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Abstract

Economical configuration planning, component perfor
mance evaluation, and analysis of bottleneck phenom
ena in N-tier applications are serious challenges due
to design requirements such as non-stationary work
loads, complex non-modular relationships, and global
consistency management when replicating database
servers, for instance. We have conducted an extensive
experimental evaluation of N-tier applications, which
adopts a purely empirical approach the aforemen
tioned challenges, using the RUBBoS benchmark. As
part of the analysis of our exceptionally rich dataset,
we have experimentally investigated database server
scalability, bottleneck phenomena identification, and
iterative data refinement for configuration planning.
The experiments detailed in this paper are comprised
of a full scale-out mesh with up to nine database
servers and three application servers. Additionally,
the four-tier system was run in a variety of con-
figurations, including two database management sys
tems (MySQL and PostgreSQL), two hardware node
types (normal and low-cost), two replication strate
gies (wait-all and wait-first-which approximates pri
mary/secondary), and two database replication tech
niques (C-JDBC and MySQL Cluster). Herein, we
present an analysis survey of results mainly generated
with a read/write mix pattern in the client emulator.

1. Introduction

Scaling N-tier applications in general and multi-tiered
e-commerce systems in particular are notoriously
challenging. Countless requirements, such as non-
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stationary workloads and non-modular dependencies,
result in an inherently high degree of management
complexity. We have adopted a purely empirical ap
proach to this challenge through a large-scale experi
mental evaluation of scalability using an N-tier applica
tion benchmark (RUBBoS [1]). Our experiments cover
scale-out scenarios with up to nine database servers
and three application servers. The configurations were
varied using two relational database management sys
tems (MySQL and PostgreSQL), two database replica
tion techniques (C-JDBC and MySQL Cluster), wait
all (aka write-all) and wait-first (primary/secondary ap
proximation) replication strategies, browsing-only and
read/write interaction mixes, workloads ranging from
1,000 to 13,000 concurrent users, and two different
hardware node types.

The analysis of our extensive dataset produced sev
eral interesting findings. First, we documented de
tailed node-level bottleneck migration patterns among
the database, application, and clustering middleware
tiers when workload and number of servers increased
gradually. These bottlenecks were correlated with the
overall system performance and used to explain the
observed characteristics. Second, the identification of
multi-bottlenecks [2] showed the performance effects
of non-obvious phenomena that can arise in real sys
tems. Third, the initial economic evaluation of our data
based on an iterative refinement process revealed their
usefulness in deriving economical configuration plans.

The main contribution of this paper is twofold. From
a technical perspective, we collected and evaluated
a significant amount of data on scaling performance
in N-tier applications. We present an evaluation sur
vey and illustrate various interesting findings that are



uniquely made possible through our empirical ap
proach. From a high-level perspective, we demonstrate
the potential of automated experiment creation and
management systems for empirical analysis of large
distributed applications. Our results clearly show that
important domain insights can be obtained through
our approach. In contrast to traditional analytical ap
proaches, our methodology is not founded on rigid
assumptions, which significantly reduces the risk of
overlooking unexpected performance phenomena.

The remainder of this paper is structured as follows.
In Section 2 we establish some background on infras
tructure and bottleneck definition. Section 3 outlines
experimental setup and methods. Section 4 presents
the analysis of our scale-out data. In Section 5 we
introduce the use-case of economical configuration
planning. Related work is summarized in Section 6,
and Section 7 concludes the paper.

2. Background

This section provides previously published background
that is of particular importance for the understanding of
our approach. Due to the space constraints of this paper
each subsection is constrained to a brief overview.
Interested readers should refer to the cited references
for more comprehensive descriptions.

2.1. Experimental Infrastructure

The empirical dataset that is used in this work is part
of an ongoing effort for generation and analysis of
N-tier performance data. We have already run a very
high number of experiments over a wide range of
configurations and workloads in various environments.
A typical experimentation cycle (Le., code generation,
system deployment, benchmarking, data analysis, and
reconfiguration) requires thousands of lines of code
that need to be managed for each experiment. The
experimental data output are system metric data points
(Le., network, disk, and CPU utilization) in addi
tion to higher-level metrics (e.g., response times and
throughput). The management and execution scripts
contain a high degree of similarity, but the differences
among them are critical due to the dependencies among
the varying parameters. Maintaining these scripts is a
notoriously expensive and error-prone process when
done by hand.

In order to enable experimentation at this large scale,
we used an experimental infrastructure created for the
Elba project to automate N-tier system configuration
management. The Elba approach [3] divides each au
tomated staging iteration into steps such as converting
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Figure 1. Simple multi-bottleneck classification [2].

policies into resource assignments [4], automated code
generation [5], benchmark execution, and analysis of
results.

2.2. Single-bottlenecks vs. Multi-bottlenecks

The abstract definition of a system bottleneck (or
bottleneck for short) can be derived from its literal
meaning as the key limiting factor for achieving higher
system throughput. Due to this intuition, similar formu
lations have often served as foundation for bottleneck
analysis in computer systems. But despite their pop
ularity, these formulations are based on assumptions
that do not necessarily hold in practice. Because of
queuing theory, the term bottleneck is often used syn
onymously for single-bottleneck. In a single-bottleneck
cases, the saturated resource typically exhibits a near
linearly load-dependent average resource utilization
that saturates at one hundred percent past a certain
workload. However, the characteristics of bottlenecks
may change significantly if there is more than one
bottleneck resource in the system. This is the case
for many real N-tier applications with heterogeneous
workloads. Therefore, we explicitly distinguish be
tween single-bottlenecks and the umbrella-term multi
bottlenecks [2], [6].

Because system resources may be causally depen
dent in their usage patterns, multi-bottlenecks intro
duce the classification dimension of resource usage
dependence. Additionally, greater care has to be taken
in classifying bottleneck resources according to their
resource saturation frequency. Resources may saturate
for the entire observation period (Le., fully saturated)
or for certain parts of the period (Le., partially sat
urated). Figure 1 summarizes the classification that
forms the basis of the multi-bottleneck definition. It
distinguishes between simultaneous, concurrent and
oscillatory bottlenecks. In comparison to other bottle-



necks, resolving oscillatory bottlenecks may be very
challenging. Multiple resources form a combined bot
tleneck, and it can only be resolved in union. There
fore, the addition of resources does not necessarily
improve performance in complex N-tier systems. In
fact, determining regions of complex multi-bottlenecks
through modeling may be an intractable problem.
Consequently, multi-bottlenecks require measurement
based experimental approaches that do not oversim
plify system performance in their assumptions.

3. Experimental Setting

3.1. Benchmark Applications

Among N-tier application benchmarks, RUBBoS has
been used in numerous research efforts due to its real
production system significance. Readers familiar with
this benchmark can skip to Table l(a), which outlines
the concrete choices of software components used in
our experiments.

RUBBoS [1] is an N-tier e-commerce system mod
eled on bulletin board news sites similar to Slashdot.
The benchmark can be implemented as three-tier (web
server, application server, and database server) or four
tier (addition of clustering middleware such as C
JDBC) system. The benchmark places high load on
the database tier. The workload consists of 24 differ
ent interactions (involving all tiers) such as register
user, view story, and post comments. The benchmark
includes two kinds of workload modes: browse-only
and read/write interaction mixes. In this paper we use
both the browse-only and read/write workload for our
experiments.

Typically, the performance of benchmark application
systems depends on a number of configurable settings
(including software and hardware). To facilitate the
interpretation of experimental results, we chose con
figurations close to default values, if possible. Devia
tions from standard hardware or software settings are
spelled out when used. Each experiment trial consists
of three periods: ramp-up, run, and ramp-down. In
our experiments, the trials consist of an 8-minute
ramp-up, a 12-minute run period, and a 30-second
ramp-down. Performance measurements (e.g., CPU or
network bandwidth utilization) are taken during the
run period using Linux accounting log utilities (Le.,
Sysstat) with a granularity of one second.

3.2. Database Replication Techniques

In this subsection we briefly introduce the two different
database replication techniques that we have used in
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our experiments. Please refer to the cited sources for
a comprehensive introduction.

C-JDBC [7], is an open source database cluster
middleware, which provides a Java application access
to a cluster of databases transparently through JDBC.
The database can be distributed and replicated among
several nodes. C-JDBC balances the queries among
these nodes. C-JDBC also handles node failures and
provides support for check-pointing and hot recovery.
The C-JDBC server implements two update propaga
tion strategies for replicated databases: wait-all (write
request is completed when all replicas respond) and
wait-first (write request is considered completed upon
the first replica response). The wait-all strategy is
equivalent to the commonly called write-all replication
strategy, and the wait-first strategy is similar to the
primary-secondary replication strategy.

MySQL Cluster [8] is a real-time open source trans
actional database designed for fast, always-on access to
data under high throughput conditions. MySQL Cluster
utilizes a "shared nothing" architecture, which does not
require any additional infrastructure and is designed to
provide five-nines data availability with no single point
of failure. In our experiment we used "in-memory"
version of MySQL Cluster, but that can be configured
to use disk-based data as well. MySQL Cluster uses
the NDBCLUSTER storage engine to enable running
several nodes with MySQL servers in parallel.

3.3. Hardware Setup

The experiments used in this paper were run in the Em
ulab testbed [9] with two types of servers. Table 1(b)
contains a summary of the hardware used in our ex
periments. Normal and low-cost nodes were connected
over 1,000 Mbps and 100 Mbps links, respectively.
The experiments were carried out by allocating each
server to a dedicated physical node. In the initial setting
all components were "normal" hardware nodes. As
an alternative, database servers were also hosted on
low-cost machines. Such hardware typically entails a
compromise between cost advantage and performance
loss, which may be hard to resolve without actual
empirical data.

We use a four-digit notation #W/#A/#C/#D to denote
the number of web servers, application servers, clus
tering middleware servers, and database servers. The
database management system type is either "M" or "P"
for MySQL or PostgreSQL, respectively. If the server
node type is low-cost, the configuration is marked with
an additional "L". The notation is slightly different
for MySQL Cluster. If MySQL Cluster is used, the
third number (i.e., "C") denotes the number of MySQL



Web server 0 Apache 2.0.54

Application server • Apache Tomcat
5.5.17

Cluster middleware III C-JDBC 2.0.2
MySQL 5.0.5 Ia

Database server • PostgreSQL 8.3.1
MySQL Cluster 6.2. 15

Operating system
Redhat FC4
Kernel 2.6. 12

System monitor Systat 7.0.2

Function

(a) Softwa re setup.

I Sortware

(b) Har d wa re nod e setu p .

Type I Components

Normal Processor Xeon 3GHz 64-bit

[] Memory 2GB
Network 6 x IGbps -Disk 2 x 146GB 10,000rpm

Low-cost Processor PIli 600Mhz 32-bit

IJ
Memory 256MB
Network 5 x 100Mbps :00=1
Disk 13GB 7,200rpm

(c) Sa m ple C-JDBC topology
(l 12/1/2L).

(d) Detailed configuration sett ings,

maxThread s
minSpareThreads
maxSpareThreads
maxHeapSiz e

MySQL Cluster
storage engine NDBCLUSTER
max_connecti ons 500
indexMemory 200MB
dataMem ory 1,750MB
numOfReplica 2/4

MySQL
storage engine MyISAM
max_connections 500

PostgreSQL
max_connections 150
shared_buffers 24MB
maxjsm-rages 153,600
checkp oint_segments 16

Tomcat
330 (Total of all)
5
50
1,300MB

C·JDBC
--25-

90
30
RAlDb-I-LPRF

minPoolSize
maxPoolSize
initPoolSize
LoadBalancer
RAlDb-1 Scheduler

Apache
KeepAlive---- Off
StartServers 1
MaxClients 300
MinSpareThreads 5
MaxSpare1hreads 50
Thread sPerChiid 150

Table 1. Details of the experimental setup on the Emulab cluster.

servers and the fourth number (i.e., "0") denotes the
number of data nodes. A sample topology of a C
lDBC experiment with one web server, two application
servers, one clustering middleware server, two low-cost
database servers, and non-specified database manage
ment system (Le., I/211I2L) is shown in Table l(c).
Unlike traditional system tuning work, we did not
attempt to tune a large number settings to find "the
best a product can do", rather to sustain for high work
loads we have made minimum changes as outlined in
Table l(d).

4. Scale-out Experiments

In this section we detail scale-out experiments in which
we increase the number of database and application
tier nodes gradually to find the bottlenecks at node
level (for each configuration) . In Subsection 4.1 we
show experiments with MySQL running on normal
servers. Subsection 4.2 describes experimental results
for PostgreSQL on normal servers. These experiments
show both commonalities and differences between the
two database management systems. In Subsection 4.3
we discuss our experiment results running the same set
of experiments with MySQL Cluster on normal nodes.
Subsection 4.4 evaluates the change in system charac
teristics when using low-cost nodes for the deployment
of database servers.

4.1. MySQL on normal Servers

For this section we collected data from RUBBoS scale
out experiments with MySQL database servers, C
lOBC, and normal hardware. The experiments start
from I/I/II1M and go to I/3/I/9M. For each con
figuration, we increase the workload (i.e., number of
concurrent users) from 1,000 up to 13,000 in steps of
1,000. Due to the amount of collected data, we use two
kinds of simplified graphs to highlight the bottlenecks
and the shifting of bottlenecks in these experiments .
Figure 2(a) shows only the highest achievable through
put (z-axis) for MySQL C-JOBC experiments with
normal nodes (read/write workload). Figure 3(a) shows
the corresponding bottleneck map. We can see three
groups in both figures. The first group consists of
configurations 112/I/IM and 113/I/IM, which have
identical maximum throughput. The second group con
sists of all single application server configurations. The
third group has the highest maximum throughput level
and consists of all other six configurations with at least
two application servers and two database servers.

Full data replication provides the best support
for read-only workload, but it requires consistency
management with the introduction of updates in a
read/write mixed workload. In this subsection we use
the C-lOBC clustering middleware to provide consis
tency management. Figures 2(a) and 2(b) show the
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Figure 2. Maximum system throughput for RUBBoS read/write workload with : (a)-(d) normal nodes; (e)-(f)
low-cost nodes ; and (g)-(h) normal nodes in the database tier.

maximum throughput achieved by the wait-all and
wait-first strategies (see Subsection 3.2 for details),
respectively. With respect to throughput, Figures 2(a)
and 2(b) appear identical. This similarity is due to
the delegation of transactional support in MySQL to
the storage server, which happens to be MyISAM by
default. MyISAM does not provide full transactional
support; specifically, it does not use Write Ahead
Logging (WAL) to write changes and commit record
to disk before returning a response. Since MySQL
processes update transactions in memory if the server
has sufficient hardware resources, the result is a very
small difference between the wait-all and wait-first
strategies due the fast response. Both figures show that
the three aforementioned groups. Consequently, the
analysis summarized in Figure 3(a) applies indepen-
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dently of replication strategies. As indicated in the bot
tleneck map, all bottlenecks are CPU bottlenecks, and
the clustering middleware (CM) eventually becomes
the primary bottleneck. Consequently, increasing the
number of database and application servers is effective
only in cases with relatively small numbers of servers.

4.2. PostgreSQL on normal Servers

In this subsection we ran similar experiments as
in Subsection 4.1 on a different database manage
ment system, the PostgreSQL. The comparison of the
read/write workloads in Figures 2(a), 2(b), 2(c), and
2(d) reveals some differences between MySQL and
PostgreSQL. While both MySQL configurations have
similar throughput that peaks at around 1,500 opera
tions per second, the PostgreSQL configurations only
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Figure 3. MySQL Bottleneckmaps: (a) C-JDBC,
normal nodes; (b) C-JDBC, low-cost nodes, wait
all; (c) C-JDBC, low-cost nodes, wait-first; (d)
MySQL Cluster, normal nodes, 2 data nodes; (e)
MySQL Cluster, normal nodes, 4 data nodes.

achieve two thirds of this throughput. Additionally, the
wait-all strategy (Figure 2(c)) becomes a bottleneck
for PostgreSQL. However, it is not easy to identify
the underlying system bottleneck. Figure 4 shows po
tential resources that could be saturated in the 1/2/1/2P
configuration. All three CPU utilization densities show
normal-shaped densities that do not reach the critical
high percentile sector. From the throughputgraphs, it is
evident that the bottleneck cannot be resolved through
application or database server replication.

As we increase the number of servers, hardware
resources eventually becomes abundant. Through a
detailed analysis, we found two explanations for the
bottlenecks in the database and the clustering mid
dleware tiers. First, PostgreSQL uses WAL. Its log
manager waits for the completion of the commit record
written to disk. Because the log manager does not
use CPU cycles during the waiting time, the CPU
becomes idle. At the same time, the C-JDBC server
serializes all write requests by default to avoid oc
currence of database deadlocks. Consequently, Post
greSQL receives serialized write queries, which limits
the amount of parallel processing in PostgreSQL and
idle CPU during I/O waiting times. This explanation
has been tested by a separate experiment in which C
JDBC is removed, with a single PostgreSQL server,
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which showed saturated database CPU consumption.

4.3. MySQL Cluster on Normal Servers

In order to explicitly investigate the effects of different
database replication technologies, we have conducted
a similar setup of experiments as discussed in Subsec
tion 4.1 with MySQL Cluster. First, we have run the
experiments without partitioning the database, which
implies that we can have only two data nodes (DN) and
one management node, while increasing the number
of MySQL servers (SN) from one to four and varying
application servers between one or two. The summary
of the results is contained in Figures 2(g) and 3(d).
As illustrated in Figure 2(g), the maximum throughput
that can be achieved is seemingly low compared to
the same number of nodes with C-JDBC MySQL.
The main reason is that that the MySQL data nodes
become the bottleneck when increasing the workload
(see Figure3(d)). Therefore, we have partitioned the
database into two parts using the MySQL Cluster
default partitioning mechanism and repeated the set
of experiments with four data nodes. The performance
summary is shown in Figures 2(h) and 3(e). The com
parison of Figures 2(g) and 2(h) reveals that increasing
the number of data nodes help us to increase the
maximum throughput. However, as Figures 3(d) and
3(e) illustrate splitting the database causes the bottle
necks to shift from the data nodes to the application
servers initially. When the workload increases even
further, the bottlenecks shifted back to the data nodes.
Consequently, our empirical analysis reveals that the
system is not bottlenecked in the MySQL servers in
the case of read/write workload.

4.4. MySQL on Low-cost Servers

In the following we analyze data from RUBBoS scale
out experiments with C-JDBC and MySQL on low
cost hardware. Because of the limited memory on low
cost machines, the throughput graphs in Figures 2(e)
and 2(t) are dominated by disk and CPU utilization in
the database tier. Initially, in all configurations with
a single database server, the maximum throughput
is limited by a shifting bottleneck between database
disk and CPU. Figure 5 shows the corresponding
database server CPU and disk utilization densities in
the 1/2/1/IML configuration. Note that no replication
strategy is necessary in the single database server case.
Both the CPU (Figure 5(a)) and the disk (Figure 5(b))
densities have two characteristic modes for higher
workloads, which correspond to a constant shifting
between resource saturation and underutilization. If
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Figure 4. PostgreSQL with C-JDBC on normal servers densities with read/write workload, 1/2/1/2
configuration, and wait-all replication strategy.

combined into a single maximum utilization value
in Figure 5(c), the density profile shows a stable
saturation behavior. Both Figure 2(e) and Figure 2(f)
show that this bottleneck can be resolved by replicat
ing the database node, which increases the maximum
throughput.

The single disk bottleneck becomes an oscillatory
bottleneck for more than one database server with
the wait-all replication strategy because write queries
have to await the response of all MySQL servers
(Figure 3(b)). An oscillatory bottleneck means that at
any arbitrary point in time (usually) only one disk is
saturated, and that the bottleneck location changes con
stantly. Once a third database server has been added,
the CPU bottleneck is resolved completely, and the
maximum throughput remains invariant to any further
hardware additions . Although the saturated resources
(Le. database disks) are located in the database tier,
the C-JDBC configuration prohibits the increase of

maximum throughput through additional hardware in
the backend. Figure 6(b) shows that in the case of
nine database nodes, the bottleneck has been further
distributed among the database disks. Solely a slight
mode at the high percentile values indicates an in
frequent saturation . In order to visualize the overall
resource saturation, Figure 6(c) shows the density for
the maximum utilization of all nine database servers.
This density has a large peak at the resource saturation
sector (similar to Figure 5(c)), which is interpretable
as a high probability of at least one saturated database
disk at any arbitrary point during the experiment. Such
bottlenecks are particularly hard to detect with average
utilization values. Their cause is twofold-on the one
hand, all write queries are dependent on all database
nodes, and on the other, the load-balancer successfully
distributes the load in case one database server is
executing a particularly long query.

In contrast to the wait-all case, the wait-first repli-

0.08

.~. 0.06

.g
l§' O.C)4
15
B 0.02

£

o CPU util [%1

i co

0.08

.~' OJX')

.g
l§' om
15
B 0.02

£

o

0.08

.~ ' 0.06

.g
l§' O.C)4
15
B 0.02

£

roo

Disk BW ulil l%l

J(X)

(a) Database server CPU. (b) Database server disk. (c) Max of disk and CPU utilization.
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cation strategy enables growing maximum throughput
when scaling out the database server (Figure 2(f). In
stead of oscillatory disk bottlenecks, the configurations
with more than one database server have concurrent
bottlenecks in the database disks (Figure 3(c». After
the database server has been replicated five times
the database disks are the only remaining bottleneck.
The difference between oscillatory and concurrent
bottlenecks is clearly visible in the comparison of
Figures 6(a) and 6(b). Both show the 1/2/1/9ML con
figuration for read/write workload. While the wait
first replication strategy (Figure 6(a» results in a
clearly saturated resource, the wait-all replication strat
egy (Figure 6(b» results in an infrequently utilized
database disk. The actual system bottleneck only be
comes apparent in conjunction with all other database
disks (Figure 6(cj). Due to overhead, the maximum
throughput growth diminishes once very high database
replication states are reached. In comparison to the
normal hardware results, the low-cost configurations
reach an overall lower throughput level for read/write
workloads. Please refer to our previous work [2] for a
detailed bottleneck analysis of this particular interest
ing scenario.

5. Economical Configuration Planning

While the preceding section emphasized the potential
and complexity of empirical analysis of N-tier systems,
this section presents a specific use-case. We show how
these data may be employed in economically motivated
configuration planning. In this scenario the empirical
observed performance is transformed into economic
key figures. This economic view on the problem is
of particular interest given the new emerging trend
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of cloud computing that enables flexible resource
management and offers transparent cost models. The
cloud paradigm allows the adaption of infrastructure
according to demand [10] and determining cost optimal
infrastructure sizes for enterprise systems [11]. How
ever, taking full advantage of cloud computing requires
an even deeper understanding of the performance
behavior of enterprise systems and its economical
implications.

Any economic assessment requires at least a basic
cost model and a simple revenue model. Our sample
cost model assumes a constant charged for each server
hour. The revenue model is a simple implementation of
an SLA. For every successfully processed request, the
provider receives a constant revenue. For every unsuc
cessful request , the provider pays a penalty, whereby
a successful request is defined as a request with a
response time lower than a certain threshold. The total
profit is defined as the total revenue minus the cost of
operation.

Figure 7 shows the transformation of the empirical
data to aggregated economic values. Instead of the
number of machines in the infrastructure, the graph
shows the cost incurred by operating a particular
infrastructure. The z-axis shows the expected revenue
when operating a particular infrastructure size at any
given workload (y-axis). The data are taken from the
previously introduced RUBBoS with MySQL Cluster
setup with browse-only workload. The graph clearly
shows the complex relationship between infrastructure
size, system performance, and expected revenue. Based
on a similar data aggregation, system operators are able
to derive the optimal infrastructure size constrained by
their system and profit model.

Figure 8 shows a higher aggregation of the previous
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Figure 7. Revenue and cost analysis of a RUBBoS
system under read/write workload.

graph. The dashed and the dotted line represent the
revenue and the cost for the profit optimal configura
tion, respectively. The solid line shows the resulting
maximal profit for any configuration. The profit max
imum lays at a workload of 3,000 users, whereas the
maximum revenue is located at 4,000 users. However,
the optimal points of operation strongly depend on the
definition of the SLA model as well as on the cost
of the infrastructure. Therefore, depending on these
factors, the economical size of the infrastructure may
vary strongly.

6. Related Work

Cloud computing, data center provisioning, server con
solidation, and virtualization have become ubiquitous
terminology in the times of ever-growing complexity
in large-scale computer systems. However, many hard
problems remain to be solved on the way to an
optimal balance between performance and availability.
Specifically, scaling systems along these two axis is
particularly difficult with regard to databases where
replication has been established as the common mech
anism of choice. In fact, replication consistently falls
short of real world user needs, which leads to continu
ously emerging new solutions and real world database
clusters to be small (i.e., less than 5 replicas) [12].
In this paper we address this shortcoming explicitly.
A central evaluation problem is that scalability studies
traditionally only address scaled load scenarios to de
termine best achievable performance (e.g., [13]). Con
cretely, experimentation methodologies with parallel
scaling of load and resources mask system overhead in
realistic production system conditions, which are typ
ically over-provisioned. Consequently, a reliable body
of knowledge on the aspects of management, capacity
planning, and availability is one of the limiting factors
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Figure 8. Profit and cost analysis of a RUBBoS
system under read/write workload.

for solution impact in the real world [12]. Moreover,
it is well understood that transactional replication can
exhibit unstable scale-up behavior [14] and it is not
sufficient to characterize replication performance in
terms of peak throughput [12].

There exist many popular solutions to database repli
cation, and the most common commercial technique
is master-slave replication. Some replication product
examples are IBM DB2 DataPropagator, replication
in Microsoft SQL Server, Sybase Replication Server,
Oracle Streams, replication in MySQL. Academic pro
totypes that use master-slave replication are Ganymed
[15] and Slony-I [16]. The latter is a popular replica
tion system supporting cascading and failover. How
ever, in this work we focus on multi-master architec
tures. Some commercial products that use this tech
nique are MySQL Cluster and DB2 Integrated Cluster.
Academic multi-master prototypes are C-JDBC [7],
which is used in this work, Tashkent [17], and Middle
R [18]. Further efforts focus on adaptive middleware
to achieve performance adaptation in case of workload
variations [19].

The evaluation of database replication techniques
often falls short of real representability. There are two
common approaches to evaluation with benchmarks.
Performance is either tested through microbenchmarks
[18] or through web-based distributed benchmark ap
plications such as TPC-W, RUBiS, and RUBBoS [20].
These benchmark applications are modeled on real
applications (e.g., Slashdot or Ebay.com), offering
real production system significance. Therefore this
approach has found a growing group of advocates (e.g.,
[3], [7], [13], [15], [17]).

Most recent literature on the topic of database repli
cation deals with specific implementation aspects such
as transparent techniques for scaling dynamic content
web sites [21], and the experimental evaluation in such



works remains narrow in focus and is solely used to
confirm expected properties.

7. Conclusion

In this paper we used an empirically motivated ap
proach to automated experiment management. Which
features automatically generated scripts for running
experiments and collecting measurement data, to study
the RUBBoS N-tier application benchmark in an ex
tensive configuration space. Our analysis produced
various interesting findings such as detailed node-level
bottleneck migration maps and insights on genera
tion of economical configuration plans. Furthermore,
our analysis showed cases with non-obvious multi
bottleneck phenomena that entail very characteristic
performance implications.

This paper corroborates the increasing recognition of
empirical analysis work in the domain of N-tier sys
tems. Findings such as multi-bottlenecks demonstrate
how actual experimentation is able to complement
analytical system evaluation and provide higher levels
of confidence in analysis results. More generally, our
results suggest that further work on both the infras
tructural as well as the analysis part of our approach
may lead to a new perspective on analysis of N-tier
systems with previously unseen domain insight.
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