A Policy Management Framework for Trusted Cross-
domain Collaboration

Zhengping Wu
Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, USA
zhengpiw@bridgeport.edu

Abstract—Cross-domain collaboration between enterprises needs
a trusted execution environment. Policy-based management is a
promising and convenient way to construct and manage such an
environment. Since management of security and trust policies
from collaborating domains has to handle different policies and
heterogeneous policy enforcement platforms, an architectural
innovation of policy management in this environment is needed.
In this paper, a policy management framework is designed and
implemented to provide a trusted cross-domain collaboration
environment. Merits of this new framework are illustrated
through an application in the web services environment.

Keywords-policy management; cross-domain collaboration; trust;
security

I. INTRODUCTION

Cross-domain collaboration between enterprises is a recent
trend in complex product development, workflow federation,
web/grid service orchestration, and virtual organizations
[1,2,3]. Trusted and efficient collaboration over different
enterprise domains leads to a much higher competitive
capability of the enterprise in the distributed and networked
information environment. Dynamic integration and
coordination of systems across multiple domains to support
collaborations require more capability for each participant
system, which includes security control, trust management,
adaptability for on-demand creation and self-management of
dynamically evolving collaboration tasks spanning domain
borders, where the participant entities (enterprises or
individuals) share information, resources, and controls.

Policy-based management provides a promising way to
support trusted cross-domain collaborations [4]. This requires
methods and tools acquire, analyze and enforce trust-related
policies from multiple domains to smooth collaboration
activities and eliminate trust-related violations. Policy is “a
formal statement of direction or guidance as to how an
organization will carry out its mandate functions or activities,
motivated by determined interests or programs [5].” A policy
determines what can be done, what should be done, and how a
task can be done for an administrative domain. In terms of the
actual managerial contexts, a policy could be any format and
any content.

For tools and methods used in online collaborations, policy
plays a critical role in control and management. In workflow
integration, policies from collaborating domains can regulate

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

Hao Wu, Yuanyao Liu

Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, USA
{wuhao,yuaoyaol}@bridgeport.edu

what information is shared with partners and what is not. In
service orchestration, policies can determine whether
components meet functional as well as administrative
requirements from service provider domains and service
consumer domains. Policy-based approaches have been used in
many access control and security systems also. Users of these
systems can provide security and privacy protections for their
own administrative domains through policy definition.

But issues also exist when interoperation between policy
systems and policy-based systems is unavoidable in cross-
domain collaboration. For example, how do policies,
procedures, and standards currently deployed in one
administrative domain control activities that have to be
performed by entities from another domain in cross-domain
collaborations? Do these policies, procedures, and standards
need to be modified or augmented? How can we help translate
policies, procedures, and standards into different sectors,
environments and contexts for partner domains?

The main problem addressed by the paper is the lack of
efficient tools for cross-enterprise and cross-domain policy
management. The framework presented in this paper does not
aim to replace any domain- specific tools but to bridge the
collaboration gap between domains. Therefore it is necessary to
be able to adapt to existing systems, tools, applications, and
policy management platforms. Section II gives an overview of
the architecture for this policy management framework.
Sections III, IV, V describe detailed structures of individual
layers in this architecture. Section VI illustrates an
implementation of this architecture in the web services
environment for cross-domain collaborations. Section VII lists
several existing systems for policy management. Section VIII
compares our framework with existing systems to identify our
contributions. Section IX concludes the paper with contribution
highlights and future work.

II. FRAMEWORK OVERVIEW

The policy management framework presented in this paper
provides an architectural innovation of policy management for
trusted cross-domain collaborations. It targets security, trust
and other related policies used in cross-domain collaborations.
It has a three-tier reference architecture, which includes a
policy input layer, a policy analysis layer, and a policy
enforcement layer. Figure 1 illustrates this three-tier
architecture.

The policy input layer is provided to allow users input
policies involved in cross-domain collaboration activities. To
handle different policies from different domains, the policy
input layer provides a very flexible interface and structure to
accommodate different types of policies. It achieves the
balance of effectiveness and efficiency by using a policy
vocabulary definition module and a unified policy input
interface. Then all policies will be stored using an internal
format for analysis and enforcement in the other two layers.

Policies and policy sets from different domains

Policy Input Layer
policy vocabulary definition & unified policy input

Internal policy format

Policy Analysis Layer
logic-based automatic policy analysis & automatic conflict resolution

Internal policy format

Policy Enforcement Layer
logic-model system-model fusion, intermediate-level-model low-level-
mechanism mapping & automatic enforcement code generation

Executable policy enforcement code
Figure 1. Three-tier architecture for proposed policy management framework

The policy analysis layer analyzes different policies or
policy sets from different domains. Through the policy input
layer, these policies or policy sets have been transformed into
an internal format. Since cross-domain collaboration activities
are dynamic. A new format of temporal logic called Semantic
Temporal Logic (STL) is designed to analyze and resolve
dynamic policy conflicts. Policies are analyzed automatically.
But exceptions in automatic analysis are also handled. To
provide enough flexibility for complex policy structures in
unpredictable exceptions, users (administrators) from different
domains can use a policy structure definition interface to define
three key components in STL (subject, object and action) for
complex policies. This type of semantic information describing
subtle structures of policies is used to detect conflicts and
resolve conflicts. This layer provides automatic resolution for
detected conflicts and exception handling irresolvable conflicts.
If an irresolvable conflict happens, an alert notification will be
sent to the user (administrator). So this user (administrator) can
provide his/her own resolution to override suggested resolution.

The policy enforcement layer combines the independent
logical/mathematical model accepted by all participant
domains in one collaboration task and the system model
derived from a specific policy system used in one
administrative domain to form an intermediate-level model
with the unanimously accepted logical and mathematically

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

framework and specific policy vocabulary. A semantic
mapping method is used in this fusion stage. Then a bi-
directional query-based method is used to map the
intermediate-level model to low-level enforcement mechanisms
such as network services, operating system services, and virtual
machine functions so that different formatted policies from
different domains can be automatically translated into
executable enforcement codes for each participant domain’s
computing platform. Automatic code generation in this layer
can reduce programmers’ error-prone activities to read,
understand, and translate policies into programming languages
or other executable codes.

In the three layers of this architecture, different policies and
policy sets are first represented by an internal format that can
be easily translated into an augmented logic format for analysis
and easily transformed into models for semantic-mapping-
based enforcement in the policy input layer; the policy analysis
layer uses STL to represent logic relationships between
different elements in policies using a semantic augment; the
policy enforcement layer uses semantic mapping to generate
executable enforcement codes via a model-driven process.
Sections III, IV, V provide detailed information about these
three layers.

III. POLICY INPUT

To accommodate different types of policies used by
different administrative domains, policy input layer provides
flexible policy framework definition and policy rule input
interfaces for users (administrators from collaboration
domains). First, a user can define the framework of one policy
set specifying type, vocabulary and constrains of that policy
set. Then the system will automatically generate an interface
for defining the policy instances (concrete policy rules) of the
policy set. Details of the structure of the policy input layer are
illustrated in figure 2.

Policies and policy sets from different domains

Policy Input Layer

policy framework definition
interface
(type, vocabulary, constrain)

unified policy input interface

fuzzy policy
input interface

regular policy
input interface

Internal policy format

Figure 2. Detailed structure of the policy input layer

As the first step of policy input, users need to define a new
policy framework. Users need to choose a name for the type of
the policy framework in the policy framework definition
interface. This policy framework definition interface supports
not only normal policies but also fuzzy policies. Fuzzy policy
is a type of policy using fuzzy terms to characterize uncertain
conditions, constrains, and actions in rule definition. Normal
policies support traditional authorization, obligation, and
configuration rules, while fuzzy policies support uncertain

factors in policy rules. After defining the policy framework
type, users need to input a vocabulary of the policy and the
basic structure of policy rules. As illustrated in figure 3, the
basic structure is shown in a tree-view at the left-hand side.
Users can add and delete terms in the vocabulary under each
appropriate node in that tree structure at any time. When one
term is selected, its attributes are shown at the right hand side
of the input window. For fuzzy policies, users can choose
different fuzzy operators [15] and defuzzification methods [16]
for a fuzzy policy set. As shown in the “MembershipFunction”
definition window within figure 3, users should also choose
one membership function for each fuzzy term. All fuzzy
methods and membership functions have default values and
can be adjusted following users’ specific needs or collaboration
contexts.

8 PolicyManagement o &=
File Edit Windows Run Help

S e Attributes
=) Trustworthiness
Trusted
Speed
= THEN
5)- Client
Allowed to access Name Trusted
Limited to access Operator Method None
denialed Defuzzfication None
Membership Function smf

[E=3EoR)| =)

Trusted, degree of Trustworthiness

Attributes Values

5 MembershipFunction

2k
smf : % on

® gaussmf 7 sponding to the degree
gauss2mt : \
pirmf :
smf 0.5 / \
gbelimf : - / A
trapmf

Granular -

[Done |

Figure 3. Policy framework definition interface

Once users have defined their policy frameworks, a unified
policy input interface is automatically generated for inputting
concrete policy rules following the policy framework defined
in the previous step. For normal policies, every policy rule
follows the same format “if subject S with attribute At and
object O with attribute At satisfy context C, then action Ac is
performed” no matter whether it is an authorization, obligation,
or configuration rule. The action can be a permission, task, or a
configuration setting. For fuzzy policy rules, the interface also
allows users to change attribute terms and the degrees
describing these terms. Any two of the terms can be combined
using “and”/“or” fuzzy operators. Furthermore users can
modify default membership functions for forming more
accurate attribute terms. After the policy framework definition
is determined, an internal policy format is used to store
concrete policy rules. Then all concrete rules for different
policies or policy sets from different administrative domains
entered in this policy input layer will be translated into this
format and stored in a policy repository.

IV. POLICY ANALYSIS

Applicable policies or policy sets for a collaboration
activity may be defined by different domains or be defined for
different purposes. Since cross-domain collaboration activities
are dynamic and different domains have their own policy
formats and structures, a unified policy model is introduced in

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

policy analysis layer to detect and resolve conflicts in policies.
There are four major components in this unified policy model:
subject, object, action, and context. Policy modeling is the first
step in this policy analysis layer, which figures out these
different components from a policy set. A logic that can
accommodate dynamic contexts called Semantic Temporal
Logic (STL) is designed to represent and analyze policy sets.
The internal policy format is transformed into this STL format.

Because of the requirements for all temporal-logic-based
analysis, subjects, objects, actions, and contexts have to be
identified before policy conflict analysis and resolution.
Meanwhile, the existence of so many different policy
languages, in a dynamic cross-domain collaboration, two or
more participant domains may use different policy languages to
define various policy rules, and a policy rule is a statement to
be used for management or control of a system. So a policy
structure definition interface is provided to allow users in one
collaboration to identify four major components required in the
unified policy model if the policy analysis layer cannot finish
the component identification process automatically or the result
is incorrect. This is the only interaction between the policy
analysis layer and users before actual policy analysis. Figure 4
illustrates the detailed structure of the policy analysis layer.

Internal policy format

Policy Analysis Layer
temporal-logic-based automatic automatic resolution
analysis

Extended

Temporal
Logic

irresolvable conflict notification
and overriding interface

policy structure
definition interface

Internal policy format
Figure 4. Detailed structure of the policy analysis layer

Existence of policy conflicts in heterogeneous policy sets
defined by different participant domains for a collaboration
task is not uncommon. Before collaboration happens, different
domains define and enforce their own policies using their own
rules and formats. These policies may play well in their own
domains, but there may very possible be conflicts when these
policies are applied to cross-domain activities for a dynamic
collaboration task. Three types of conflicts are most common:

* A conflict of duty arises when the same subject performs
both actions on the same object (e.g. a collaborative service
makes a resource access request and approves it).

* A conflict of interest arises when the same subject
performs “incompatible” actions on different objects. (e.g. a
collaborative service lets one service delete a shared file
whilst asking another service to read that file).

+ Different subjects perform different actions on a single
object and the outcome of each action is incongruent with
the other. (e.g. spooling a job to a printer and shutting the
same printer down).

To support various types of dynamic conflicts, STL is
proposed and implemented to augment temporal logic
representation and reasoning with rich semantic expressions.
These semantic expressions are used to help analyze and
resolve different types of dynamic conflicts. STL is a temporal
logic enhanced with descriptions of relationships between its
elements so that the semantic meaning of each element such as
subject and object can be easily identified in dynamic conflict
analysis. STL incorporates timing requirements into the
relationships between policy elements to perform reasoning
and detect conflicting elements or policy rules. The detailed
structure of STL is discussed in appendix A, and a number of
example conflict detection rules are also discussed there. The
final resolution is based on the result of conflict detection. The
conflict resolution module decides the appropriate resolution
actions based on the type of conflict identified by policy
analysis module. If a conflict is detected but the conflict type
cannot be identified, this policy analysis layer will notify users
from corresponding domains with the specific conflict part and
provide resolution suggestions. Users can follow the
suggestions or modify their policies manually.

V. POLICY ENFORCEMENT

After policy conflict analysis and resolution, some
relationships between elements in a policy language
(vocabulary) have been established by identification of the
relationships between subjects, objects, actions, and etc. Then a
system model of the policy language is formed by linking these
relationships. For example, if an element is a subject in one
relationship and is an object in another relationship, these two
relationships will be fused to the same element. So a web of
relationships is formed by these fusion activities. This web of
relationships is the system model of the policy language, which
is represented in ontology.

In policy enforcement layer, an interface to input the formal
logic or mathematical model for collaboration requirements is
also provided. This model is derived from business logic or
collaboration agreements for a specific cross-domain
collaboration. This model is also in the format of ontology.
Then a mapping is performed between the logic or
mathematical model and the system model of the policy
language to form an intermediate-level model. The key points
in this semantic mapping are that the approvable relationships
in the logic or mathematical model are being kept in the
intermediate-level model and the terms in business logic or
collaboration agreements are replaced or augmented by terms
in the policy language. So this intermediate-level model not
only includes logic relationships in collaboration but also
represents these relationships using elements in a policy
language. Each domain has its own intermediate-level model
for enforcement. Figure 5 illustrates the detailed structure of
the policy enforcement layer.

Then the last step is to automatically generate executable
policy enforcement codes by mapping the intermediate-level
model to low-level enforcement functions and services in
operating systems or computing platforms. Total automatic
code generation may not be possible, so a semi-automatic code
generation method is proposed here. First, a query-based
mapping between the intermediate-level model and the low-

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

level functions or services is performed. A searchable
documentation or database for all the available functions or
services in the underlying computing platform is assumed, such
as Java documentation for Java virtual machine and MSDN for
NET framework. Second, if more than one possible
enforcement function or service is found in the underlying
computing platform, a notification will be sent to the user
(administrator) for a manual choice. After that, all policies
defined by collaboration users will be translated into executable
enforcement code automatically. Thus different policies
defined by different domains’ users or administrators can be
enforced across computing platforms so that the entire policy
management framework for cross-domain collaboration is
complete.

Internal policy format

Policy Enforcement Layer

logic-model system-model fusion (semantic mapping)

logic model definition interface

Intermediate-level model

intermediate-level-model low-level-mechanism mapping
(query-based method)

automatic enforcement code generation

Executable policy enforcement code

Figure 5. Detailed structure of the policy enforcement layer

VI. IMPLEMENTATION IN A WEB SERVICES
ENVIRONMENT

We implement this policy management framework for
cross-domain collaboration in a web services environment. To
construct a trusted collaboration environment in the web
services environment, several types of policies need to be
managed and enforced. We use web service security (WS-
Security) and web service trust (WS-Trust) policy languages as
examples to illustrate the usage of our proposed policy
management framework for trusted cross-domain
collaborations. In this implementation, security policies are
specified by one domain (domain A), which puts more weight
on the security side of its web service interactions. Trust
policies are specified by another domain (domain B), which
emphasizes trust relationships for its web service interactions.
Domain A uses Microsoft .NET framework as their computing
platform, which executes all enforcement codes. Domain B
runs applications on Java virtual machine.

The administrator of domain A can input WS-Security
policy with the guidance of its official specification. The
vocabulary of WS-Security policies is defined in its
specification, so a user can input its vocabulary and all other
possible components through our policy vocabulary definition
interface. All possible combinations of WS-Security
components are also inputted through the policy framework
definition interface. As the innovative part, if there is any

uncertainty on a component, the administrator can attachment a
membership function to describe that uncertain factor. Since
both WS-Security and WS-Trust polices share the web service
policy (WS-Policy) framework, the basic structures of these
two languages are similar with differences on vocabularies and
policy models. Policy models will be discussed in policy
analysis stage. The WS-Policy framework is illustrated in
figure 6.

Policy

! g]

Satisfy at least one

A i Policy Subjet:ta

Support all
Policy Alternative |1 1% 1
—
Requir ement Sotish al Policy Assartion
1
A: attribute A: the attribute within the assertion
s={A} s: the subject of an assertion
o={A} o: the object of an assertion
A(c)= {sx0} A(c): the action of an assertion
Context: information | Context: the information that hide in
network or environment

Assertion={ Assertion: a set of action and
sxoxA(c)xContext} requirement
Alternative= Alternative: a set of assertions

{Assertions }

P= {Alternatives;} P: policy, a set of alternatives

Figure 6. Policy framework of WS-Policy

After input of both policies’ frameworks, policy analysis
starts from the internal XML structure of a WS-Security policy
file. The tree-like structure (or graph-like structure with
interlinked URIs) of an XML file has an internal structure of
policy components defined in policy rules. But most of the
time, this internal structure does not reflect full relationships
(or semantic relationships) between policy components. To use
temporal logic to process cross-domain or multi-domain
policies, this relationship barrier cannot be avoided, which
reduces the accuracy and efficiency of policy analysis. STL
provides a bridge over this barrier by applying an ontology-
based knowledge representation model onto temporal logic
itself. This model provides not only information of individual
entities from specific domains but also the relationships among
these entities, which are key issues for policy analysis.

Through the policy structure definition interface of the
policy analysis layer, administrators can modify the policy
structure automatically constructed from the internal XML
structure and augment more relationships between different

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

policy components in the semantic format discussed in section
4. This ontology-based knowledge representation stores the
information of specific policy domain, which contains each
entity’s information and relationships among several entities.
We chose OWL-Full [17] as the representation format to store
relation information. The OWL-Full is an expressive sub
language from OWL ontology language. To build the
representation foundation, we use ontology to describe the
model of policy domain and relations within that policy
domain. This ontology keeps track of the relations between
elements in the policy domain. For example, there are two
policies:

“The computer lab will open from 8am to 8 pm.”(Policy I-
defined by facility manager)
“A student can use computers in lab from 9 am to 9
pm.”(Policy 2-defined by system administrator)
In these two policies, computer is a class, which has some
properties such as “in a computer lab” and “available from
8am to 8pm”. The student is another class, which has
properties such as “can use lab computer” and “from 8am to
9pm”. The relation between computer and student is “student
can use computer”, and the property on this relation is a time
period (8am to 9pm). These two classes can be express as
follows:

class(pp:computer partial

restriction(pp:isAvailable, pp:inLab))
class(pp:student complete
restriction(pp:use

someValueFrom(intersectionOf(pp:computer

restriction(pp:inLab)))))
The first situation (Policy 1) indicates the computer (fluent)
will not available from 8 pm (time point); the second situation
(Policy 2) indicates students (user/fluent) can use computer till
9 pm. Obviously, there will be a conflict in this policy set for
the time period between 8 pm and 9pm. To detect this conflict,
the logic mechanism has to deal with time. Temporal logic can
easily handle this issue. A Temporal Logic representation of
the above situation is as follows:

Policy 1: Initiates(computer, t1) /\Clipped(computer, t2);

Policy 2: Initiates(computer, t1) /\Clipped(computer, t3);

(t1=8 am; t2=8 pm; t3=9 pm). (Obviously , there is a

conflict between t2 and t3:Conflicti(computer, t) /\

12<t<t3)
However, in many situations, relations between different
elements (subjects, objects, attributes) are very complicated. A
single formula cannot express all possible meanings of
behaviors. For example, when using Temporal Logic as a
reasoning tool to detect policy conflict, subjects and objects
usually are changed under different contexts or execution
environments. In the above example, the subject in policy 1 is
the object in policy 2. When we analyze these policies, this
element (computer) would play different roles in different
policies. When users define these two policies and enforce
them in a collaboration activity, the conflict may affect the
reliability and stability of the entire system. So basic rules of
STL are represented as follows using temporal logic
predicates.

HoldsAt(subject,t) A HoldsAt(object,t) A
HoldsAt(Action(c),t) /\ HoldsAt(relation(subject, object,
Action(c), t) /A (t<t’) — HoldsAt(subject, object,
Action(c), t)
And the rule of STL to detect conflict between Policy 1 and
Policy can be represented as:
HoldsAt(student,computer,use(),t) /N
Terminate(computer,t’) /\ 8am<t<9am \9am < t’
Relation: use(student, computer) at t
The detailed rules to detect conflicts in WS-Security policies
are described in appendix A also.

After conflict detection, conflicting policies will be
automatically modified (splitting time constrains). If the time
constrains in a context cannot be modified, the policy analysis
will notify administrators to modify policies manually in order
to eliminate detected conflicts. Then the policy enforcement
layer will process modified policy sets or policies.

The goal of policy enforcement layer is to generate
executable enforcement codes for both Microsoft .NET
framework and Java virtual machine. The system model of
WS-Security policy language can be constructed through the
vocabulary as well as the information inputted by users at
policy analysis layer. The logic model of security control in
web services is clearly specified in WS-Security specifications.
WS-Security policies are defined to provide confidentiality and
integrity for shared or exchanged information between
domains. Since WS-Security tries to bind several authentication
secrets to an identity, the direct association of the identity with
several related authentication secrets can serve this purpose.
This binding information can be conveyed in security tokens.
In the logic model of security policies, identity information,
encryption methods, signature types, the type of binding, and
other required attributes are essential. And these items in the
ontology corresponding to the logic model can have direct
mappings to the elements in the system model and its
corresponding common part ontology. To provide flexibility,
the attachment element in WS-Security specification can be
treated as the special part ontology. So combining the mapped
common part ontology and special part ontology of WS-
Security, the logic model of security policies evolve into the
intermediate-level model for WS-Security, which includes
identity, XML encryption methods, XML signatures, security
token type, attribute claims, and SOAP message attachments.
Figure 7 illustrates the workflow of this intermediate-level
model formation.

The intermediate model is then mapped to enforcement
platforms through query-based mapping. A query engine is
built between the intermediate-level model and low-level
mechanisms. We illustrate this mapping process on .NET
platform and on Java virtual machine. Following the
architecture of NET framework, the intermediate-level model
is mapped to role-based security mechanisms first. If role-
based security mechanisms cannot satisfy all the requirements,
extra support is sought in the code access security mechanisms.

(1) Role-based security mechanisms: The identity and role
information of the authenticated requester is bond through a
principal object, which is attached to the current web request.
Then service provider can use “HttpContext.Current.User”

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

property for retrieving principal objects. The principal objects
can be mapped to security tokens in the WS-Security system
model for role information. Once identity and principal objects
are defined, service provider’s code can use imperative or
declarative security checks to determine whether a particular
principal object contains a known role, has a known identity, or
represents known identity acting in a role. During the security
check, the CLR examines the requester’s principal object to
determine whether its identity and role match those represented
by the “principal permission” being demanded.

(2) Code access security mechanisms: .NET framework can also
perform code level security checks, which can be mapped to the
ontology without corresponding elements in role-based security
mechanisms. Four types of elements are used in .NET code
access security mechanisms: Permission, Evidence, Policy
(There are four policy levels: Enterprise, Machine, User, and
Application domain), and Code group (A code group consists of
two elements: Membership condition, Permission set). In this
layer, digital signature or organization information is mapped to
identity in the WS-Security system model. Other types of
evidence and permissions are mapped to authentication secrets.
And code groups can be used as “security tokens” in this layer
to bond identity and authentication secrets.

At the final step, the enforcement code can be automatically

generated using these mapping results. Thus we finish the

entire enforcement process for WS-Security policies over

NET framework. For Java virtual machine, the mapping of

intermediate-level model to low-level mechanisms is similar.

Java documentation is treated as a database, and every element

in the intermediate-level model is queried into this “database”

to find a match. If there is more than one match found, a

notification will be prompted to administrators for manual

justification.

WS- Security policy model

Common part ontalogy special part ontology Idertity

|
| (Security token)

|
Authentication secrets

- Atachment

intermedigte-level model
WS Securityl cjgical fodel | y

1 o

rtermediade level model

comman part ontology - Hentity information
- MWL encryption

- ML signature

- Securty token type
- Atrbute claim

- ldentity 1 1
- Encryption
- Signature
- Type

- Atibute

- SOAP message attachment

Figure 7. Workflow of intermediate-level model formation for WS-Security

The workflow of policy management for WS-Trust is
almost the same as the one for WS-Security. The input of WS-
Trust policy can be guided by the guidance of its official
specification. Rules of conflict detection and resolution are
similar to the ones for WS-Security policy language described
in appendix A. The major difference is the logic-model system-
model fusion stage. Figure 8 illustrates the workflow of this
logic-model system-model fusion stage. After that, the same
steps are taken to map intermediate-level model to low-level
mechanisms on .NET platform and on Java virtual machine.

Then enforcement code can be automatically generated using
mapping results. Thus, policies defined by different
administrative domains running on different computing
platforms can be put together for a collaboration activity and
enforced across computing platforms after conflict detection
and resolution.

WS-Trust pdicy system modsl

Common part ontology

Requegter ---—- - Provider
(Claims) (Pdicies)
- XML tokens / Binary tokens embedded in 3L tokens \ i
\ ¢
Adhority
(Security token service)

special part ontology

1 i 1

1
irter medizte-levg model

WS-Trust [policy logical [model
1 0

Irtermediate leve model
common part ontology

- Requester ID
- Requester ID ST
- Requester key 1 Al 2
- Request claim

- Provider permision
- Provder capability
- Securitytoken

- Provider decision
- Provider permission
- Provider capabilty

- Identiy

- ¥MLencryption

- XMLsignature

- Secunty token type
- Atribute claim

Figure 8. Workflow of logic-model system-model fusion for WS-Trust

VII. RELATED WORK

There are several software solutions on the market (e.g.
PDMConnect [6], OpenPDM [7], SAP NetWeaver [8], IBM
WebSPhere [9], MS Biztalk [10]) that allow the exchange of
data across the boundaries of enterprises. The focus of these
solutions is to exchange data between certain systems of one
domain. These solutions are not able to provide an integrated
view and control on the exchanged data, but allow direct
mappings of data between the involved systems. Thus
important meta-data or control information is lost within the
exchange process for cross-domain communication since the
target system is not able to trust all information needed within
the collaboration.

On the other hand, several policy systems have been
designed and developed for cross-domain collaborations, which
try to incorporate meta-data or control information for
constructing a trusted collaboration environment. CDCIE
system is developed by the US Naval Research Lab (NRL),
which uses hybrid architecture to accommodate multilevel
security (MLS) technologies into military cross-domain
collaboration environments comprised of multiple security
levels (MSL) [11]. Policy management and enforcement follow
a relatively simple principle, which states that provision
policies at resource or data owner’s domain will always
overrule policies from other collaboration domains. Policies are
classified into four categories for fast assessment and
enforcement, which are data protection policies, resource
protection policies, performance policies, and non-technical
policies. If a policy from a collaboration domain is not
compatible with resource or data owner’s policies, this policy
will be ignored. Such design may provide strict security
protections, but it may also reject many possible collaboration
activities controlled under policies with different formats,

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

vocabulary, or granules. No policy input and analysis are
provided in this system.

Rei is a policy language designed for pervasive computing
applications, which is based on deontic concepts and includes
constructs for rights, prohibitions, obligations, and
dispensations across domains [12]. Rei policy language
includes certain domain independent ontology and accepts
domain dependent ontology. Certain domain independent
ontology includes concepts for permissions, obligations,
actions, speech acts, operators, and etc. Rei policy language
also accepts domain dependent ontology shared by the entities
in a specific system, which defines domain classes and
properties associated with those classes. Rei allows users to
extend the basic ontology with additional domain dependent
ontology to express concepts and resources that are peculiar to
a certain domain. Although Rei provides a good support for
policy normalization, but it does not provide complete policy
management services. Rei is only a policy language.

Ponder is a declarative, object-oriented language for
specifying different types of policies, for grouping policies into
roles and relationships, and then defining configurations of
roles and relationships as management structures for cross-
domain collaborations [13]. Ponder categorizes policies into
basic policies, composite policies, and meta-policies. Basic
policies include authorization policies, obligation policies,
refrain policies, and delegation policies. Composite policies
provide four types of policies: groups, roles, relationships, and
management structures. Meta-policies are policies about which
policies can coexist in the system or what are permitted
attribute values for a valid policy. Ponder policies rely on the
key concept of management domain. Management domain
provides a means of grouping objects to entities that policies
apply, and can be used to partition objects in a large system
according to geographical boundary, object type, responsibility
and authority, or the convenience of human managers. Ponder
policy subjects and targets are defined in terms of domain
scope expressions that allow combinations of domains to form
composite set of objects, and to identify a single named object
within individual domains. Similar to Rei, Ponder is only a
policy language rather than a policy management framework.
Compare to our system, it supports policy normalization and
input but no policy enforcement.

KAoS is a policy service framework that has been adapted
to run on a variety of cross-domain agents, web services, and
traditional distributed computing platforms, and across a
variety of industrial, military, and space applications [14]. In
addition to services directly related to policy management,
KAoS also provides the basic services for distributed
computing, including message transmission and directory
services. The KAoS architecture has three layers: human
interface layer, policy management layer, and policy monitor
and enforcement layer. Human interface layer is used to take
the policy specification in the form of natural English language
sentences for authorization and obligation policies. Policy
management layer just uses ontology (encoded in OWL
format) to represent policies. Although KAoS system uses a
three-layer architecture to support policy management, the
functionalities of these three layers are quite different from our
framework. The pros and cons compared to our system will be

discussed in next section from the exact functionalities offered
by each layer in their three-layer architecture.

VIII. DISCUSSION

In this section, we will discuss the contributions of our
policy management framework through a comparison with
existing representative policy management systems in three
aspects, policy input, policy reasoning, and policy deployment,
which are critical for all policy management systems.

CDCIE system, Rei and Ponder all have their specific
policy languages, so these systems cannot support different
policy languages used by different administrative domains
other than systems’ own policy languages. So policy language
definition is unnecessary. KAoS framework supports ontology-
guided policy language input, which help users establish a
policy vocabulary through a set of pre-defined ontology
elements. Compared to KAoS system, our policy management
framework provides a flexible yet controlled way to input
policies. It allows formal vocabulary input without constrains.
And it does not require natural language processing for policy
rule input, which is still an immature technology.

CDCIE system, Rei and Ponder do not support policy
reasoning, which makes definition and enforcement of
heterogeneous policies or policy sets defined by different
domains impossible. We design STL to include semantic
descriptions of relationships between policy elements into
temporal logic representations to accommodate dynamicity and
heterogeneity of policies used in a collaboration environment.
The policy analysis layer in our framework can adapt to any
reasoning tools with the support from policy structure
definition interface.

The most innovative part of our policy management
framework is the policy enforcement layer for policy
deployment, which is not provided by CDCIE system, Rei,
Ponder and KAoS framework. The model-driven policy
enforcement in our policy management framework leads to
automatic code generation, which avoids error-prone manual
coding. And the most important feature is that it can be
deployed over heterogeneous platforms in a collaboration
activity so that heterogeneous policies or policy sets can be
enforced over different computing platforms.

IX. CONCLUSION

A new architectural design of policy management is
presented in this paper for cross-domain collaboration. Through
the policy management framework, which includes a policy
input layer, a policy analysis layer and a policy enforcement
layer, a trusted collaboration environment is achieved by
policy-based management. An implementation in the web
services environment for its security and trust policies together
with a comparison of several existing policy management
systems illustrates the novelty of the entire framework. Our
further work will focus on more applications on more
computing platforms.

REFERENCES

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

[1] Jill Gemmill, John-Paul Robinson, Tom Scavo, Purushotham Bangalore,
“Cross-domain authorization for federated virtual organizations using
the myVocs collaboration environment,” Concurrency and Computation:
Practice and Experience, Vol. 21, No. 4, 2009, pp. 509-532.

[2] Alexander Mahl, Anatoli Semenenko, Jivka Ovtcharova, “Virtual
Organisation In Cross Domain Engineering,” Proceedings of the 8th
IFIP Working Conference on Virtual Enterprises, Portugal, September
2007, pp. 601-608.

[3]1 D. Green,J. Dallaire, C. Westrick, “The Integrated Information
Framework: supporting interoperability between collaborative enterprise
systems,” Proceedings of the 2007 International Symposium on
Collaborative Technologies and Systems, USA, May 2007, pp. 329-336.

[4] Adam J. Lee, Ting Yu, “Towards a dynamic and composable model of
trust,” Proceedings of the 14th ACM symposium on Access control
models and technologies, Italy, 2009, pp. 217-226.

[S] Anne Gilliland, Nadav Rouche, Lori Lindberg, Joanne Evans, “Towards
a 21st Century Metadata Infrastructure Supporting the Creation,
Preservation and Use of Trustworthy Records: Developing the
InterPARES 2 Metadata Schema Registry,” Archival Science, Vol. 5,
No. 1, 2005, pp. 43-78.

[6] Roland Eckert, Wolfgang Mansel, Ginther Specht, “STEP
AP233+Standard PDM=Systems Engineering PDM?,” Proceedings of
the 11th International Conference on Concurrent Enterprising, Germany,
2005, pp. 405-412.

[7]1 Jeongsam Yang, Soonhung Han, Matthias Grau, Duhwan Mun,
“OpenPDM-based product data exchange among heterogeneous PDM
systems in a distributed environment,” International Journal of
Advanced Manufacturing Technology, Vol. 40, No. 9-10, 2009, pp.
1033-1043.

[8] Loren Heilig, Steffen Karch, Oliver Bttcher, Christiane Hofmann,
Roland Pfennig, “SAP NetWeaver Master Data Management,” SAP
PRESS, 2007.

[9] Xiaole Song, “Comparing Microsoft Speech Server 2004 and IBM
WebSphere Voice Server V4.2,” 2005.
http://www.developer.com/voice/article.php/b3381851.html

[10] W.L. Currie, X. Wang, V. Weerakkody, “Developing Web services
using the Microsoft. Net platform: technical and business challenges,”
Journal of Enterprise Information Management, Vol. 17, No. 5, 2004,
pp- 335-350.

[11] B. Fletcher and D. Hare, “Multi-National Information Sharing: Cross-
Domain Collaborative Information Environment (CDCIE) Solution,”
Proceedings of the 10th International Command and Control Research
and Technology Symposium, USA, 2005.

[12] L. Kagal, “A Policy-Based Approach to Governing Autonomous
Behavior in Distributed Environments,” PhD Thesis, University of
Maryland, 2004.

[13] L. Lymberopoulos, E. Lupu, M. Sloman, “Ponder Policy Implementation
and Validation in a CIM and Differentiated Services Framework,”
Proceedings of the 2004 IFIP / IEEE Network Operations and
Management Symposium, Korea, 2004, pp. 31-44.

[14] A. Uszok, J. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M.
Johnson, H. Jung, “New developments in ontology-based policy
management: Increasing the practicality and comprehensiveness of
KAo0S,” Proceedings of the 2008 Workshop on Policies for Distributed
Systems and Networks, USA, 2008, pp. 145-152.

[15] Victor Balopoulos, Anestis G. Hatzimichailidis, Basil K. Papadopoulos,
“Distance and similarity measures for fuzzy operators,” Information
Sciences, Vol. 177, No. 11, 2007, pp. 2336-2348.

[16] Hepu Deng, Chung-Hsing Yeh, “Simulation-based evaluation of
defuzzification-based approaches to fuzzy multiattribute decision
making,” IEEE Transactions on Systems, Man and Cybernetics (Part A:
Systems and Humans), Vol. 36, No. 5, 2006, pp. 968-977.

[17] Sean Bechhofer, etc., “OWL Web Ontology Language Reference,”
February 2004. http://www.w3.org/TR/owl-ref/
[18] P. Bellini, R. Mattolini, and P. Nesi, “Temporal logics for real-time

system specification,” ACM Computing Survey, vol. 32, no. 1, 2000, pp.
12-42.

[19] Edward N. Zalta, “Temporal Logic,” the Stanford Encyclopedia of
Philosophy (fall 2008 Edition),
http://plato.stanford.edu/archives/fall2008/entries/logic-temporal/

[20] Matthew Horridge, Simon Jupp, “A Practical Guide To Building OWL
Ontologies Using The Protege-OWL Plugin and CO-ODE Tools”, 2004.
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial. pdf

APPENDIX A. SEMATIC TEMPORAL LOGIC (STL)

A.1 Structure

The major issue about dynamic policy analysis is the fluent
and information will change over time. The dynamic policy
analysis has to keep track of the change or fluent, and
information. A new logic called Semantic Temporal Logic
(STL) is proposed to handle this type of dynamic collaboration
events.

Classical logic is a representation of static state, value, and
etc. It is easy to represent state status using classical logic.
However, time-dependent situations cannot be represented by
classical logic. Temporal logic also called tense logic can
handle these time-dependent situations. Temporal logic is an
extension of classical propositional logic, which is built for
representing the set of domain elementary facts using a set of
logic operators [18]. It has been broadly used to cover all
approaches to the representation of temporal information
within a logical framework [19].

In temporal logic, we can express the following examples:
“The computer lab will open from 8am to 8 pm.”(Policy 1) and
“A student can use computers in lab from 9 am to 9
pm.”(Policy 2). The first situation (Policy 1) indicates the
computer (fluent) will not available from 8 pm (time point); the
second situation (Policy 2) indicates students (user/fluent) can
use computer till 9 pm. Obviously, there will be a conflict in
this policy set for the time period between 8 pm and 9pm.
Figure A-1 shows the timeline of these two policies.

8am 9am 8pm 9pm

Policyl

A 4

Policy2

Figure A-1. Timeline of Different Policies

To detect this conflict, the logic mechanism has to deal with
time. Temporal logic can be used to represent above situations
as follows, which easily handles this issue.

Policy 1: Initiates(computer, t1) /\Clipped(computer, 12);
Policy 2: Initiates(computer, t1) /\Clipped(computer, t3);
(t1=8 am; t2=8 pm; t3=9 pm)

Obviously , there is a conflict between t2 and t3:
Conflict(computer, t) N\t2<t<t3;

However, in many situations, relations between different
elements (subjects, objects, attributes) are very complicated. A
single formula cannot express all possible meanings of
behaviors. For example, when using Temporal Logic as a
reasoning tool to detect policy conflict, subjects and objects
usually are changed under different contexts or execution

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

environments. In the above example, the subject in policy 1 is
the object in policy 2. When we analyze these policies, this
element (computer) would play different roles in different
policies. When users define these two policies and enforce
them in an online collaboration, the conflict may affect the
reliability and stability of the entire system.

Ontology defines a set of representations of classes,
instances, attributes, and relationships among them. Therefore,
the ontology-based knowledge representation is a good tool for
the purpose of information transferring, sharing, and analysis.
It is a good support for our proposed extended temporal logic
too. OWL is a language for defining and instantiating Web
ontology. We use its subset OWL-Full to store and retrieve our
ontology-based temporal logic STL.

We use web service security policy (WS-Security) as an
example to illustrate some details of STL. The dynamicity in
WS-Security policies is reflected in the following situations:

a) Identity may be replaced by role information (a type of
authentication secret) to act as the subject in a governance
policy for a federated action;

b) The identity information is provisional;

¢) The authentication secret is provisional,

d) The association between an authentication secret and an
identity is provisional;

e) Authentication secrets are constrained by or hidden in
network or security domain contexts.

A.2 Format

Using temporal logic to process cross-domain or multi-
domain policies, the semantic relationships among different
components are unavoidable barriers, which reduce the
accuracy and efficiency of policy analysis. STL provides a
bridge over this barrier by applying an ontology-based
knowledge representation model onto temporal logic itself.
This model provides not only information of individual entities
from specific domains but also the relationships among these
entities, which are key issues for policy analysis.

The ontology-based knowledge representation stores the
information of specific policy domain, which contains each
entity’s information and relationships among several entities.
Back to the Policy 1 and Policy 2, some attributes within these
policies can be represented as follows.

Attributes : computer.time={8am to8pm};
computer.location={lab};
computer.available={true};
student.time={8am to 9 pm};
student.authority={true};
student.action={use};
The relationship between computer and student is that student
can use computer. The restriction on this relationship can be
expressed as follows.

Relation: use(students, computers, t);
This relationship indicates student is a subject and the
computer is an object. With the help of this relationship, the
policy conflict analysis mechanism can handle conflict
detection and resolution.

To build the representation foundation, we use ontology to
describe the model of policy domain and relations within that
policy domain. This ontology keeps track of the relations
between elements in the policy domain. Ontology describes the
elements in a domain and also the relationships between these
elements [20]. Different ontology languages provide different
facilities. Using OWL-Full, the above policy example,
computer is a class, which has some properties such as “in a
computer lab” and “available from 8am to 8pm”. The student is
another class, which has properties such as “can use lab
computer” and “from 8am to 9pm”. The relation between
computer and student is “student can use computer”, and the
property on this relation is a time period (8am to 9pm). These
two classes can be express as follows:

class(pp: computer partial

restriction(pp:isAvailable, pp:inLab))
class(pp:student complete

restriction(pp:use
someValueFrom(intersectionOf(pp:computer
restriction(pp:inLab)))))
This express indicates the attributes and relation we discussed
before.

A.3 Analysis rules
Basic rules of Semantic Temporal Logic are represented as
follows using temporal logic predicates.

» HoldsAt(subject,t) A HoldsAt(object,t) A
HoldsAt(Action(c),t) /\ HoldsAt(relation(subject, object,
Action(c), t) /\(t<t’) —HoldsAt(subject, object, Action(c),
1)

To detect the potential WS-Policy conflicts, the follow rules

are employed, which represent five different situations

described in section A.1.

» HoldsAt(permit(Rolel (sub),0bj,Al(c)),t) A
HoldsAt(permit(Role2(sub),0bj,A2(c)),t) A Al<>42 —
HoldsAt(overlapConflict(conflictOfDifsubject, overlaps(permit(

Rolel(sub),obj,A1(c)),permit(Role2(sub),0bj,A2(c)),t) -
Trajectory(permit(Rolel (sub),obj,A1(c)),t,deny(Role2(sub),obj,
A2(c)),d) V
Trajectory(permit(Role2(sub),0bj,A2(c)),t,deny(Rolel (sub),obj,
Al(c)).d)

Relation: sub.attribute.rolel Zsub.attribute.role2;

begin<t<finial;

[The subject (sub) can have different two roles (Rolel(sub)

and Role2(sub)). When different roles perform different

actions (A1(c) and A2(c)) toward the same object (obj) at time

t, then an overlap conflict may occur. Only one action will be

permitted.]

» HoldsAt(doAction(subl,obj,A1(c)),t) A
HoldsAt(doAction(sub2,0bj,A2(c)),t) A AlI<>A42 -
HoldsAt(dynamicConflict(conflictOfDifsubject, Overlaps(doActi
on(subl,obj,Al(c)),doAction(sub2,0bj,A2(c)),1),t)
Trajectory(permit(subl,obj,A1(c)),t,deny(sub2,0bj,A2(c)),d)
Trajectory(permit(sub2,0bj,A2(c)),t,deny(subl,obj,Al(c)),d)
Relation: at time t,subl.attribute.Id Zsub2.attribute.ld;

HoldsAt(subl,0bj,A1(c),t);

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8318
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8318

HoldsAt(sub2,0bj,A2(c),t);
begin<t<finalt

[When two different subjects (subl and sub2) use same

authentication secret perform different actions toward the

same object(obj) at the same time t, another type of overlap
conflict may occur. Only one action will be performed on the
object.]

> HoldsAt(permit(Sub,0bj1,A1(c),t1)) A
HoldsAt(permit(Sub,Obj2,42(c).12)) A tl<=t<=12 A
Clipped(t1,authorize(sub,secret,t),t2) —-
HoldsAt(dynamicConflict(conflictofInterest,overlaps(permit(Su
b,0bj1,41(c),t1),permit(Sub,0bj2,42(c),t2),Clipped(t1,authoriz
e(sub,secret,t),t2)),t),t) ~Trajectory(permit(
Sub,0bj1,A1(c),t1),t,deny(Sub,0bj2,42(c),t2),d) \/Trajectory(
permit(Sub,0bj2,A2(c),t2),t,deny(Sub,Obj1,Al(c),t1),d)
Relation: HoldsAt(sub,obj1,Al(c),t]);

change(objl,0bj2,t);
t1<t<t2;

[A subject (sub) may perform different actions (Al(c) and

A2(c)) toward a changing object (authentication secret) in the

time period between tl and t2. A conflict of interest may

occur. Then only one action will be permitted.]

» HoldsAt(permit(sub,obj,Al(c),t)) A
HoldsAt(permit(sub,o0bj,A2(c),t)) —-
HoldsAt(dynamicConflict(conflictofDuty,
overlaps(permit(sub,obj,A1(c)),permit(sub, obj, A2(c)), t), t) >
Trajectory(permit(sub,obj,A1(c)),t,deny(sub,obj,A2(c)),d) %
Trajectory(permit(sub, obj,A2(c)),t,deny(sub,obj,A1(c)),d)

Relation: relation(sub, obj, t) Zrelation’(sub, obj,t);

[A subject (sub) may perform different actions association

between an authentication secret and an identity) to the same

object (obj) at time t. An overlap conflict (conflict of duty)
may occur. Then only one action will be permitted.]

> Obj(objl,0bj2,0bj3,....) A
HoldsAt(ValidateTrustContext(sub,obj1,41(c)),t) /
HoldsAt(ValidateTrustContext(sub,0bj2,A2(c)),t) N .. —

HoldsAt(dynamicConflict(conflictOfDifobject,
Overlaps(ValidateTrustContext(sub,objl,A1(c)), ValidateTrustC
ontext(sub,0bj2,A2(c)),....),t)t) — (permit(sub,objn,An(c)) /\
HoldsAt(ValidateTrustContext(sub,objn An(c)),t) A n=1,2,...)
A (m=12,... A deny(sub,objm,Am(c)) A
—HoldsAt(ValidateTrustContext(sub,objm,Am(c)),t)))

» HoldsAt(ValidateTrustContext(Rolel (sub),0bj,A1(c)),t) A
HoldsAt(ValidateTrustContext(Role2(sub),0bj,A2(c)),t) N ... =
HoldsAt(dynamicConflict(conflictOfDifsubject,
Overlaps(ValidateTrustContext(Role 1 (sub),o0bj,A1(c)), Validate
TrustContext(Role2(sub),0bj,A2(c)),....),t),t) -
(permit(Rolen(sub),obj,An(c)) A
HoldsAt(ValidateTrustContext(Rolen(sub),obj,An(c)),t) A
n=12,..) A (m=12,.. A deny(Rolem(sub),0objAm(c)) N
—HoldsAt(ValidateTrustContext(Rolem(sub),0bj,Am(c)),t)))
Relation: context of subject is not compatible ;

context of subject is not compatible.

[Different objects (authentication secrets) or different contexts

may cause overlap conflicts too. Then only valid action(s)

under that specific trust context will be permitted.]

