
CASTLE: A SocialFrameworkfor Collaborative
Anti-PhishingDatabases

Arash Nourian, Sameer Ishtiaq, and Muthucumaru Maheswaran
Advanced Networking Research Lab

School of Computer Science
McGill University

Montreal, QC H3A 2A7, Canada
Email: {nourian, sishti, maheswar}@cs.mcgill.ca

Abstract-Phishing is a major problem on the Internet. The
cornerstoneof anti-phishing is detecting whether a given site
is good or bad. Most of theapproachesfor anti-phishingrely
on looking up centrally maintainedrepositories. In this paper,
we present a decentralizedframework called CASTLE that
allows a collaborativeapproachfor anti-phishingservices. We
implementeda prototypeand then tested it onPlanet-lab.The
experimentsindicate the viability ofour framework.

I. INTRODUCTION

The major goal of phishing attacks is to steal valuable
personal (usually identity related) information from users.
Once the attackers gain personal data such as passwords, date
of birth, and bank account number, they use the information
to their benefits by creating bogus identities or taking control
of online accounts.

The phishing attacks are launched in many different
ways [1]. The most common way is to send an email to users
and persuade users to click on a forged link inside the email.
When the user clicks on the forged link, the user will be sent
to a site controlled by the attacker which looks like a trusted
site (e.g., the user's online bank). Because the site is under the
attacker's control, all information revealed by the user such as
username and passwords are gained by the attacker. A vigilant
user may detect the difference between the bogus site created
by the attacker and the legitimate site. However, a sizeable
population of the users do fall prey to these attacks [2]. For
example, legitimate websites (depending on the sophistication
of the institution) can have welcome messages that include
the user's name from previous successful logins. Such login
information is not available for the bogus site and consequently
it cannot customize the welcome message.

The number of phishing attacks is increasing rapidly [3].
Because of their value, financial institutions used to be the
favorite targets of the phishing attackers. Recently, this form
of attack has diversified and started targeting social networking
sites as well. Further, the technologies adopted by the attackers
centrally maintained databases to determine whether a given
location is safe. If a site is previously black-listed as phishing,
the browser-based toolbar prevents the user from visiting
it [5]. Although the centralized databases are already in place
for anti-phishing, their scalability is a cause for concern. In
particular, the existing approaches do not handle the following
issues in a scalable manner.

• Enrollment process: The name space that can be phished
is vast. Few repositories cannot handle complaints for the
whole name space. Because phishing is usually an im­
personation attack against well known Internet "brands,"
there is a concern of brand tarnishing. Therefore, valuable
brands would want to take ownership of their namespace.

• Decision process: With few central repositories, admin­
istrators of those repositories should use automated tools
and manual examinations to decide on phishing reports.
Because a repository is likely to receive many reports and
some of which is going to be completely new, the decision
process is an arduous one. If the namespace is partitioned
based on URL prefixes, the decisions can be made by
repositories that are familiar with URLs. In CASTLE,
the social factor is used to reduce namespace grabbing
attacks.

• Lookup process: One of the advantages of central reposi­

II. BACKGROUND

Phishing is sometimes confused with spam; however it is not
spam. Spam's real purpose is to sell, while phishing's purpose
is to steal. There are many different opportunities for creating
phishing URLs. Following are some examples of techniques
used for phishing on the Internet [6]:

• Adding a suffix to the domain name of a URL. For
example,www.ci t ybank. com can be changed towww.
citybank.us.com

• Actual link is different from the visible link.
For example, the HTML line: <ahref="http:

//www.citibank.com.us.ebanking.us..>

www.citibank.com</ a> where visible link is
http://www. citibank.com but the actual link is
http://www.citibank.com.us.ebanking.us.

• Using a bug in a real webpage to redirect to
phishing web page. For example, the bug of eBay
webshe: http://cgi.ebay.com/ws/eBayISAPI.

dll?MfcISAPICommand=RedirectToDomain\
&DomainUrl=PHISHINGLINK can direct you to
any specified PHISHINGLINK.

• Replacing similar characters in the real link. For example
replace Is (uppercase i) withI (lowercase of L) or 1
(Arabic number one), such asWWW.CITIBANK.COM to
WWW.C1TIBANK.COM.

• Encoding the URL to disguise its true value
using hex, dword, or octal encoding. For example,
http://www.visa.com@%32%32%30%2E%36%38%2E%

32%31%34%2E%32%31%33translates into 220.68.214.213
instead ofwww.visa.com.

• The URL is actually a part of an image, which uses map
coordinates to define the click area and the real URL,
with the fake URL from the<a> tag being displayed.

• Using a URL masking service such asc jb. net
or tinyurl. com. For example,http: / / jne9rrfj4.
CjB.neT/?uudzQYRgY1GNEncan hide actual URL and
redirect the user to the phishing website.

• Link points to a page on a legitimate site which can
redirect the user to the phishing website. For exam­
ple, http://www.google.com/url?q=http://www.
geocities.com/mibmib4321/ where the mibmib4321
site contains a redirect to 218.214.130.51.

• Using the "@" sign. Everything to the left of"@"

is ignored while everything to the right is considered.
For example,http://www.usbank.com/update.pl@

81.109.43.102/usb/upd.plredirects user to81.
109.43.102/usb/upd.p l instead of http://www.

usbank.com/update.pl.

• Using a credible looking text string within the
URL. For example,http://81.109.43.102/ebay/

account_update/now.phpuses ebay keyword in the
URL.

Once the user is lured to the bogus website, the attacker
needs to present a convincing user experience. The techniques
used by the attackers to create bogus web sites can be

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B310
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B310

categorized in three different ways [6]:

• Using the downloaded webpage from real website to
make the phishing webpage appear and react exactly the
same as the real one.

• Using script or add-in to web browser to hide the address
bar in order to spoof users to believe they have entered
the correct website.

• Using visual based content (E.g., image, flash, video,
etc.) rather than HTML to avoid HTML based phishing
detection.

III. RELATED WORK

In recent years, a number of anti-phishing techniques have
been developed and in this section, we highlight a subset of
those anti phishing techniques, which are closely related to
our work.

EBay toolbar [7] can identify if any particular URL which
is trying to phishebay.com. However, the problem is that
this toolbar does not work if a URL is trying to phish some
other website.

Microsoft and AOL usedBlack List Approach [8] [9] by
integrating black list-based anti phishing support into their
browsers. It blocks users from entering any information while
he/she is at a known phishing website. However it is ineffective
because there is always a window of vulnerability during
which users are susceptible to attacks.

PhishingGuard [10] makes use of a white listing approach.
The basic idea is that a website is identified by its IP address.
The white list contains only trusted URLs. Whenever any
website is visited, it is checked in the white list. If the URL
is found in the white list, but the IP address is different, then
this URL is classified as phishing. If the URL is similar but
not same, then a warning is given. This tool is also capable
of detecting pharming.

Bayesian Anti Phishing toolbar [11] is a Mozilla Firefox ex­
tension. It is designed to help users identify phishing websites
and protect their sensitive information. It also uses a white list
based approach. For a given website, the B-APT toolbar sends
the URL to the DOM analyzer. The DOM analyzer then checks
if the given URL is present in white list. If it is in the white
list, it means it is a legitimate website. If it is not, then DOM
analyzer tokenizes the given website and then forwards the
tokens to a scoring module. This scoring module consults the
database of tokens and computes a score. If the score exceeds
a pre-set threshold, then the URL is classified as phishing.

AntiPhish [12] is a Mozilla browser extension that aims
to protect inexperienced users against spoofed website-based
phishing attacks. AntiPhish keeps track of the sensitive infor­
mation of a user and generates warning whenever the user
types sensitive information into a form on a non trusted
website. Most of the browsers such as Mozilla have function­
ality that allows form content to be stored and automatically
inserted if the user desires. AntiPhish takes this common
functionality one step further and also tracks where this
information is sent. It also stores the mapping of where this

to find out about the decision. If it is not present in unknown
list, content analysis would be performed, which would return
a URL (CA URL) whose content is similar to the content of
the queried URL. We would store this queried URL and CA
URL in the unknown list. Afterwards, we would route to the
PVC handling that CA URL. Then we would search for that
queried URL inside the three lists of that PVC: white list,
gray list and black list. If the queried URL is not present in
these three lists, then the user would be informed that decision
could not be made. However in the background, search would
be carried out in the archived black list. If the queried URL is
found in the archived black list, then this URL would be moved
back to black list; so that next time if someone tries to query
this URL again, this URL would be found in the black list
and URL would be returned as phishing. Then owner of that
PVC handling URL with the similar content as the content of
the queried URL, would have an option of putting that URL
in the appropriate list. In this situation, there would be two
PVCs in the system handling such a URL: one for content
similarity and the other for URL similarity. Pseudo code for
search algorithm is shown in Algorithm 2. Whenever search
is initiated in order to determine whether the queried URL is
phishing, function search(O,null,URL,IP address to which one
is connected) is called. It will return 1 if URL is not phishing,
o if URL is suspected and - I if URL is phishing.

Algorithm 2 search(index, finaLURL, URL,IP address)
tld_doma i n <- t id o f domain handled by thi s PVC
h ost <- domain pa rt of V RL
domain <- domain h andled by thi s PVC
tld <- ti d part o f V RL
determine i such that TLDArray[i] = tld
if tid_domai n handled by this PVC # tid AND
u ri is not in ip address f ormat then

IP addres s <- get ip addres s from TLDArray[i] ran do m ly
search(O. null. URL. IP address)

else
for i = 1 to length do

find j where array[i][jJ =hostli]
if host[i] # domain[i] then

I P addre ss <- ge t ip addr es s f r om DNA r ray[i][j] ran dom ly
if I P addr es s = n u ll then

if queried URL is present in white list then
return 1

else if queried URL is present in gray list then
return 0

else if queried URL is present in black list then
return -1

else if f inaCV RL # null then
put finaCURL in gray list
return 0

else if URL is present in unknown list then
C A_V RL <- ext r ac t correspon di n g V RL
search(O,URL.CA_URL,lP address of current PVC)

else
perform content analysis model and get CA_URL
store URL along with CA_URL in unknown list
search(O,URL,CA_URL,lP address of current PVC)

end if
else

searchii, finaCURL, URL.IP address)
end if

end if
end for

end if

Digital Object Identifier: 10.4108IlCST.COLLABORATECOM2009.8310
http://dx.doi.org/10.4108//CST.COLLABORATECOM2009.8310

Fig. 3. Hypothetical example showing how routing would take place from
PVC handling visa.org to PVC handling cneia .com. In this case, we assume
search starts from visa.org

Containspointers
10PVCs handling

(.;Qnla ns po ntats I ccota ns po ntars domain whose
10PVCshandling 10PVCs handling name starts with
domainwhosetid domain whosetid 'vid' and whose

is 'com " such is 'ca' suc h tid is 'erg' such as
cnetcon mcaill.ca video.org

V
com or9-Y ca I

a b C d t-e i 5 V w \0

a b C d e i 5 v w \0

a b C d e i s v w \0

a b C d e i 5 V W \0

a b C d e i 5 V W 0

Fig. 4. Routing entries for PVC handling visa.org

C. Example of Routings

Example 1: The Figure 3 shows how we could route to the
PVC handling cneia. com from the PVC handling v i s a . org
assuming routing entries for PVC handling v i s a . org are as
shown in Figure 4. In this scenario, we will first check if
TLD of the queried URL is the same as the TLD of the
domain handled by the PVC handling v i s a . org . Since it
is not the same, the IP address of the domain with the TLD
c om would be extracted from TLDArray. It could be possible
we extract the IP address of the PVC handling c ne t . c om. So
in this case, we would route to the PVC handling c ne t . c om.
Then we determine the longest prefix shared by cnet . c om and
cneia. com. In this case it is cne. Since the fourth character
is not the same, we extract one of the IP addresses stored
in the fourth row and column containing character "i" of the
DNArray. Extracted IP addresses would be the IP address of
PVC, which handles domain whose prefix is cnei. In this case
we route to the PVC handling domain cneia. com.
Example 2: Suppose we are querying the URL c ne i bb c .
c om whose content is similar to the content in rbc . c a and
currently no PVC has an entry for cneibbc. com. Assume
cneia. c om routing table entries are as shown in Figure 5.
Figure 6 shows how routing would take place in such a case.
Example 3: Suppose we would like to search for cneiaf.
c om, and assume there is no PVC which handles cneiaf.

Conlalns pointers
to PVCS handling

Contains pointll<S Conlains pointers doma in whose

to PVCs handling to PVCs Mndling name startswith IConlains pointer I
domain whosetld doma in whose tld 'r' and whose Ud to PVC Mndling

is 'O'l l' such is 'ea' such as is 'oorn' suchas ens.com
uno.erg rbc.ca rbc.com \

\ I \
com org ..··· ·· 1ca\

\
a b c d e i n q r \0
a b C d e i n q r \0
a b C d e i n q r \0
a b C d e i n q r \0
a b C d e i n q r \0
a b C d e i n q r \0

Fig. 5. Routing entries for PVC handling cneia.org

Fig. 6. Hypothetical example showing how routing would take place if we
want to determine whether cneia.com is phishing. In this we assume content
in cneia.com is similar to the content in rbc.ca

com, but there is a PVChandling cneia.com, we start the
search from the PVChandling v i sa.org. Consideringthe
routing proceduredescribedin Example 1, we end up in the
PVC handling cneia.com, since there is norouting entry
for PVC handling cneiaf.com. Consequently,we check its
own decision tables to make anappropriatedecision about
cneiaf. com. If we are not able to reach anydecision, we
invoke thecontentanalysis module.

D. Content Analysis

Content analysis is anothercomponentof our system. It
helps to find out which URL ispretendingto look like oneof
the trusted URLs. A URL isassumedto be trusted if there is
a PVC whichhandlesthis URL. This can help us todetermine
the target of thephishingURL and then we would inform the
PVC handlingthat target URL aboutpossiblephishingattack .
The PVC, which has beeninformed about the target URL,
would have anoption of determiningwhetherit is phishingor
not.

To do thecontentanalysis, our system has a CA(content
analysis)module. CA takes both text and imagesnapshotof
the given URL byrenderingthem through abrowserusing

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.831O
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

one of the webkit based toolscalled CutyCapt [17]. Then
inside the CA we have two sub CAmodule called TCA
(textual CA) and VCA (visual CA). The TCA will use the
text snapshotof the URL and tries torandomly extract five
sentencesfrom the text snap shot. We call thoseextracted
sentencesthe textual signatureof the URL. Then we push
these sentencesone by one into the searchengineand find
out the top five URLs(returnedby the searchengine)for each
sentence.A table is used to keep track of these 5 URLs. We
will call the top five resultsreturnedby the searchenginefor
eachsentencethe "searchset" .Basedon theresultreturnedby
the searchengine,score would becomputedusing ascoring
mechanismmentionedbelow. Howeverbeforecomputingthe
textual signature, we will determineif the given URL contains
the copyright sentence. Thecopyright sentencemust contain
one of thefollowing sets of keywords:

• "CopyRight" and "All Rights Reserved"in the sentence.
• "@" and "All Rights Reserved"in the sentence.
• "@" and "CopyRight" in the sentence.
• "@" or "CopyRight" with any numbersin the sentence.
• "Trademark" and "Registered", or"@" and "Trademark"

in the sentence.

If the given URL has more than onesentenceswith the
abovecharacteristics, we will return that URL as asuspected
one and we will put it into the gray list.If it has only
one sentencewith the ahovecharacteristics, we extract this
sentenceand remove the date (inside thesentence)and feed
such asentenceinto a search engine. We will call the first
URL returned by the searchengine the "copyright URL" .
The reason that we remove thenumber from the copyright
sentencesis that somephishing websiteschangethe date of
the copyright sentenceorder to index differently from the
legitimate websitesin search engine. Then we willcompute
the textual signature. We feed each of the fiverandomly
selectedsentencesseparatelyinto the search engine.Score
of one would beassignedto the URL returned by search
enginefor eachsentenceif it is presentin the top five results .
The score would beincreasedif the searchengine returns
the same URL for theother sentences.Then we will check
the presenceof the "copyrightURL" in every search sets .If
the "copyrightURL" is not present,we will repeatthe above
procedureof computingthe textualsignatureup to five times.
If the "copyrightURL" is still not presentin the search sets, we
returnthe queriedURL as asuspectedURL and we would put
it insidethe gray list of theappropriatePVc. If the "copyright
URL" is present,the "copyright" URL would beassumedas
the target URL.

If the queriedURL does notcontainanycopyrightsentence,
then the URL with thehighestscore would bereturnedas the
target URL. After determiningthe target URL, we will route
to the PVC, which isresponsiblefor target URL and we will
put the queried URL into the gray list.Figure 7 shows the
flowchart for thecontentanalysis module.

A. Attacksagainstthe CAM

Attackers can put invisible text in order to circumvent the
content analysis module of CASTLE because sentences which
are part of the invisible text are used by CAM to analyze the
content. As a result, CAM can return a URL whose content is
not similar to the visible content of the queried URL. So our
CAM module would put this queried URL in the gray list of
the PVC handling domain whose content is not similar to the
visible content of queried URL. However administrator of this
PVC would notice it; so he/she would put it inside black list.
Thus attackers cannot circumvent CAM by inserting invisible
text.

Also since we are dealing with the exact domain name of
the visiting URL, all the misleading information used in sub­
domain names to mislead the users would be useless. For
example if the URL is www.ebay.online.com,the user may
think that this URL belongs to eBay, but in our design, it
would be treated as www.online.comnot as a subdomain of
eBay.

In addition, all the changes in the user's browser such as
hiding the address bar, faking the address bar, or displaying
the URL in unicode format would be useless because we are
dealing with the actual domain who hosts the websites and the
content of the phishing website in order to find the website
that the attacker is trying to phish.

B. Attacksagainstthe social networkofPVCs

Another type of attack is against the P2P network of
PVCs which handle the information regarding the decision
that should be rendered for a given URL. In this case we
assume that all the PVCs are connected through the social
network and propagation of the routing information will be
taking place over the social network. So the only attack against
this would be a intrusion into the social network. An attacker
can compromise a node in the social network even without
the awareness of the authorities of that PVC and may try
to give false information to other PVCs who may ask the
compromised PVC. But in this case an attackers can only
propagate wrong routing information for the domain they are
responsible. We call that node a "bad node" inside the social
network. In general bad nodes can do the following actions
inside the social network: ignore queries, misroute queries,
propagating false routing updates, refuse to store or return
items and return incorrect items. To address these issues, we
assume that at least one node in the social network is alive
and not malicious. Then we try to prove that a node is bad
with some mechanism that will result in the eviction of such
a node from the social network.

We introduce an online certificate authority (DCA) that
issues a certificate to each node upon it joining the network.
Also each node must inform the DCA about the address of two
possible backup nodes in case of failure or attack. Back up
nodes would be independently maintained and updates of the
routing information will be done independently. Each node
must know the private key if it wants to propagate routing
information to other nodes. Also each node must renew its own

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B310

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B310

key after its expiration of the key. So if a node proved itself
to be malicious, the DCA would refuse to issue a certificate
to it. Thus it would be evicted from the social network. So
any attempt from anyone inside the network to say something
inconsistent will result as misbehavior and eviction from the
social network.

Misbehavior can be established through other mechanisms
as well. A node can periodically check its information with
its connected peers. Connected peers are neighboring nodes
according to the the routing table. So each node will ask
connected nodes about the information that it has in its black
or whitelist and monitor the responses of the connected nodes.
Connected nodes can be responsive or not responsive. If they
are not responsive, then there should be some problem with
them or they might have been hijacked by attackers who do
not want to respond and just want to give out false information
about the current PVC's domain. In this case, the node who
has checked the unresponsiveness will inform the DCA about
the connected nodes which are not responsive. If the number
of complaints for a certain nodes exceeds a threshold, then
that node would be tagged as a suspected node and the DCA
will perform its own procedure to validate the complain.
The DCA will select the random number of PVCs in the
network excluding the ones which have complained to ask
the suspected node about its information. The reason that we
choose random nodes inside the network is because we do
not want to show the suspected node that it is on probe. If the
queries come from different sources, this can be considered
as a normal query process inside the network and can not be
detected as a probe process. After the random nodes checked
the suspected node about its information to see whether the
information that it supplies is correct or not, they will inform
the DCA about the correct or incorrect answers returned by the
suspected node. If the number of incorrect answers exceeds a
threshold, then the DCA will tag that node malicious and will
inform its immediate back up nodes, so that those backup
nodes can revoke their links with that malicious node and
take the responsibility of that node inside the network. Also
the DCA will not issue to that node a certificate anymore; so
no more queries will be forwarded to that node anymore and
it will be evicted from the network at the time of renewal of
the certificate for good. The reason that we ask the DCA to
evaluate the complains by itself is because we want to avoid
the case where some nodes join together in order to evict
one of their competitors from the network by providing false
information to the DCA.

To protect the DCA, we can also consider a total distributed­
limited state shared replicas for it. Also only nodes that are
currently part of the network need to inform or ask the DCA
so we can filter all other traffic to it.

VII. IMPLEMENTATION

We have implemented CASTLE in JAVA. CASTLE com­
prises of 2000+ lines of code as well as some modules such as
CutyCapt, Google AJAX Search API, JAVA RMI, and JSON.
We used CutyCapt to get the text snapshot of the content of

Fig. 10. The response times for 2200 searches carried out from four PVCs:
each PVC handled domain with different tid

effectiveness of our approach. From April 5 to April 22'2009,
we collectedmost of the phishing URLs fromphishtank.
com [18]. These phishing URLs fromphishtank.com were
selected within one hour of being reported. Some of the
phishing URLs were also gathered from the user spam email
account. We also manually chose 50 legitimate URLs in
different categories such as banks, populare-commercesites,
and top 20 popular sites from the Alexa Web search such
as rbc.c om, cit ibank. c om, ebay. com, and cnn. c om. We
used a test scenario to gather our results. In our test scenario,
we fed all 200 URLs into our content analysis module. In the
case of a phishing URL, which is fed into our module, we
compared the URL returned by our content analysis module
and the actual URL that is being phished by the phishing
URL. In a case of a legitimate URL, which is fed into our
module, we compared the legitimate URLitself and the URL
returned by our content analysis module. In this case, both
URLs should be the same. In this case, true positive was
97.5% and false positive rate was 2.5%. To decrease the false
positive rate further, we applied a set of heuristics described in
section undercopyrightpropertycharacteristicand ran another
experiment. After the newexperimentwas run, false positive
rate fell down to 1.5% and true positive rate was 98.5%.

IX . CONCLUSION

This paper describes a new framework calledCASTLE that
provides a collaborative approach for buildinganti-phishing
databases. Such anti-phishing databases are at the core of
browser-based toolbars, plugins, and extensions that prevent
users from falling prey to phishing attacks.CASTLE is scal­
able to any number of nodes because response time does not
depend on total number of nodes. Instead it depend on the
length of the domain name of queried URL.

The advantage ofCASTLE approach is that it can pro­
vide a substrate for integrating many differentanti-phishing
strategies. For example, the PVCs that are part of the P2P
network can employ diverse techniques for making the local
decisions. Some PVCs can be using a manual examination
based approach while others could be using acombinationof

I
COM

- ORG
- Olher TLDs
- CA

2.5

I

1.50.5

02

00

01

0.6

03

04

0.8

OJ

f05

a web page. Google AJAX Search API was used to access
the Google database to search for aparticularsentence and to
retrieve thecorrespondingURL. JAVA RMI library was used
to build P2P networks, whichconnectPVCs. Content analysis
module has a simple command line interface, which returns
a URL either labeled as phishing, suspected as phishing, or
legitimate. Each PVC also has a command line interface where
the administratorof PVC can modify the routing table or the
decision table. It should be noted that the prototype is still
evolving and new features will be added in the future.

VIII. EXPERIMENTAL RESULTS

We tested content analysis module and routing algorithm
separately

A. Routing algorithm

We tested our routing algorithm on planet lab with 100
machines. In our experiment, we had 100 PVCs (each machine
representingone PVC) and each PVC handled one URL.
About 35 URLs had TLD com and about 20 of URLs had
TLD ca. Black list, white list and gray list in each PVC was
populated with 7 URLs. In total, each PVC was populated with
21 URLs. Since weencounteredscalability issues on Planet­
lab, we could not test on more than 100 machines.

In the first part of this experiment, we carried out a search
for all 100 URLs from four different PVCs: each PVC handled
domain with different tid. We repeated thisexperiment 15
times. The minimum response times are shown in Figure 8. As
shown in these figure, most of the time, times for a search are
about 2 seconds. However in few cases, times are 18 seconds,
which is due to the abnormal behavior of some of the nodes
inside the PlanetLab.

In the second part of this experiment, we carried out a
search of 2100 URLs stored in decision lists of PVCs and 100
URLs from four different PVCs: each PVC handled domain
with different tid. We repeated thisexperiment7 times. The
minimum cumulative response times are shown in Figure 10.
As shown in this figure, the response times for the 90% of the
search are at mosthalf a second. However in few cases, the
response times for 2% of the search are more than 2 seconds,
which is due to the abnormal behavior of some of the nodes
inside the PlanetLab.

In the third part of experiment. we collected about 350
URLs (which were not handled by any of the PVC and were
not present in decision list of any PVC). Then we carried out a
search of these 350 URLs from four different PVCs: each PVC
handled domain with different tid. We repeated thisexperiment
5 times. The minimum response times are shown in Figure 9.
As shown in these figure, most of the time, the response times
for a search are about 2 seconds. However in few cases, the
response times are 18 seconds, which is due to the abnormal
behavior of some of the nodes inside the PlanetLab.

B. Content Analysis Module

Weconductedanexperimentwhich consists of 150 phishing
URLs along with 50 legitimate URLs in order to measure the

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.831O
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8310

]
ac

"
"
"
"
ic.. ."

Will]:fj",-;:Jk..t~ " ' '' htll U " " U lhI Il UllLlILJ);:l~ h:",~ .1II 1 l.L~' .J ,Jt ...UU ~L." LL I. . ~ . I r.
. ,~

. OMG

,
:-t'iI--:-RLIJ.-';:

. Olll..- TU»

U . f ,
0

~~~~~~~~~~~i~~i3i~~~~~~~~ ! ! ~~~~~~~~~~~~~~~~~~~~~~~rJiJff!rJ~~iS~lif~l~j3i~~;]I~!!~~i ~~!i!J~!l~~;!i~ ej ~ s ... .:. ~ t ~~~ ~~..3$:ej ~ ~': ' il "'"

~ a ~1~le111 Bll~i€~~~~i~~~~~~~~]j!~ti8~~ !~~ i~~~iljj i ~j~~ ~j 2{i i"'~"'''' ~ ~~I j i ' i J I ii!~~ L t i 1 ~ l ~ 1
~ 'Slll. .3 ~.:q~ r~ ~~ ~if~ ~ ~ ~ i ~ I~j ~ j ~ ~ i ~ ~ j ......ij ; ~l~] if ~ ~ ~:

i r ~ ~ -; fl ~ ~ j~ i ~ ]..3~!. .
~ ~ g

]
:

Fig. 8. The response times for search carried out from four different PVCs: each PVC handled domain with different tId

I
ao,
"
..
"

"

.. ...
.~.-.00...·...'"

I I

' ~" " III" Illliil ilhlllln,I,l. ld,li"I,IIIIII" h ,II. ..1 1,1. 1.11. ) ",1111.1111,1Ihld"illlllllll. llllll, 11.1.1 "I " I" "II ,d,I,II,lllli ., I1, 1 ,11,11111,1.1.1..1,1
n "' ''' :: ~ ;;': :C ~ ::: ;;; ; ~ : :;: :;; ;; ::; : ::! ;;' ; ~ : :: ;; 9 ~ 9 = = 5 5 ~ 5 3 ~ ~ ; ~ ~ ~ ~ ; S S ; ~ ; ; ~ ~ ~ rl :;: ~ ~ ~ ~ £l ~ ~ £ ~ ;:: ~ ~ * ~ ~ ~ ~ ~ ;J ~ ~ ~ .Q ~ ~ ~ ~ ~ ~ ~ ~ i

Fig. 9. The response times for 300 searches of unsupported URLs carried out from four different PVCs: each PVC handled domain with different tId

automated analysis and classification and manual examination.
The use of diverse techniques increases the scalability of the
anti-phishing effort. Some of the anti-phishing approaches
mentioned in Section III require human intervention. CASTLE
uses a semi automatic approach.

Further, to the best of our knowledge this is the first anti­
phishing framework that combines location-based and content­
based techniques into a single system. By using the dual
approaches, we think zero day vulnerabilities that are faced
by other techniques can be handled by CASTLE.

REFERENCES

[11M. Jakobsson and S. Myers,Phishing and Countermeasures: Under­
standing the Increasing Problem of Electronic Identity Theft . Wiley­
Interscience, 2006.

[21 A. Herzberg andA. Jbara, "Security and identification indicators for
browsers against spoofing and phishing attacks,"ACM Trans. Internet
Technol., vol. 8, no. 4, pp.1-36, 2008.

[31 "Phishing attack trends report second half 2008,"
http://www.apwg.org/reports/apw~report_H2_2008.pdf, Mar. 2009.

[41 A. P. W. Group, http://www.antiphishing.org, Anti Phishing Working
Group.

[51 1. Ma, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond blacklists:
learning to detect malicious web sites from suspicious uris," inKDD
'09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. New York, NY, USA: ACM,
2009, pp. 1245-1 254.

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009.B31O
http://dx.doi.org/10.410BIICST.COLLABORATECOM2009.B310

[6) A. Y. Fu, "Detecting phishing web pages with visual similarity assess­
ment based on earth mover's distance (emd),"IEEE Trans. Dependable
Secur. Comput., vol. 3, no. 4, pp. 301-311, 2006.

[7) eBay, http://pages.ebay.ca, eBay.
[8) News.com, "Netscape readies antiphishing browser,"

http://news.cnet.com, 2006.
[9) Microsoft, "Technology overview:microsoft windows internet explorer

7," Microsoft White Paper, 2006.
[10) J. Kang and D. Lee, "Advanced white list approach for preventing access

to phishing sites," inICCIT '07: Proceedings of the 2007 International
Conference on Convergence Information Technology. Washington, DC,
USA: IEEE Computer Society, 2007, pp.491-496.

[II) P. Likarish, E. Jung, D. Dunbar, T. Hansen, and J. Hourcade,"Bvapt:
Bayesian anti-phishing toolbar,' May 2008, pp.1745-1749.

[12) E. Kirda, , E. Kirda, and C. Kruegel, "Protecting users against phishing
attacks with antiphish," inIn COMPSAC 05: Proceedings of the 29th
Annual International Computer Sof tware and Applications Conference
(COMPSAC05) Volume I . IEEE Computer Society, 2005, pp.517-524.

[13) N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C.Mitchell,
"Client-side defense against web-based identity theft," in II th Annual
Network and Distributed System Security Symp. (NDSS'04) , 2005.

[14) "Spoofguard," http://crypto.stanford.edulSpoofGuardl .
[15) y. Zhang, 1. I. Hong, and L. F. Cranor, "Cantina: a content-based

approach to detecting phishing web sites," in WWW '07: Proceedings
of the 16th international conference on World Wide Web. New York,
NY, USA: ACM, 2007, pp.639-648.

[16) H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "Sybilguard: de­
fending against sybil attacks via social networks," SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 267-278, 2006.

[17) "Cutycapt,' http://cutycapt.sourceforge.netl.
[18) "Phishtank,' http://www.phishtank.coml.


