
CASTLE: A Social Framework for Collaborative
Anti-Phishing Databases

Arash Nourian, Sameer Ishtiaq, and Muthucumaru Maheswaran
Advanced Networking Research Lab

School of Computer Science
McGill University

Montreal, QC H3A 2A7, Canada
Email: {nourian, sishti, maheswar}@cs.mcgill.ca

Abstract-Phishing is a major problem on the Internet. The
cornerstone of anti-phishing is detecting whether a given site
is good or bad. Most of the approaches for anti-phishing rely
on looking up centrally maintained repositories. In this paper,
we present a decentralized framework called CASTLE that
allows a collaborative approach for anti-phishing services. We
implemented a prototype and then tested it on Planet-lab. The
experiments indicate the viability of our framework.

I. INTRODUCTION

The major goal of phishing attacks is to steal valuable
personal (usually identity related) information from users.
Once the attackers gain personal data such as passwords, date
of birth, and bank account number, they use the information
to their benefits by creating bogus identities or taking control
of online accounts.

The phishing attacks are launched in many different
ways [1]. The most common way is to send an email to users
and persuade users to click on a forged link inside the email.
When the user clicks on the forged link, the user will be sent
to a site controlled by the attacker which looks like a trusted
site (e.g., the user's online bank). Because the site is under the
attacker's control, all information revealed by the user such as
username and passwords are gained by the attacker. A vigilant
user may detect the difference between the bogus site created
by the attacker and the legitimate site. However, a sizeable
population of the users do fall prey to these attacks [2]. For
example, legitimate websites (depending on the sophistication
of the institution) can have welcome messages that include
the user's name from previous successful logins. Such login
information is not available for the bogus site and consequently
it cannot customize the welcome message.

The number of phishing attacks is increasing rapidly [3].
Because of their value, financial institutions used to be the
favorite targets of the phishing attackers. Recently, this form
of attack has diversified and started targeting social networking
sites as well. Further, the technologies adopted by the attackers
are getting more sophisticated by day. In June 2008, the
longest time online for a phishing website was 30 days [4]. In
the same month, Anti Phishing Working Group received about
28,151 unique phishing email reports [4]. Also the average
uptime for a phishing website is 4.5 days [4].

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B310
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B310

CASTLE (Collaborative Approach using Social, Content,
and Location for Evaluation) is a decentralized framework for
building and maintaining databases useful for anti-phishing
services. For instance, browser-based toolbars [2] lookup
centrally maintained databases to determine whether a given
location is safe. If a site is previously black-listed as phishing,
the browser-based toolbar prevents the user from visiting
it [5]. Although the centralized databases are already in place
for anti-phishing, their scalability is a cause for concern. In
particular, the existing approaches do not handle the following
issues in a scalable manner.

• Enrollment process: The name space that can be phished
is vast. Few repositories cannot handle complaints for the
whole name space. Because phishing is usually an im­
personation attack against well known Internet "brands,"
there is a concern of brand tarnishing. Therefore, valuable
brands would want to take ownership of their namespace.

• Decision process: With few central repositories, admin­
istrators of those repositories should use automated tools
and manual examinations to decide on phishing reports.
Because a repository is likely to receive many reports and
some of which is going to be completely new, the decision
process is an arduous one. If the namespace is partitioned
based on URL prefixes, the decisions can be made by
repositories that are familiar with URLs. In CASTLE,
the social factor is used to reduce namespace grabbing
attacks.

• Lookup process: One of the advantages of central reposi­
tories is the straightforward lookup process for determin­
ing whether a URL is safe. This advantage will be lost
if multiple repositories need to be checked. A distributed
network of repositories need to have an efficient lookup
process.

CASTLE framework provides a novel decentralized peer­
to-peer approach for maintaining anti-phishing databases for
the Internet. It uses the social factor to limit the membership
to the peer-to-peer network. This is necessary to prevent the
attackers from locating their verification servers in the network
of servers maintained by CASTLE. Further, CASTLE admits
location-based (URL-based) and content-based access to the
repositories.

II. BACKGROUND

Phishing is sometimes confused with spam; however it is not
spam. Spam's real purpose is to sell, while phishing's purpose
is to steal. There are many different opportunities for creating
phishing URLs. Following are some examples of techniques
used for phishing on the Internet [6]:

• Adding a suffix to the domain name of a URL. For
example, www. ci t ybank . com can be changed to www.

citybank.us.com

• Actual link is different from the visible link.
For example, the HTML line: <ahref="http:

//www.citibank.com.us.ebanking.us ..>

www.citibank.com< / a> where visible link is
http://www . citibank. com but the actual link is
http://www.citibank.com.us.ebanking.us.

• Using a bug in a real webpage to redirect to
phishing web page. For example, the bug of eBay
webshe: http://cgi.ebay.com/ws/eBayISAPI.

dll?MfcISAPICommand=RedirectToDomain\

&DomainUrl=PHISHINGLINK can direct you to
any specified PHISHINGLINK.

• Replacing similar characters in the real link. For example
replace Is (uppercase i) with I (lowercase of L) or 1
(Arabic number one), such as WWW.CITIBANK.COM to
WWW.C1TIBANK.COM.

• Encoding the URL to disguise its true value
using hex, dword, or octal encoding. For example,
http://www.visa.com@%32%32%30%2E%36%38%2E%

32%31%34%2E%32%31%33 translates into 220.68.214.213
instead of www.visa.com.

• The URL is actually a part of an image, which uses map
coordinates to define the click area and the real URL,
with the fake URL from the <a> tag being displayed.

• Using a URL masking service such as c jb. net

or tinyurl. com. For example, http: / / jne9rrfj4.

CjB.neT/?uudzQYRgY1GNEn can hide actual URL and
redirect the user to the phishing website.

• Link points to a page on a legitimate site which can
redirect the user to the phishing website. For exam­
ple, http://www.google.com/url?q=http://www.

geocities. com/mibmib4 321 / where the mibmib4321
site contains a redirect to 218.214.130.51.

• Using the "@" sign. Everything to the left of "@"

is ignored while everything to the right is considered.
For example, http://www.usbank.com/update.pl@

81.109.43.102/usb/upd.pl redirects user to 81.

109.43. 102 /usb/upd. p l instead of http://www .

usbank.com/update.pl.

• Using a credible looking text string within the
URL. For example, http://81.109 .43 .102/ebay/

account_update/now.php uses ebay keyword in the
URL.

Once the user is lured to the bogus website, the attacker
needs to present a convincing user experience. The techniques
used by the attackers to create bogus web sites can be

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B310
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B310

categorized in three different ways [6]:

• Using the downloaded webpage from real website to
make the phishing webpage appear and react exactly the
same as the real one.

• Using script or add-in to web browser to hide the address
bar in order to spoof users to believe they have entered
the correct website.

• Using visual based content (E.g., image, flash, video,
etc.) rather than HTML to avoid HTML based phishing
detection.

III. RELATED WORK

In recent years, a number of anti-phishing techniques have
been developed and in this section, we highlight a subset of
those anti phishing techniques, which are closely related to
our work.

EBay toolbar [7] can identify if any particular URL which
is trying to phish ebay. com. However, the problem is that
this toolbar does not work if a URL is trying to phish some
other website.

Microsoft and AOL used Black List Approach [8] [9] by
integrating black list-based anti phishing support into their
browsers. It blocks users from entering any information while
he/she is at a known phishing website. However it is ineffective
because there is always a window of vulnerability during
which users are susceptible to attacks.

PhishingGuard [10] makes use of a white listing approach.
The basic idea is that a website is identified by its IP address.
The white list contains only trusted URLs. Whenever any
website is visited, it is checked in the white list. If the URL
is found in the white list, but the IP address is different, then
this URL is classified as phishing. If the URL is similar but
not same, then a warning is given. This tool is also capable
of detecting pharming.

Bayesian Anti Phishing toolbar [11] is a Mozilla Firefox ex­
tension. It is designed to help users identify phishing websites
and protect their sensitive information. It also uses a white list
based approach. For a given website, the B-APT toolbar sends
the URL to the DOM analyzer. The DOM analyzer then checks
if the given URL is present in white list. If it is in the white
list, it means it is a legitimate website. If it is not, then DOM
analyzer tokenizes the given website and then forwards the
tokens to a scoring module. This scoring module consults the
database of tokens and computes a score. If the score exceeds
a pre-set threshold, then the URL is classified as phishing.

AntiPhish [12] is a Mozilla browser extension that aims
to protect inexperienced users against spoofed website-based
phishing attacks. AntiPhish keeps track of the sensitive infor­
mation of a user and generates warning whenever the user
types sensitive information into a form on a non trusted
website. Most of the browsers such as Mozilla have function­
ality that allows form content to be stored and automatically
inserted if the user desires. AntiPhish takes this common
functionality one step further and also tracks where this
information is sent. It also stores the mapping of where this

information belongs to. However effectiveness of this approach
is dependent on the user.

SpoofGuard [13], [14] is a browser plug-in that uses domain
name, URL, link and image check to determine if a given
page is a part of a spoof attack. It applies the following three
tests to a given page and then combines the result using a
scoring mechanism: it uses a stateless method that determines
whether a downloaded page is suspicious, stateful method that
evaluates a downloaded page in the light of user's history, and
method that evaluates outgoing HTML post data. The final
score determines whether the plug-in should alert the user
and also determines the severity of the alert. False alarm rate
depends on how frequently the user establishes new accounts
and how frequently the user clears the browser history cache.
Many of the unnecessary warnings are the result of frame
or redirection problem. If the user opens a new account, and
uses same password as another account, it will produce an
unwanted warning. Some of the tests compare passwords that
are used at a particular site to passwords that were used at
previous sites. An attacker could fool these tests by breaking
the password field (on the spoofed page) into two adjacent
fields, that would look contiguous, but would cause the test
to fail. Some of the tests compare images on phished pages
to the image that appear on legitimate pages. An attacker
could circumvent these tests by slicing an image into adjacent
vertical slides and presenting these slices one next to the other.

CANTINA [15] uses a content-based approach to detect
phishing web sites. It combines a term frequency-inverse
document frequency (TF-IDF) algorithm with other heuristics
to determine whether a given website is a phishing one. It
uses fives words with the highest TF-IDF weight on a given
website as a signature and then submits those five words to
the Google search engine. If the URL of the site is found
within top results, then that URL is classified as legitimate,
otherwise phishing. An attacker could circumvent CANTINA
using several techniques. One technique would be to use image
instead of words in a given page. Another technique would be
to add invisible text, text that is tiny or matches background
color of the page. Yet another technique would be to change
a lot of words in order to confuse TF-IDF.

IV. DESIGN

CASTLE is a decentralized network tool to detect the
phishing sites based on two key components: URL string
and content. The key feature of CASTLE is that it uses
multiple phishing verification servers (PVCs) to determine
if the queried URL is phishing. All PVCs are assumed to
be trusted and are connected via a social peer-to-peer (P2P)
network. The P2P network is socially administered to prevent
attackers from inserting their servers as PVCs. That is, PVCs
can be inserted into the network only if a certain number of
administrators of existing servers approve the administrators
of the enrolled server. This out-of-band trust requirement can
be enforced at different strengths based on the threat posed by
intruders [16].

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009. B310
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B310

A. Architecture of pvc
A PVC is responsible for a certain domain or domain

prefixes. For example a certain PVC could be responsible
for domain name cnn. com or en* . com Le., it will handle
all URLs with prefix en and with TLD com. It is possible
that a PVC experience heavy workload because it is handling
a popular domain. Therefore to balance workload, a PVC
may consist of clusters of servers, which would be managed
by load balancer. A PVC has two tables: decision table and
routing table. Construction of the decision table is based on
the content analysis module and administrators of the PVCs.
Content analysis module will identify whether the queried
URL has similar content to the one hosted at trusted URLs.
If the content is similar, then the content analysis module will
put that queried URL inside the gray list of that PVC, and
administrator of this PVC will be notified about this new URL
in gray list via email. Administrators of a PVC will investigate
the gray listed URLs and make decision about moving the
URLs to other lists such as black list and white list. If the
administrator of the PVC does not take any action within
a specified period of time, then the entries is automatically
moved to black list.

Decision table contains the following lists:
• Black list contains all "active" phishing URLs
• Archived black list contains all phishing URLs which are

more than 5 days old
• White list contains all trusted URLs
• Gray list contains all URLs suspected for phishing
• Unknown list contains all URLs whose contents are

similar to the content of the URL handled by one of the
PVCs in the network and the corresponding URL handled
by that PVC.

As mentioned earlier, the average up time for a phishing
websites is around 4.5 days [4]. So, to prevent the blacklists
getting longer because of inactive phishing URLs, we have
time to live (TTL) values for each entry in the blacklist. The
value of TTL will increase by one every day. Each time, a
blacklisted URL is visited, the TTL for this URL would be
resetted to zero. If the value of TTL reaches 5, that this URL
is moved to the archived blacklist. If a URL present in the
archived blacklist is visited, then the URL is moved back to
the black list. While making decision about a URL in a PVC,
archived black list would not be used in making that decision
even if it contain the queried URL; however we would only
check archived black list in the background in order to see if
any URL (inside archived black list) need to be moved back
to black list.

A routing table includes a list of IP addresses pointing
to other PVCs. A subset of the PVCs pointed to by the
routing table would have a ability to update the routing table.
These PCVs are PVCs that are highly trusted by the local
administrator (Le., socially connected).

B. URL Routing Mechanism

The routing table is used to push queries through the P2P
network of PVCs. We use only the domain name and TLD

com org ca I···..·······..··..·····
a b z 0 1 9 - \0

a b z 0 1 9 - \0
........
........

a b z 0 1 9 - \0

Fig. l. The structure of routing table

part of URL for routing. Therefore each routing table consists
of two data structures: a one-dimensional array (TLDArray),
which stores the list of all possible top level domains (TLD),
and a two-dimensional array (DNArray), which stores all
possible characters of the domain name of the URL as well as
the null character "\0". A domain name would be stored with
the null character at the end. For example cnet would be
stored as cnet \ O. lethe URL contains an IP address instead
of a domain name, the IP address would be stored in hex
format. The structure of routing table is shown in Figure 1.
The TLDArray contains pointer to other PVCs which handle
domains with different TLDs than the TLD of the current PVC.
The DNArray contains pointers to other PVCs which handle
domains with the same TLDs as the TLD of domain handled
by the current PVc. First row of the DNArray represents the
first letter of the domain name handled by the PVC along
with pointers to other PVCs handling domain name whose
first letter is not the same as the first letter of the domain
name handled by the current PVc. The second row represents
the second letter of the domain name handled by the current
PVC along with pointers to other PVCs handling domain name
whose first letter is the same as the first letter of the domain
name handled by the current PVC and second letter is not the
same as the second letter of the domain name handled by the
current PVC and so on.

Figure 2 shows an example of the routing table of PVC
handling cnet . com. The entries in the TLDArray represent all
possible TLDs, whereas entries in DNArray (in bold) represent
the character of domain handled by this PVC. It shows the list
of entries to which this PVC (handling cnet. com) point to.
As can be seen in the same figure, TLDArray contains pointer
to PVCs which handle domains with different TLDs than the
TLD of domain handled by current PVC. DNArray contains
pointer to PVCs which handle domains with the same TLD as
the TLD of domain handled by current PVc. The first row of
DNArray contains pointer to PVCs that handled those domains
which do not share any prefixes with the domain handled by
the current PVc. Second row contains pointer to those PVCs
that handle domains whose names start with c and third row
contains pointer to those PVCs that handle domains whose
name start with en,

We should also be able to add new entries (IP addresses
of other PVCs) to the routing table of the current PVC.
Entries containing the IP addresses of PVCs handling domains
with different TLDs than the TLD of the domain name

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.831O
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

Contains pointers Contains pointers
to PVCs handling to PVCs handli ng

domain whose doma in whose

nerre starts with namesta tts with

'cner andwhose 'enn' and whose
tid is 'com'such tid is 'rom' such

as coee.co m ascn n.com

com org .. .\. .. 1 ca\...
\ \

a b C d e ..\ ... i\ n s t \0

a b c d e\.. i n s t \0

a b c d e\ i n s t \0

a b c d e i n s t \0

a b c d e i n s t \0

Fig. 2. Routing entries for PVC handling cnet.com

handled by the current PVC will go to the TLDArray, and
entries containing the IP addresses of PVCs that handled those
domains which does share any prefix with the domain name
handled by current PVC will go to the appropriate rows of
the DNArray. Assume we want to add the entry containing
IP address of PVC handling cneefq. com to the routing
table of PVC handling cnet. com. After adding the entry for
cneefq . com, the letter e in the fourth row of the DNArray
in routing table for PVC handling cnet. c om would contain
pointer to the PVC handling cneefq. com. Pseudocode for
insertion algorithm is shown in Algorithm 1. Whenever we
want to insert an entry for a URL in a PVC, we will call
insert(URL, IP address of the PVC handling this URL).

Algorithm 1 insert(URL, IP Address)
host <- domain name of U RL
domain_tid <- tld of domain handled by this PVC
length <- length of host
tld <- tld of U RL
domain <- domain of handled by this PVC
determine i such that TLDArray[i] = tid
if domain_tld '" tld AND uri is n ot in ip add ress f ormat then

add IP add ress t o TLDAr ray[i]
else

for i = 1 to length do
find j where array[iJ[j1 = hostli]
if host[i] '" domain[i] then

add I P add ress to DNA rray[i][j]
break

end if
end for

end if

This URL routing mechanism would help us to determine
whether the queried URL is phishing. If there is a PVC which
handles this queried URL, this mechanism would ensure we
route to the PVC handling that queried URL. If none of the
PVC handles the queried URL, then this mechanism would
route to the PVC who handles domain which shares the longest
prefixes with the queried URL. Afterwards, we will check if
the queried URL is present in four lists in the decision table in
following order: white list, gray list, black list and unknown
list. If it is present in the black list, white list or gray list,
the user would be informed about the decision based on the
lists in which it is present. If it is present in the unknown list,
corresponding URL would be extracted and we would then
route to the PVC handling that corresponding URL in order

to find out about the decision. If it is not present in unknown
list, content analysis would be performed, which would return
a URL (CA URL) whose content is similar to the content of
the queried URL. We would store this queried URL and CA
URL in the unknown list. Afterwards, we would route to the
PVC handling that CA URL. Then we would search for that
queried URL inside the three lists of that PVC: white list,
gray list and black list. If the queried URL is not present in
these three lists, then the user would be informed that decision
could not be made. However in the background, search would
be carried out in the archived black list. If the queried URL is
found in the archived black list, then this URL would be moved
back to black list; so that next time if someone tries to query
this URL again, this URL would be found in the black list
and URL would be returned as phishing. Then owner of that
PVC handling URL with the similar content as the content of
the queried URL, would have an option of putting that URL
in the appropriate list. In this situation, there would be two
PVCs in the system handling such a URL: one for content
similarity and the other for URL similarity. Pseudo code for
search algorithm is shown in Algorithm 2. Whenever search
is initiated in order to determine whether the queried URL is
phishing, function search(O,null,URL,IP address to which one
is connected) is called. It will return 1 if URL is not phishing,
o if URL is suspected and - I if URL is phishing.

Algorithm 2 search(index, finaLURL, URL,IP address)
tld_doma i n <- t id o f domain handled by thi s PVC
h ost <- domain pa rt of V RL
domain <- domain h andled by thi s PVC
tld <- ti d part o f V RL
determine i such that TLDArray[i] = tld
if tid_domai n handled by this PVC # tid AND
u ri is not in ip address f ormat then

IP addres s <- get ip addres s from TLDArray[i] ran do m ly
search(O. null. URL. IP address)

else
for i = 1 to length do

find j where array[i][jJ =hostli]
if host[i] # domain[i] then

I P addre ss <- ge t ip addr es s f r om DNA r ray[i][j] ran dom ly
if I P addr es s = n u ll then

if queried URL is present in white list then
return 1

else if queried URL is present in gray list then
return 0

else if queried URL is present in black list then
return -1

else if f inaCV RL # null then
put finaCURL in gray list
return 0

else if URL is present in unknown list then
C A_V RL <- ext r ac t correspon di n g V RL
search(O,URL.CA_URL,lP address of current PVC)

else
perform content analysis model and get CA_URL
store URL along with CA_URL in unknown list
search(O,URL,CA_URL,lP address of current PVC)

end if
else

searchii, finaCURL, URL.IP address)
end if

end if
end for

end if

Digital Object Identifier: 10.4108IlCST.COLLABORATECOM2009.8310
http://dx.doi.org/10.4108//CST.COLLABORATECOM2009.8310

Fig. 3. Hypothetical example showing how routing would take place from
PVC handling visa.org to PVC handling cneia .com. In this case, we assume
search starts from visa.org

Containspointers
10PVCs handling

(.;Qnla ns po ntats I ccota ns po ntars domain whose
10PVCshandling 10PVCs handling name starts with
domainwhosetid domain whosetid 'vid' and whose

is 'com " such is 'ca' suc h tid is 'erg' such as
cnetcon mcaill.ca video.org

V
com or9-Y ca I

a b C d t-e i 5 V w \0

a b C d e i 5 v w \0

a b C d e i s v w \0

a b C d e i 5 V W \0

a b C d e i 5 V W 0

Fig. 4. Routing entries for PVC handling visa.org

C. Example of Routings

Example 1: The Figure 3 shows how we could route to the
PVC handling cneia. com from the PVC handling v i s a . org
assuming routing entries for PVC handling v i s a . org are as
shown in Figure 4. In this scenario, we will first check if
TLD of the queried URL is the same as the TLD of the
domain handled by the PVC handling v i s a . org . Since it
is not the same, the IP address of the domain with the TLD
c om would be extracted from TLDArray. It could be possible
we extract the IP address of the PVC handling c ne t . c om. So
in this case, we would route to the PVC handling c ne t . c om.
Then we determine the longest prefix shared by cnet . c om and
cneia. com. In this case it is cne. Since the fourth character
is not the same, we extract one of the IP addresses stored
in the fourth row and column containing character "i" of the
DNArray. Extracted IP addresses would be the IP address of
PVC, which handles domain whose prefix is cnei. In this case
we route to the PVC handling domain cneia. com.
Example 2: Suppose we are querying the URL c ne i bb c .
c om whose content is similar to the content in rbc . c a and
currently no PVC has an entry for cneibbc. com. Assume
cneia. c om routing table entries are as shown in Figure 5.
Figure 6 shows how routing would take place in such a case.
Example 3: Suppose we would like to search for cneiaf.
c om, and assume there is no PVC which handles cneiaf.

Conlalns pointers
to PVCS handling

Contains pointll<S Conlains pointers doma in whose

to PVCs handling to PVCs Mndling name startswith IConlains pointer I
domain whose tld doma in whose tld 'r' and whose Ud to PVC Mndling

is 'O'l l' such is 'ea' such as is 'oorn' suchas ens.com
uno.erg rbc.ca rbc .com \

\ I \
com org ..··· ·· 1 ca\

\
a b c d e i n q r \0
a b C d e i n q r \0

a b C d e i n q r \0
a b C d e i n q r \0

a b C d e i n q r \0

a b C d e i n q r \0

Fig. 5. Routing entries for PVC handling cneia.org

Fig. 6. Hypothetical example showing how routing would take place if we
want to determine whether cneia.com is phishing. In this we assume content
in cneia.com is similar to the content in rbc.ca

com, but there is a PVC handling cneia. com, we start the
search from the PVC handling v i s a. org. Considering the
routing procedure described in Example 1, we end up in the
PVC handling cneia. com, since there is no routing entry
for PVC handling cneiaf. com. Consequently, we check its
own decision tables to make an appropriate decision about
cneiaf . com. If we are not able to reach any decision, we
invoke the content analysis module.

D. Content Analysis

Content analysis is another component of our system. It
helps to find out which URL is pretending to look like one of
the trusted URLs. A URL is assumed to be trusted if there is
a PVC which handles this URL. This can help us to determine
the target of the phishing URL and then we would inform the
PVC handling that target URL about possible phishing attack .
The PVC, which has been informed about the target URL,
would have an option of determining whether it is phishing or
not.

To do the content analysis, our system has a CA (content
analysis) module. CA takes both text and image snapshot of
the given URL by rendering them through a browser using

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.831O
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

one of the webkit based tools called CutyCapt [17]. Then
inside the CA we have two sub CA module called TCA
(textual CA) and VCA (visual CA). The TCA will use the
text snapshot of the URL and tries to randomly extract five
sentences from the text snap shot. We call those extracted
sentences the textual signature of the URL. Then we push
these sentences one by one into the search engine and find
out the top five URLs (returned by the search engine) for each
sentence. A table is used to keep track of these 5 URLs. We
will call the top five results returned by the search engine for
each sentence the "search set" . Based on the result returned by
the search engine, score would be computed using a scoring
mechanism mentioned below. However before computing the
textual signature, we will determine if the given URL contains
the copyright sentence. The copyright sentence must contain
one of the following sets of keywords:

• "CopyRight" and "All Rights Reserved" in the sentence.
• "@" and "All Rights Reserved" in the sentence.
• "@" and "CopyRight" in the sentence.
• "@" or "CopyRight" with any numbers in the sentence.
• "Trademark" and "Registered", or "@" and "Trademark"

in the sentence.

If the given URL has more than one sentences with the
above characteristics, we will return that URL as a suspected
one and we will put it into the gray list. If it has only
one sentence with the ahove characteristics, we extract this
sentence and remove the date (inside the sentence) and feed
such a sentence into a search engine. We will call the first
URL returned by the search engine the "copyright URL" .
The reason that we remove the number from the copyright
sentences is that some phishing websites change the date of
the copyright sentence order to index differently from the
legitimate websites in search engine. Then we will compute
the textual signature. We feed each of the five randomly
selected sentences separately into the search engine. Score
of one would be assigned to the URL returned by search
engine for each sentence if it is present in the top five results .
The score would be increased if the search engine returns
the same URL for the other sentences. Then we will check
the presence of the "copyright URL" in every search sets . If
the "copyright URL" is not present, we will repeat the above
procedure of computing the textual signature up to five times .
If the "copyright URL" is still not present in the search sets, we
return the queried URL as a suspected URL and we would put
it inside the gray list of the appropriate PVc. If the "copyright
URL" is present, the "copyright" URL would be assumed as
the target URL .

If the queried URL does not contain any copyright sentence,
then the URL with the highest score would be returned as the
target URL. After determining the target URL, we will route
to the PVC, which is responsible for target URL and we will
put the queried URL into the gray list. Figure 7 shows the
flowchart for the content analysis module.

Input URL

CutyCapt text
snapshot and I

=0 and
isCopyright =

false

fthere sa
copyfighl
sentence

Extract thaI
sentence

AAd isCopyright =
true

Feed this
sentence into

google and get
1" URL and
put it into C­

URL
NIQ-- - - - - - - ---.J

Extract 5 Feed each of
random those sentence If

sentences 1--- - +1 into a search 1--- ---tO< isCopyright
~~~ q~~~ =~

snapshot the list of top 5
URLs and i++

yES- - ---.

NO

--JIf the list of URL for al
the sentence share a

common URL

i
NO

Terms-ate and
return URL as

suspected

L--------~t____----No---------l

Retum this
'--- - - - - - - - - ---. URL as target

URL

Fig. 7. Flowchart for content module

V. COMPLEXITY ANALYSIS

For simplicity purposes, we will refer to domain or domain
prefixes for which PVC is responsible as h-domain (hosted
domain) or h-domain prefixes respectively. We know in each
routing step, either a PVC forwards the search request to other
PVCs whose h-domain share a prefix with the domain name
of the queried URL or a PVC forwards the search request to
a PVC handling domain with different TLD.

In order to go to a PVC handling a domain with different
TLD, it takes only 1 hop since we pick up the IP address of this
PVC from the TLDArray of the current PVC and then route to
this PVC. In order to go to the PVC handling a domain name
whose first letter is the same as the first letter of the h-domain
of the current PVC, it takes at most 2 hops since we extract
the IP address of those domains who share the first letter with
the h-domain of the current PVC from the first row of the
DNArray of the current PVC and then we route to it. In order
to go to PVC handling domain name whose first two letters
are the same as the first two letters of the queried domain, it
takes at most 3 hops.

So in order to go to the PVC handling domain whose first
n letters are same as the first n letters of the queried domain,
it takes at most n + 1 hops. As mentioned in the Section IV,
the NULL character is also consider part of domain name,
so we will make use of the NULL character to restrict the
number of routing hops to the domain length. For example

if domain name is cnet, in our design it would represented
as cnet plus NULL character. In this case it would take at
most up to 6 hops assuming cnet.com is handled by one of
the PVC since there are 5 letters including NULL character
in the domain name. If the queried URL is stored in any of
the PVC's decision list and assuming URL length is n,then in
this case it can take up to n + 2 hops to reach that PVc.

As mentioned in Section IV, it is also possible that the
URL is not handled by any PVC and is not present in white
list, gray list or black list of all the PVC. In this case, we
would route to PVC whose h-domain is similar to the queried
domain. After routing to this PVC, we would use unknown list
or content analysis module to find the domain whose content
is the most similar to the content of the queried domain, and
then we would route to the PVC handling domain which is
stored in the unknown list or the URL returned by content
analysis module. For this scenario, assuming m is the length
of the domain and this domain is handled by one of the PVCs
whose content is the most similar to the content of queried
domain, it would take up to m + n + 4 hops.

VI. SECURITY ANALYSIS

Security threats to CASTLE can be categorized into two
types: threat to the content analysis module (CAM) and threat
to the social network of PVCs.

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009.B310
http://dx.doi.orgI10.410BIICST.COLLABORATECOM2009.B310



A. Attacks against the CAM

Attackers can put invisible text in order to circumvent the
content analysis module of CASTLE because sentences which
are part of the invisible text are used by CAM to analyze the
content. As a result, CAM can return a URL whose content is
not similar to the visible content of the queried URL. So our
CAM module would put this queried URL in the gray list of
the PVC handling domain whose content is not similar to the
visible content of queried URL. However administrator of this
PVC would notice it; so he/she would put it inside black list.
Thus attackers cannot circumvent CAM by inserting invisible
text.

Also since we are dealing with the exact domain name of
the visiting URL, all the misleading information used in sub­
domain names to mislead the users would be useless. For
example if the URL is www.ebay.online.com, the user may
think that this URL belongs to eBay, but in our design, it
would be treated as www.online.com not as a subdomain of
eBay.

In addition, all the changes in the user's browser such as
hiding the address bar, faking the address bar, or displaying
the URL in unicode format would be useless because we are
dealing with the actual domain who hosts the websites and the
content of the phishing website in order to find the website
that the attacker is trying to phish.

B. Attacks against the social network of PVCs

Another type of attack is against the P2P network of
PVCs which handle the information regarding the decision
that should be rendered for a given URL. In this case we
assume that all the PVCs are connected through the social
network and propagation of the routing information will be
taking place over the social network. So the only attack against
this would be a intrusion into the social network. An attacker
can compromise a node in the social network even without
the awareness of the authorities of that PVC and may try
to give false information to other PVCs who may ask the
compromised PVC. But in this case an attackers can only
propagate wrong routing information for the domain they are
responsible. We call that node a "bad node" inside the social
network. In general bad nodes can do the following actions
inside the social network: ignore queries, misroute queries,
propagating false routing updates, refuse to store or return
items and return incorrect items. To address these issues, we
assume that at least one node in the social network is alive
and not malicious. Then we try to prove that a node is bad
with some mechanism that will result in the eviction of such
a node from the social network.

We introduce an online certificate authority (DCA) that
issues a certificate to each node upon it joining the network.
Also each node must inform the DCA about the address of two
possible backup nodes in case of failure or attack. Back up
nodes would be independently maintained and updates of the
routing information will be done independently. Each node
must know the private key if it wants to propagate routing
information to other nodes. Also each node must renew its own

Digital Object Identifier: 10.410B/ICST.COLLABORATECOM2009.B310

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B310

key after its expiration of the key. So if a node proved itself
to be malicious, the DCA would refuse to issue a certificate
to it. Thus it would be evicted from the social network. So
any attempt from anyone inside the network to say something
inconsistent will result as misbehavior and eviction from the
social network.

Misbehavior can be established through other mechanisms
as well. A node can periodically check its information with
its connected peers. Connected peers are neighboring nodes
according to the the routing table. So each node will ask
connected nodes about the information that it has in its black
or whitelist and monitor the responses of the connected nodes.
Connected nodes can be responsive or not responsive. If they
are not responsive, then there should be some problem with
them or they might have been hijacked by attackers who do
not want to respond and just want to give out false information
about the current PVC's domain. In this case, the node who
has checked the unresponsiveness will inform the DCA about
the connected nodes which are not responsive. If the number
of complaints for a certain nodes exceeds a threshold, then
that node would be tagged as a suspected node and the DCA
will perform its own procedure to validate the complain.
The DCA will select the random number of PVCs in the
network excluding the ones which have complained to ask
the suspected node about its information. The reason that we
choose random nodes inside the network is because we do
not want to show the suspected node that it is on probe. If the
queries come from different sources, this can be considered
as a normal query process inside the network and can not be
detected as a probe process. After the random nodes checked
the suspected node about its information to see whether the
information that it supplies is correct or not, they will inform
the DCA about the correct or incorrect answers returned by the
suspected node. If the number of incorrect answers exceeds a
threshold, then the DCA will tag that node malicious and will
inform its immediate back up nodes, so that those backup
nodes can revoke their links with that malicious node and
take the responsibility of that node inside the network. Also
the DCA will not issue to that node a certificate anymore; so
no more queries will be forwarded to that node anymore and
it will be evicted from the network at the time of renewal of
the certificate for good. The reason that we ask the DCA to
evaluate the complains by itself is because we want to avoid
the case where some nodes join together in order to evict
one of their competitors from the network by providing false
information to the DCA.

To protect the DCA, we can also consider a total distributed­
limited state shared replicas for it. Also only nodes that are
currently part of the network need to inform or ask the DCA
so we can filter all other traffic to it.

VII. IMPLEMENTATION

We have implemented CASTLE in JAVA. CASTLE com­
prises of 2000+ lines of code as well as some modules such as
CutyCapt, Google AJAX Search API, JAVA RMI, and JSON.
We used CutyCapt to get the text snapshot of the content of



Fig. 10. The response times for 2200 searches carried out from four PVCs:
each PVC handled domain with different tid

effectiveness of our approach. From April 5 to April 22 '2009,
we collected most of the phishing URLs from phishtank.
com [18]. These phishing URLs from phishtank. com were
selected within one hour of being reported . Some of the
phishing URLs were also gathered from the user spam email
account. We also manually chose 50 legitimate URLs in
different categories such as banks, popular e-commerce sites,
and top 20 popular sites from the Alexa Web search such
as rbc. c om, cit ibank . c om, ebay. com, and cnn . c om. We
used a test scenario to gather our results. In our test scenario ,
we fed all 200 URLs into our content analysis module. In the
case of a phishing URL, which is fed into our module, we
compared the URL returned by our content analysis module
and the actual URL that is being phished by the phishing
URL. In a case of a legitimate URL, which is fed into our
module , we compared the legitimate URL itself and the URL
returned by our content analysis module. In this case, both
URLs should be the same. In this case, true positive was
97.5% and false positive rate was 2.5%. To decrease the false
positive rate further, we applied a set of heuristics described in
section under copyright property characteristic and ran another
experiment. After the new experiment was run, false positive
rate fell down to 1.5% and true positive rate was 98.5%.

IX . CONCLUSION

This paper describes a new framework called CASTLE that
provides a collaborative approach for building anti-phishing
databases. Such anti-phishing databases are at the core of
browser-based toolbars, plugins, and extensions that prevent
users from falling prey to phishing attacks. CASTLE is scal­
able to any number of nodes because response time does not
depend on total number of nodes. Instead it depend on the
length of the domain name of queried URL.

The advantage of CASTLE approach is that it can pro­
vide a substrate for integrating many different anti-phishing
strategies. For example, the PVCs that are part of the P2P
network can employ diverse techniques for making the local
decisions. Some PVCs can be using a manual examination
based approach while others could be using a combination of

I
COM

- ORG
- Olher TLDs
- CA

2.5

I

1.50.5

02

00

01

0.6

03

04

0.8

OJ

f05

a web page. Google AJAX Search API was used to access
the Google database to search for a particular sentence and to
retrieve the corresponding URL. JAVA RMI library was used
to build P2P networks, which connect PVCs. Content analysis
module has a simple command line interface , which returns
a URL either labeled as phishing, suspected as phishing, or
legitimate. Each PVC also has a command line interface where
the administrator of PVC can modify the routing table or the
decision table. It should be noted that the prototype is still
evolving and new features will be added in the future.

VIII. EXPERIMENTAL RESULTS

We tested content analysis module and routing algorithm
separately

A. Routing algorithm

We tested our routing algorithm on planet lab with 100
machines. In our experiment, we had 100 PVCs (each machine
representing one PVC) and each PVC handled one URL.
About 35 URLs had TLD com and about 20 of URLs had
TLD ca. Black list, white list and gray list in each PVC was
populated with 7 URLs. In total, each PVC was populated with
21 URLs. Since we encountered scalability issues on Planet­
lab, we could not test on more than 100 machines.

In the first part of this experiment, we carried out a search
for all 100 URLs from four different PVCs: each PVC handled
domain with different tid. We repeated this experiment 15
times. The minimum response times are shown in Figure 8. As
shown in these figure, most of the time, times for a search are
about 2 seconds. However in few cases, times are 18 seconds,
which is due to the abnormal behavior of some of the nodes
inside the PlanetLab.

In the second part of this experiment, we carried out a
search of 2100 URLs stored in decision lists of PVCs and 100
URLs from four different PVCs: each PVC handled domain
with different tid. We repeated this experiment 7 times. The
minimum cumulative response times are shown in Figure 10.
As shown in this figure, the response times for the 90% of the
search are at most half a second. However in few cases , the
response times for 2% of the search are more than 2 seconds,
which is due to the abnormal behavior of some of the nodes
inside the PlanetLab.

In the third part of experiment. we collected about 350
URLs (which were not handled by any of the PVC and were
not present in decision list of any PVC). Then we carried out a
search of these 350 URLs from four different PVCs: each PVC
handled domain with different tid. We repeated this experiment
5 times. The minimum response times are shown in Figure 9.
As shown in these figure, most of the time, the response times
for a search are about 2 seconds. However in few cases, the
response times are 18 seconds, which is due to the abnormal
behavior of some of the nodes inside the PlanetLab.

B. Content Analysis Module

We conducted an experiment which consists of 150 phishing
URLs along with 50 legitimate URLs in order to measure the

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.831O
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8310



]
ac

"
"
"
"
ic.. ."

Will]:fj",-;:Jk..t~ " ' '' htll U " " U lhI Il UllLlILJ);:l~ h:",~ .1II 1 l.L~' .J ,Jt ... UU ~L." LL I. . ~ . I r.
. ,~

. OMG

,
:-t'iI--:-RLIJ.-';:

. Olll..- TU»

U . f ,
0

~~~~~~~~~~~i~~i3i~~~~~~~~ ! ! ~~~~~~~~~~~~~~~~~~~~~~~rJiJff!rJ~~iS~lif~l~j3i~~;]I~!!~~i ~~!i!J~!l~~;!i
~ e j ~ s:. ~ t ~~~ ~~..3$:ej ~ ~': ' il "'"

~
a ~1~le111 Bll~i€~~~~i~~~~~~~~]j!~ti8~~ !~~ i~~~iljj i ~j~~ ~j 2{i i"'~"'''' ~ ~~I j i ' i J I ii!~~ L t i 1 ~ l ~ 1

~ 'Slll. .3 ~.:q~ r~ ~~ ~if~ ~ ~ ~ i ~ I~j ~ j ~ ~ i ~ ~ jij ; ~l~] if ~ ~ ~:
i r ~ ~ -; fl ~ ~ j~ i ~]..3~!. .

~ ~ g
]
:

Fig. 8. The response times for search carried out from four different PVCs: each PVC handled domain with different tId

I
ao,
"
..
"

"

.. ...
.~.-.00...·... '"

I I

' ~" " III" Illliil ilhlllln,I,l. ld,li"I,IIIIII" h ,II. ..1 1, 1. 1.1 1.) ",1111.1111,1Ihld"illlllllll. llllll, 11.1.1 "I " I" "II , d,I,II,lllli ., I1, 1 ,11,11111,1.1.1..1,1
n "' ''' :: ~ ;;': :C ~ ::: ;;; ; ~ : :;: :;; ;; ::; : ::! ;;' ; ~ : :: ;; 9 ~ 9 = = 5 5 ~ 5 3 ~ ~ ; ~ ~ ~ ~ ; S S ; ~ ; ; ~ ~ ~ rl :;: ~ ~ ~ ~ £l ~ ~ £ ~ ;:: ~ ~ * ~ ~ ~ ~ ~ ;J ~ ~ ~ .Q ~ ~ ~ ~ ~ ~ ~ ~ i

Fig. 9. The response times for 300 searches of unsupported URLs carried out from four different PVCs: each PVC handled domain with different tId

automated analysis and classification and manual examination.
The use of diverse techniques increases the scalability of the
anti-phishing effort. Some of the anti-phishing approaches
mentioned in Section III require human intervention. CASTLE
uses a semi automatic approach.

Further, to the best of our knowledge this is the first anti­
phishing framework that combines location-based and content­
based techniques into a single system. By using the dual
approaches, we think zero day vulnerabilities that are faced
by other techniques can be handled by CASTLE.

REFERENCES

[11M. Jakobsson and S. Myers, Phishing and Countermeasures: Under­
standing the Increasing Problem of Electronic Identity Theft . Wiley­
Interscience, 2006.

[21 A. Herzberg and A. Jbara, "Security and identification indicators for
browsers against spoofing and phishing attacks," ACM Trans. Internet
Technol., vol. 8, no. 4, pp. 1-36, 2008.

[31 "Phishing attack trends report second half 2008,"
http://www.apwg.org/reports/apw~report_H2_2008.pdf, Mar. 2009.

[41 A. P. W. Group, http://www.antiphishing.org, Anti Phishing Working
Group.

[51 1. Ma, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond blacklists:
learning to detect malicious web sites from suspicious uris," in KDD
'09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. New York, NY, USA: ACM,
2009, pp. 1245-1 254.

Digital Object Identifier: 10.41OBI/CST.COLLABORATECOM2009.B31O
http://dx.doi.org/10.410BIICST.COLLABORATECOM2009.B310

[6) A. Y. Fu, "Detecting phishing web pages with visual similarity assess­
ment based on earth mover's distance (emd)," IEEE Trans. Dependable
Secur. Comput., vol. 3, no. 4, pp. 301-3 11, 2006.

[7) eBay, http://pages.ebay.ca, eBay.
[8) News.com, "Netscape readies antiphishing browser,"

http://news.cnet.com, 2006.
[9) Microsoft, "Technology overview:microsoft windows internet explorer

7," Microsoft White Paper, 2006.
[10) J. Kang and D. Lee, "Advanced white list approach for preventing access

to phishing sites," in ICCIT '07: Proceedings of the 2007 International
Conference on Convergence Information Technology. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 491-496.

[II) P. Likarish, E. Jung, D. Dunbar, T. Hansen, and J. Hourcade, "Bvapt:
Bayesian anti-phishing toolbar,' May 2008, pp. 1745-1749.

[12) E. Kirda, , E. Kirda, and C. Kruegel, "Protecting users against phishing
attacks with antiphish," in In COMPSAC 05: Proceedings of the 29th
Annual International Computer Sof tware and Applications Conference
(COMPSAC05) Volume I . IEEE Computer Society, 2005, pp. 517-524.

[13) N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C.Mitchell,
"Client-side defense against web-based identity theft ," in II th Annual
Network and Distributed System Security Symp. (NDSS'04) , 2005.

[14) "Spoofguard," http://crypto.stanford.edulSpoofGuardl .
[15) y. Zhang, 1. I. Hong, and L. F. Cranor, "Cantina: a content-based

approach to detecting phishing web sites," in WWW '07: Proceedings
of the 16th international conference on World Wide Web. New York,
NY, USA: ACM, 2007, pp. 639-648.

[16) H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "Sybilguard: de­
fending against sybil attacks via social networks," SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 267-278, 2006.

[17) "Cutycapt,' http://cutycapt.sourceforge.netl.
[18) "Phishtank,' http://www.phishtank.coml.

