model of a monitored system;
Section III presents an overview of the LGI mechanism;
Section IV presents the architecture of our monitoring mech
anism; Section V discusses related work; and Section VI
concludes the paper.

II . A MODEL OF A MONITORED SYSTEM

We start in Section II-A with an abstract model of a
monitored system, in line with our general approach. To
elaborate on this model we introduce in Section II-B a
case study of a system to be monitored; and then, in
Section II-C, we provide a broad classification of what we
have called normative properties. We conclude this section
with a discussion of the problem at hand.

A. An Abstract Model

We define a monitored system to be a triple (B , P, I),
where:

• B is the base system being monitored. It consists of a
collection {Ci , ...,Ck} of components, called base com
ponents, or b-components. The messages exchanged
between the b-components, and between them and their
environment, are called base messages, or b-messages.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8336
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8336

description of these activities, which we will use in this
paper, is depicted schematically in Figure 1.

The purchasing activities considered in this case study
are regulated by two distinguished components: the Bud
get Office (BO), and the Purchasing Office (PO). The
budget office assigns purchasing budgets to other sys
tem components, by sending them messages of the form
budgetAssignment ($). The purchasing office compo
nent provides other components with purchasing tasks, of
a form that does not concern us here. Depending upon the
circumstance, a purchasing task can be interpreted either
as a permission to purchase the specified items or as an
instruction to do so by a specified deadline. The purchasing
activities themselves are carried out by various components
sending purchase orders to various internal servers, or to
servers over the Internet/.

Note that all the examples in this paper are coached in
terms of this simple case study; space limitations precluded
discussions of the results of the experiments we performed
on it.

c. On the Nature of the Normative Properties

Structurally, normative properties are predicates defined
over the flow of b-messages, and over the history of such
flow. In this section we classify these properties into three
types, which we call: local, local-regular, and non-local. In
the following section we discuss the monitoring techniques
required by each of these classes.

1) Local Properties: A local property is one that is
defined over the incoming and outgoing messages of a
single component. Such properties can be concerned with
the following types of issues:

• The conformance of the incoming and/or outgoing
messages with certain patterns, syntax, or formats. An
example of such property is: "budget requests arriving
at the budget office should have the following structure:
budget-Request (Amount)".

• A desired relationship between the incoming and outgo
ing messages. As an example, consider the following:
"There should be no more than M purchase tasks
pending at a specific component c.", where a purchase
task is interpreted as a direction to buy an item. This
property is local, because it can be verified by observing
all the purchase task messages arriving at the individual
component c, and all the purchase orders issued by it.

Note that although a local property is defined with respect
to a single component, it might characterize not only the
behavior of this component, but that of the components it
interacts with. For example a property defined over the delay
between a purchase order sent by component c to some
server s, and the arrival at c of a reply from s, reflects

2We assume that there is no centralized clearing house that mediates all
the purchase orders in the enterprise.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B336
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B336

information about the behavior of s, although it is a local
property at c.

2) Local-Regular Properties: A property p is called local
regular, if it is a local property that needs to be satisfied by
all components in the base system, or by a well defined
subset of system components, named the domain ofp.

The following is an example of such a property: "The total
cost of the purchase orders issued by any system component
does not exceed the budget assigned to it by the budget
office." This property is local because its violation can be
detected at each individual component, by observing the
budget assignment messages it receives from the budget
office, as well as the purchase order messages it sends; and
it is also regular since it applies to all the components in the
base system.

Local-regular properties are particularly important be
cause they represent system-wide standards, which are es
sential to the manageability and comprehensibility of any
large scale system. Moreover, as we shall see, the detection
of violations of such a property is challenging, because they
can occur at any component in its domain.

3) Non-local Properties: A non-local property p is a
predicate defined over the history of communication of
multiple, distributed, components. Or, in other words, it is a
property that is neither local, nor local-regular. As an exam
ple, consider the following property, again in the enterprise
purchasing context: "if the purchasing office broadcasts a
list of k items [M1 ...MkJ to be bought jointly by all the
components engaged in EP, then no item should be bought
more than once." Since a single item can be purchased by
several different components, at different times, the violation
of this property cannot be detected locally.

D. On the Monitoring of Normative Properties

We offer here two general observations about the moni
toring of normative properties, followed with more specific
observations about the monitoring of the three classes of
properties introduced above.

First, the monitoring of a given property needs to be
carried out as close as possible to the relevant b-components,
namely to the components in which the violation of this
property can be detected. Such localization is critical to
the scalability of monitoring, with respect to both the
size of the base system, and the traffic of messages in
it. Second, note that the detection of violations of history
dependent properties often does not require the keeping of
the full relevant history of communication. For example,
in order to determine that a component does not exceed
its communication bandwidth quota, it is not necessary to
record all the messages that the component has sent and
received; it is sufficient to maintain a count that represents
the cumulative size of such messages. Thus, properties in
P can be expressed in terms of such synoptic abstractions,
which we call monitoring states.

Now, local properties, can be monitored very scalable by
employing wrapper techniques, where individual wrappers
are responsible for observing the local property of a wrapped
component. These wrappers need to be stateful for an
efficient monitoring of history dependent properties.

The monitoring of local-regular properties is significantly
more challenging. Individual wrappers are not an appropriate
solution due to the difficulty to ensure that all the wrappers
in the domain of a given property p employ the right logic to
monitor p. This is particularly problematic because a single
wrapper may be required to monitor several such properties.

The monitoring of non-local properties is even more
problematic. Each such property involves a relationship
between distributed events (sending and arrival of messages),
occurring in several (may be many) components, and span
ning a certain period of time. The occurrence of such events
would have to be reported to some aggregator-one of the
components of the instrumentation division I -which will
attempt to detect the violation of the property at hand.
Such aggregation unavoidably reduces the scalability of the
monitoring mechanism. But such lowering of scalability can
be minimized by using different aggregators for different
properties, as we intend to do.

III. A BRIEF INTRODUCTION TOLGI

Law-Governed Interaction (LGI) has been originally de
veloped as an access control (AC) and coordination mech
anism for distributed systems. More precisely LGI is a
message-exchange mechanism that allows an open and
heterogeneous group of distributed actors to engage in a
mode of interaction governed by an explicitly specified and
strictly enforced policy, called the "law" of this group. By
"actor" we mean an arbitrary process, whose structure and
behavior is left unspecified. An actor engaged in an LGI
regulated interaction, under a law £, is called an £-agent
(or simply an "agent," when the identity of the law does not
matter); the messages exchanged under a given law £are
called £-messages; and the group of agents interacting via
£-messages is called an £-community. LGI turns a set of
disparate actors, which may not know or trust each other,
into a community of agents that can rely on each other to
comply with the given law L. This is done via a distributed
collection of generic components called private controllers,
one per £-agent, which mediate all interactions between
these agents, subject to a specified law £(as illustrated in
Figure 2).

The private controllers are hosted by what we call con
troller pools-each of which is a process of computation that
can operate several (in the hundreds) private controllers, thus
serving several different agents, possibly subject to different
laws". This section provides only a very brief overview of

3We often use the term "controller" for either a controller-pool or for a
private-controller---expecting the ambiguity to be resolved by the context.

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B336
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B336

LG!. For more information, the reader is referred to the LGI
manual [8] , web references , and to a host of published
papers.

Agents and their Private Controllers:: An £-agent x
is a pair x = (Ax, Tf), where Ax is an actor, and Tf
is its private controller, which mediates the interactions of
Ax with other LGI-agents, subject to law E. The role of
the controllers is illustrated in Figure 2, which shows the
passage of a message from an actor Ax to A y , as it is
mediated by a pair of controllers, first by Tf, and then by
T;-both operating, in this case, under the same law.

The Concept of Law, and the Semantics of LGI::
Our concept of law differs structurally from the conventional
concept of an AC policy (such as that of XACML) mostly
in that it is local-in the sense that an LGI law can be
complied with, by each member of the community subject to
it, without having any direct information of the coincidental
state of other members. This locality is important because
it enables the decentralization of law enforcement, and thus
provides for scalability even in the case of stateful policies.

It is important to note that, despite the fact that locality
constitutes a strict constraint on the structure of LGI laws, it
does not reduce their expressive power, as has been proved in
[8]. In particular, despite its structural locality, an LGI law
can have global effect over the entire £-community-simply
because all members of that community are subject to the
same law-and can, thus, be used to establish mandatory,
community-wide constraints.

The following is an abstract definition of LGI laws: A
law Lis a function L(e, s), which returns a list ofprimitive
operations, called the ruling of the law, for any possible
regulated-event e and any possible control-state s.

Note that the ruling of the law is not limited to accepting
or rejecting a message, but can mandate any number of
operations like changing and issuing a message, providing
laws with a strong degree of initiative. Also, the oper
ations in the ruling may update the control-state of the
agent, thus providing for stateful policies. Finally, the ruling
may impose an obligation on the agent, which provides
a proactive capability. More specifically, LGI laws are
formulated using an event-condition-action pattern. In this
paper we will depict a law using the following pseudo-code:
upon(event)if(condition)do(action) , where the (event)
represents one of the regulated events, the (condition) is
a general expression formulated on the event and control
state, and the (action) is one or more operations mandated
by the law. We currently use two languages for specifying
laws-one is based on Prolog, and the other one on Java.
Note that, despite the pragmatic importance of a particular
language, the semantics of LGI are basically independent of
the language.

The Hierarchical Organization of Laws:: LGI pro
vides for the laws to be organized into hierarchies. Each such
hierarchy, or tree, of laws t(£o), is rooted in a "base law"

I
\

tit ... _I.

\
\

\

~
\ L

\ I
-, S

<,

<,
<,

Figure 2. Interaction via LGI: Actors are depicted bycircles, interacting across the Internet (lightly shaded cloud) via controllers (boxes) operating under
law L. Agents are depicted bydashed ovals consisting of actor-controller pairs. Thin arrows depict messages; thick arrows depict state modifications.

£0 . Each law in t(£o) is said to be (transitively) subordinate
to its parent, and (transitively) superior to its children. Given
a pair of laws Nand Min t(£o), we write N -<M if N is
subordinate to M .

Semantically, the most important aspect of this hierarchy
is that if N -<M then N conforms to M, in the sense that
law N satisfies all the provisions of its superior law M .

LGI provides a very efficient mechanism, outlined in [9],
for constructing such law-trees, top-down. This is done,
broadly, as follows. Starting from a given law M in a tree,
one can refine it into a subordinate, and conforming, law N .
Once formed, the laws in the law ensemble are independent
entities, with no dynamic relationship between a superior
law and its subordinates-although different laws in the tree
may be able to interoperate. The law tree is, therefore, a very
modular structure.

The Performance Evaluation of LGI: The overhead
incurred by LGI is quite affordable, and is negligible for
many applications communicating over WANs. We have
evaluated the performance of the current implementation of
LGI on various platforms: Sun Solaris, Linux and Windows,
and with different Java Run-time Environments (see [8]
for more details) . With a commodity Linux workstation
(Intel 3.2GHZ CPU, 1GB memory) and SUN NM 1.4.0,
the typical overhead brought by a single event evaluation
(as is the verification of a message passing through a
controller,) is about 50 micro seconds, which is very small
compared with typical communication time between two
Java applications using TCP/IP (usually about 1ms for LAN
communication). The typical overhead brought by actor-to
controller communication is about 130 micro seconds, which
is also small . In terms of throughput, our evaluations show

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8336
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8336

that a single controller-pool can handle more than 18,000
events per second, which is stable even when it holds more
than 1,000 private controllers.

For monitoring purposes, in addition to the small com
munication overhead, the LGI mechanism also shows good
scalability with the number of components involved in
communication, the number of messages exchanged between
these components, as well as the number of properties to be
monitored. This scalability is addressed throughout the rest
of this paper.

IV. LGI-BASED MONITORING

We start in Section IV-A, with the description of an archi
tecture of a monitored system (B , P, I), based on the model
of such system introduced in Section II-A. In Section IV-B
we outline the manner in which this architecture can be
used to monitor various kinds of normative properties. In
Section IV-C we discuss the deployment of this LGI-based
monitoring.

A. The Monitoring Architecture

According to the model introduced in Section II-A, a
monitored system consists of two part, which we call
divisions: the base system B, and the instrumentation I,
as depicted in Figure 3. We start by elaborating on these
divisions, and specifying the relationship between them. We
then discuss the various types of messages involved in this
architecture. We conclude this section with a discussion of
the organization of the laws that facilitate the monitoring
itself.

~---
:' Instrumentation

..-

\f!!
\~

\ ~
\ ~

\ \
\ ~

\ '"
\

\
\

\

I
&1
II
II
~ I

¢ I
~I

I
I

II Enhanced message

OJ I , ~
~ I \ ~

$ I \ to'

SI \~
~ I \ '6>

't:; I \ ~

'"4" Extra message ,,'"
J., \

I " , \I': Base message \ \ \--- ---

Base System

Figure 3. LGI-based Monitoring Architecture

I) The Base Divisions: We assume that b-components
communicate via LGI. That is, each b-component is asso
ciated with its private LGI controller that mediates all its
communication . Thus, b-components become LGI agents
under this architecture (using the terminology introduced in
Section III). The laws under which these agents operate
and there are several such laws, as we shall see below
are designed for the monitoring of the set P of normative
properties.

It should be pointed out that no automatic means for
converting a given set of normative properties-stated, for
example, in first order logic,-into LGI laws are presently
available. However, research is underway for doing such a
conversion for a subset of local and local-regular properties.

2) The Instrumentation Division:: The LGI controllers
associated with the b-components belong to the instrumen
tation divisions I, as shown in Figure 3. But this division
contains additional components, called i-components.

Each i-component c is responsible for the detection of the
violations of one, or more, non-local properties in P. This is
to be done by accepting notices about the relevant messaging
events occurring in various b-components, sent to x by the
controllers associated with the various b-cornponents; and
then by analyzing the notices aggregated in them. Different i
components may thus be responsible for monitoring different
properties in P, or, sometimes, the same property with
respect to different parts of the base system. We do not
discuss here the internal functionality of the i-components,

3) The Messages:: This architecture employs the follow
ing types of messages:

• Base Messages: These are the original messages of
the base system, which have not been modified by the
monitoring mechanism.

• Enhanced Messages: These are base messages to which
extra information is appended by the controller of the
source of the message, and intended for the controller
of its destination. The purpose of such piggybacking
is to facilitate the verification of certain types of non
local properties, as explained in Section IV-B. As we
shall see, this extra information is stripped down by the
controller of the destination, so that the b-components
themselves receive only the original b-messages.

• Extra Messages: These are messages exchanged be
tween different parts of the instrumentation, in order to
facilitate the detection of the failures of the normative
properties.

4) The Organization of the Laws: The controllers as
sociated with the various b-components operate under a
three-level hierarchy of laws, depicted in Figure 4. Before
explaining the nature and purpose of this hierarchy we point
out that it is not the only way for organizing the laws under
our monitoring architecture, but it is a reasonable way with
which we have experimented, and it is easy to imagine
variants of it.

The root of this law-hierarchy is, what we call, the
non-intervention law, or EN I . This law has exactly one
immediate subordinate, called the base system law, or EB .

And £B, in tum, has a set of so called component-laws
[£l£k] as its subordinates.

Now, each b-component c operates under exactly one

Digital Object Identifier: 10.4108/1CST.COLLABORATECOM2009.8336

http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8336

L Nt NOn.tntervent~;w

L B Base-System Law

L 1,LFomponent Law

-,
"-

" -, ,
\ , \

\ \ \
I I I

I I I
/ / /

/ " /-- -- ""

Figure 4. The Organization of Laws

component-law £i' Given the conformance semantics of the
LGI law-hierarchy, this means that the messages sent and
received by component c are mediated in conformance not
only with £ i, but with laws £B and £NI as well. We are
now in a position to discuss the functions of the various laws
in this hierarchy, starting with the root law.

The root law £NI : is written to ensure non-intervention
in the operations of the base system. More specifically, this
law provides the following guarantees: (a) b-messages are
delivered to their destination (so, they cannot be blocked by
subordinate laws); (b) enhanced messages are stripped down
from their piggybacked information prior to their delivery at
the destination, and (c) no extra messages are delivered to b
components. These provisions are guaranteed, because they
cannot be violated by any subordinate law, which, by its
definition, conforms to law £ N I .

Note that this particular law is essentially part of the
monitoring framework, that can be used for any type of base
system, and for any given set of normative properties. This
is the way we achieve our objective of non-intervention.

The law £B ,: which is subordinate to £NI but superior
to all component-laws £ i , can provide the following func
tionalities: First it can ensure that any given local-regular
property p is monitored in the same way at all b-components
in the domain of p, which may be the entire base system.
Second, it can be written to monitor non-local normative
properties.

A Component Law £i : is responsible for monitoring
the local properties defined for individual component, or for
a group of components that have identical local properties.

The fact that local properties are implemented as part of
a law £ i, which is subordinate (and thus conforming) to
law £B , provides with an important degree of flexibility,
as follows. If an individual component is changed or a
new component appears in the system, its property can be
implemented in its own law, independently of the local
regular or non-local properties that may apply to the same

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8336
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8336

component. From the perspective of other controllers, EB

prevents the changes in £i to be visible to the rest of the
monitoring instrumentation. The conformance of £ i to £ B

also ensures that the more stable non-local and local-regular
properties are shielded from changes in local properties
that are bound to be tied to a certain implementation of
a particular component.

B. The Monitoring of Various Types of Properties

Below we will show the mechanism for verifying some
of the properties for the Enterprise Purchasing activity, and
we will present the corresponding fragments of EB . Due to
space limitations we will not show £NI and £i .

Local-Regular Properties: A local-regular property can
be monitored by observing the communication of every
component in the system or the domain of that property.
A local-regular property has to be incorporated as part
of £B , since all the components of the system are sub
ject to it. Let us consider again the local-regular prop
erty introduced in Section II-C2: "The total cost of the
purchase orders issued by any system component does
not exceed the budget assigned to it by the budget of
fice.". The fragment of E B concerned with this property
is presented in Figure 5. Let us assume that the budget
office assigns budgets to other components using messages
of the form budgetAssignment (BudgetAmount) ,
and that the purchase orders are messages of the form
purchaseOrder (Item, Amount). The verification
process is organized in two rules. Rule Rl is invoked every
time a budgetAssignment message arrives at the controller of
a component. Before the delivery of such message, the con
troller updates a variable called Budget in its control-state.
In Rule R2, every time a component issues a purchaseOrder
message, the amount in the purchase order is compared
against the same Budget variable in the control-state ; a
violation is identified if the former exceeds the latter. Subse
quently, the amount of the purchase order is deduced from
the budget of the component , and the controller propagates
the message without change. Note that, once a violation
is detected, the controller reports it by sending a message
to a specialized instrumentation component responsible for
collecting such violations, as mentioned in Section II.

Note that this property is verified entirely locally, at
the controller of each component, thus the implementation
scales well with the number of components, and with the
number of messages witnessed by a component. Also note
that local properties are treated similarly, since they are
verified by individual controllers. The monitoring of local
properties, however, is implemented as part of £ i, thus
it applies to individual components, and not to the whole
system.

Non-Local Properties: Non-local properties are proper
ties that cannot be verified locally, by observing the commu
nication of a single component. One method we use for veri-

Preamble: Law(LB, conforms(LNI))
Rl)

upon arrived (BO,
----budgetAssignment(BudgetAmount), X)

do (Increase (Budget, BudgetAmount))
do (Deliver)

R2)
upon sent (X,
----purchaseOrder(Item,Amount) , Y)

if(Amount > Budget) {
do (ReportViolation) }
do (Decrease (Budget, Amount)
do (Forward)

Figure 5. Fragment of E B verifying budget consistency

fying such properties relies on the specialized i-components.
The i-components can collect information supplied by the
local controllers and thus they can verify a given property.
We do not assume a single i-component for the entire
system: different properties can be verified using different
i-components. Accordingly this solution is scalable with the
number of properties to be verified. This is an important
feature not supported by most monitoring mechanisms which
either use a single component that collects information from
the entire infrastructure, or a physically organized hierarchy
of specialized components for centralizing such information.

Let us consider the non-local property introduced in II-C3,
in the context of the enterprise purchasing : "if the purchas
ing office broadcasts a shopping list of k items [M1 ...MkJ
to be bought jointly by all the components engaged in
EP, then no item should be bought more than once." In
order to verify this property, we employ an i-component,
called the Item Aggregator, that collects information about
all the items in the shopping list. We assume that the
joint purchasing is assigned through a message of the
form jointPTask (ItemList) broadcasted to all the
components in EP. A purchase order is represented by a
purchaseOrder (Item, Amount) message. The con
troller of each component will identify the purchase orders
concerning the items in the shopping list, and will report
them to the Item Aggregator using extra-messages. The Item
Aggregator can subsequently verify whether an item has
been purchased twice.

Figure 6 shows a fragment of the £ B law designed
to monitor this property. Rule Rl is invoked whenever a
component receives a joint shopping list from the purchasing
office. A copy of this list is saved in the local control
state. In Rule R2, whenever a component issues a purchase
order, the item in the purchase order is compared against the
ShoppingList. If present, an inform extra-message containing
the item is sent to the Item Aggregator. Since this rule
applies to all the components in the system, the Item
Aggregator will collect the information about each item in
the ItemList purchased by any component; consequently it

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B336
http://dx.doi.org/10.41OBI/CST. COLLABORATECOM2009. B336

can verify any duplicate purchase. Here we do not show how
the Item Aggregator will employ this trivial verification. We
also assume that the address of the Item Aggregator is known
in advance.

Preamble: Law(LB, conforms(LNI))
Rl)

upon arrived(PO,jointPTask(ShopLst) ,X)
----do(Save(ShopLst)) do (Deliver)

R2)
upon sent (X, purchaseOrder(Item) , Y)
----if (Item in ShopLst) {

do(Fwd(ExtraMsg(Aggregator,Item)))}
do (Forward)

Figure 6. Fragment of £ B verifying a joint purchase

The verification of many non-local properties can also be
performed without the help of i-components, in a more scal
able manner. The controllers can collaborate instead in order
to verify such properties. Consider the following example. In
the EP system, let us assume that a Human Resources
(HR) office dynamically assigns buyers into different de
partments, using assignDept (DptNo) messages. Let us
furthermore assume that the buyers within a department are
allowed to transfer budget to each other, using a assign
Budget (B) message. Consider the monitoring of the fol
lowing property: " no buyer transfers its budget outside its
own department". This property is non-local, since it cannot
be evaluated by observing the communication of a single
component. LGI-based monitoring verifies this property as
follows. The controller of each component will first detect
each incoming assignDept (DptNo) message, and it
will save the DptNo value for each component. Whenever
a component sends a assignBudget (B) message to
another component, the controller will enhance the message
with the previously saved DptNo value, thus piggybacking
this information to the controller of the receiver. Upon
arrival, the controller of the receiver will thus have both
DptNo values at hand, and it will be able to verify the
property. The fragment of £ B that verifies this property is
presented in Figure 7.

Preamble: Law(LB, conforms(LNI))
Rl)

upon arrived(HRO,assignDept(DN) ,X)
----do(save(DN)) do (Deliver)

R2)
upon sent(X, assignBudget(B) , Y)
----do (Fwd(X, [assignBudget(B),DN] ,Y))

R3)
upon arrived(Y, [assignBudget(B),D] ,X)
----if (D <> DN) {do (ReportViolation)}

do (Deliver(Y,assignBudget (B) ,X))

Figure 7. Fragment of E B verifying the budget transfers

C. The Deployment of the LGI-based Monitoring

In order to enable the LGI-based monitoring for a base
system, the b-components have to be programmed such that
they use the LGI primitives as their only means of commu
nication. Additionally, an instrumentation infrastructure has
to be deployed in order to enable this communication and
to verify the monitored properties.

The monitoring instrumentation consists of a set of con
trollers operating under laws as specified in IV-A4, and a
number of i-components designed to collect the information
for verifying aggregate properties. The controllers are to
be deployed globally across the Internet, and in reasonably
close proximity to any component in the base system.
Similarly, before the monitored system starts its execution,
the i-components should be deployed and their addresses
should be known in advance.

In order to enable an LGI message exchange between
the components in the base system every component has
to be associated to a specific controller. This controller is
to operate under a specific law hierarchy that reflects the
properties observed by that component. Additionally, every
component is to be assigned a control-state reflecting both
the identity of the component, and the state that might
be necessary for verifying the properties. These operations
take place automatically during the initialization of each
components, with the help of a special component called
the Registry.

The following exchanges are performed during the initial
ization stage:

• the component will contact the registry and provide it
with its identity;

• the registry will reply with the address of an associated
controller, a hierarchy a laws, and an initial control
state specific to this component

• the component will adopt the provided controller, under
the specified laws, and with the specified initial control
state

After this initial exchange, the b-components will operate
as black boxes, according to their internal logic, and will
use the send and receive LGI primitives for communica
tion. Automatically, their traffic will be directed through
their corresponding controller, and the traffic will become
subject to verification of the properties implemented in the
corresponding hierarchy of laws.

Note that this scheme provides robustness against incom
plete or faulty instrumentation as follows. If a certain b
component is not associated with any controller, that compo
nent will not be able to communicate with other components
that are associated with a controller. This is a consequence of
a specific protocol and authentication mechanism employed
in the controller-to-controller communication. Also, if a b
component is associated, by mistake, with an improper law
L~, the component again will not be able to communicate

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B336
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B336

with the other components operating under LB, due to
the LGI mechanism that verifies that the source and the
destination of a message operate under the same law.

V. RELATED WORK

There is a large number of publications that address the
issue of monitoring in distributed systems, adopting a wide
range of methods for achieving this purpose. Most such
works do not share some of our objectives. In particular, (1)
[4], [10], [11] take a white box view of the components; (2)
[12], [13], [11], [4] perform their monitoring off-line; and
(3) [14], [15], [16] monitor specialized kinds of systems,
like computer clusters and networks. Below we will discuss
a number of recent efforts that are more closely related to
ours, but which do not entirely satisfy our requirements.

Spanoudakis et. al. [17] present a model for monitoring a
system built according to the Service Oriented Architecture,
and whose components (Le. web-services) are considered
black-boxes. The system subject to monitoring is assumed
to interact through a centralized BPEL engine, and the
monitoring itself is centralized, thus unscalable for a widely
distributed application domain. In the same context, Machi
raju et. al. [18] present the Web Services Management
Network (WSMN), a mechanism for monitoring Service
Level Agreements (SLAs) using a network of local and
cooperating intermediaries. Similar to us, they have a black
box view of the components, and their approach is de
centralized. However, they do not have a mechanism to
deploy and enforce a global policy systematically, on every
intermediary. Accordingly, their mechanism is not suitable to
monitor the important local-regular and non-local properties.

Khanna et. al. [6] provide a generic monitoring architec
ture whose objectives are very similar to ours. However, this
work is based on the assumption that the instrumentation
has access to every local area network (LAN) used by
the system at hand, so that the monitors can eavesdrop on
the communication. Their assumption is often not valid for
large open systems, as we have pointed out before. Another
difference is that [6] organizes the monitors into a physical,
thus rigid, hierarchical structure. As argued in Section IV-B,
this organization does not scale well with the number of
properties and can introduce additional, unnecessary traffic
among the instrumentation components. Finally, their local
monitors listen to the system and process the messages
in an asynchronous manner. Thus, such monitoring does
not facilitate immediate corrective response following the
detection of a property violation.

The closest work to ours, in terms of both its objectives
and its approach, is that of Inverardi et. al. [2]. This paper
proposes a distributed monitoring mechanism for verifying
properties defined over the interactions in a system, whose
components are assumed to be black boxes. The authors
start with a global state-machine based model of what we
call the normative system behavior. Once formulated, this

global model is distributed automatically into a collection of
local adaptors, or filters, representing the monitoring instru
mentation. However, as this paper admits "[this] approach
might still suffer of the well known state-explosion problem"
[2], when generating the global state-machine, as well as
during the process of its distribution to local filters. Another
problem with this approach is its lack of flexibility with
respect to the addition of new components, since such an
addition would require reformulation of the entire global
system model.

VI. CONCLUSIONS

This paper introduced a specification based monitoring
mechanism for open distributed systems, whose main pur
pose is a speedy and scalable detection of improper system
behavior, where the proper system behavior is assumed to
be specified by a set of normative properties defined over
the flow of messages in the system. The monitoring is
carried out by employing a stateful and decentralized control
mechanism called LGI, without any knowledge of, or control
over, the internal behavior of the components of the system.

The speedy and scalable monitoring is accomplished by
carrying out much of the monitoring close to the occurrence
of the relevant communication events. Thus, structurally
local and local-regular properties are monitored entirely
locally, while non-local properties are monitored either
semi-locally, or by means of a collection of aggregators,
in a semi-decentralized manner.

Finally, the monitoring architecture proposed here protects
the base system being monitored from any interference by
the monitoring activities. However, this architecture has been
designed to be coupled with a corrective mechanism that
can apply appropriate remedial measures, in response to
problems uncovered by the monitoring of the system. The
discussion of this coupling between the monitoring and the
corrective mechanisms is beyond the scope of this paper.

REFERENCES

[1] G. Spanoudakis, C. Kloukinas, T. Tsigritis, K. Androutsopou
los, C. Balls, and D. Presenza, "A4.dl.l review of the state
of the art," European Serenity Project: System Engineering
for Security and Dependability, 2006.

[2] P.Inverardi, L.Mostarda, M.Tivoli, and M.Autili, "Synthesis
of correct and distributed adaptors for component-based sys
tems: an automatic approach," in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, 2005.

[3] O. T. Committee, "Web Services Distributed Manage
ment: Management Of Web Services (WSDM-MOWS)
vl.O, OASIS standard," March 2005, available from:
http://www.oasisopen.org.

[4] M.Y.Chen, A.Accardi, E.Kiciman, J.Lloyd, D.Patterson,
A.Fox, and E.Brewer, "Path-based failure and evolution man
agement," in NSDI'04, 2004, pp. 309-322.

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B336
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009. B336

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, "A Simple
Network Management Protocol (SNMP)," 1990, rFC: 1157,
available from http://www.ietf.org/rfc/rfcI157.txt.

[6] G.Khanna, P.Varadharajan, and S.Bagchi, "Automated on
line monitoring of distributed applications through external
monitors," IEEE Transactions on Dependable and Secure
Computing, vol. 3, pp. 115 - 129, April 2006.

[7] N. Minsky and V. Ungureanu, "Law-Governed Interaction: a
Coordination and Control Mechanism for Heterogeneous Dis
tributed Systems," TOSEM, ACM Transactions on Software
Engineering and Methodology, vol. 9, no. 3, pp. 273-305,
July 2000.

[8] N. H. Minsky, "Law-Governed Interaction (LGI): A Dis
tributed Coordination and Control Mechanism (An Introduc
tion, and a Reference Manual)," Rutgers University, Tech.
Rep., June 2005.

[9] X. Ao and N. H. Minsky, "Flexible regulation of distributed
coalitions," in LNCS 2808: the Proc. of the European Sym
posium on Research in Computer Security (ESORICS) 2003,
October 2003.

[10] K.Sen, A.Vardhan, G.Agha, and G.Rosu, "Efficient decen
tralized monitoring of safety in distributed systems," in Pro
ceedings of the 26th International Conference on Software
Engineering (ICSE2004) , 2004, pp. 418-427.

[11] P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian,
and A. Vahdat, "Pip:detecting the unexpected in distributed
systems," in NSDI'06, 2006.

[12] T.Gschwind, K.Eshghi, P.K.Garg, and K.Wurster, "Webmon:
a performance profiler for web transactions," in 4th IEEE
International Workshop on Advanced Issues of E-Commerce
and Web-Based Information Systems, 2002.

[13] M.K.Aguilera, J.C.Mogul, J.L.Wiener, P.Reynolds, and
A.Muthitacharoen, "Performance debugging for distributed
systems of black boxes," in SOSP 2003, 2003.

[14] M.L.Massie, B.N.Chun, and D.E.Culler, "The ganglia dis
tributed monitoring system: Design, implementation, and ex
perience." Parallel Computing, vol. 30, no. 7, July 2004.

[15] P.Barham, A.Donnelly, R.Isaacs, and R.Mortier, "Using mag
pie for request extraction and workload modeling," in
Proc.OSDI, San Francisco, Dec. 2004, pp. 259-272.

[16] K. Park and V. S. Pai, "CoMon: A mostly-scalable monitoring
system for PlanetLab," Operating Systems Review, vol. 40,
no. 1, January 2006.

[17] G. Spanoudakis and K. Mahbub, "Non-intrusive monitoring
of service-based systems," International Journal of Coopera
tive Information Systems, vol. 15, no. 3, pp. 325-358, 2006.

[18] V. Machiraju, A. Sahai, and A. van Moorsel, "Web services
management network: an overlay network for federated ser
vice management," in Eighth International Symposium on
Integrated Network Management, March 2003.

