CASTLE: A Social Framework for Collaborative
Anti-Phishing Databases

Arash Nourian, Sameer Ishtiaq, and Muthucumaru Maheswaran
Advanced Networking Research Lab
School of Computer Science
McGill University
Montreal, QC H3A 2A7, Canada
Email: {nourian, sishti, maheswar}@cs.mcgill.ca

Abstract—Phishing is a major problem on the Internet. The
cornerstone of anti-phishing is detecting whether a given site
is good or bad. Most of the approaches for anti-phishing rely
on looking up centrally maintained repositories. In this paper,
we present a decentralized framework called CASTLE that
allows a collaborative approach for anti-phishing services. We
implemented a prototype and then tested it on Planet-lab. The
experiments indicate the viability of our framework.

I. INTRODUCTION

The major goal of phishing attacks is to steal valuable
personal (usually identity related) information from users.
Once the attackers gain personal data such as passwords, date
of birth, and bank account number, they use the information
to their benefits by creating bogus identities or taking control
of online accounts.

The phishing attacks are launched in many different
ways [1]. The most common way is to send an email to users
and persuade users to click on a forged link inside the email.
When the user clicks on the forged link, the user will be sent
to a site controlled by the attacker which looks like a trusted
site (e.g., the user’s online bank). Because the site is under the
attacker’s control, all information revealed by the user such as
username and passwords are gained by the attacker. A vigilant
user may detect the difference between the bogus site created
by the attacker and the legitimate site. However, a sizeable
population of the users do fall prey to these attacks [2]. For
example, legitimate websites (depending on the sophistication
of the institution) can have welcome messages that include
the user’s name from previous successful logins. Such login
information is not available for the bogus site and consequently
it cannot customize the welcome message.

The number of phishing attacks is increasing rapidly [3].
Because of their value, financial institutions used to be the
favorite targets of the phishing attackers. Recently, this form
of attack has diversified and started targeting social networking
sites as well. Further, the technologies adopted by the attackers
are getting more sophisticated by day. In June 2008, the
longest time online for a phishing website was 30 days [4]. In
the same month, Anti Phishing Working Group received about
28,151 unique phishing email reports [4]. Also the average
uptime for a phishing website is 4.5 days [4].

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8310
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

CASTLE (Collaborative Approach using Social, Content,
and Location for Evaluation) is a decentralized framework for
building and maintaining databases useful for anti-phishing
services. For instance, browser-based toolbars [2] lookup
centrally maintained databases to determine whether a given
location is safe. If a site is previously black-listed as phishing,
the browser-based toolbar prevents the user from visiting
it [5]. Although the centralized databases are already in place
for anti-phishing, their scalability is a cause for concern. In
particular, the existing approaches do not handle the following
issues in a scalable manner.

o Enrollment process: The name space that can be phished
is vast. Few repositories cannot handle complaints for the
whole name space. Because phishing is usually an im-
personation attack against well known Internet “brands,”
there is a concern of brand tarnishing. Therefore, valuable
brands would want to take ownership of their namespace.

o Decision process: With few central repositories, admin-
istrators of those repositories should use automated tools
and manual examinations to decide on phishing reports.
Because a repository is likely to receive many reports and
some of which is going to be completely new, the decision
process is an arduous one. If the namespace is partitioned
based on URL prefixes, the decisions can be made by
repositories that are familiar with URLs. In CASTLE,
the social factor is used to reduce namespace grabbing
attacks.

o Lookup process: One of the advantages of central reposi-
tories is the straightforward lookup process for determin-
ing whether a URL is safe. This advantage will be lost
if multiple repositories need to be checked. A distributed
network of repositories need to have an efficient lookup
process.

CASTLE framework provides a novel decentralized peer-
to-peer approach for maintaining anti-phishing databases for
the Internet. It uses the social factor to limit the membership
to the peer-to-peer network. This is necessary to prevent the
attackers from locating their verification servers in the network
of servers maintained by CASTLE. Further, CASTLE admits
location-based (URL-based) and content-based access to the
repositories.

II. BACKGROUND

Phishing is sometimes confused with spam; however it is not
spam. Spam’s real purpose is to sell, while phishing’s purpose
is to steal. There are many different opportunities for creating
phishing URLs. Following are some examples of techniques
used for phishing on the Internet [6]:

o Adding a suffix to the domain name of a URL. For
example, www.citybank.com can be changed to www.
citybank.us.com

e Actual link is different from the visible link.
For example, the HTML line: <ahref="http:
//www.citibank.com.us.ebanking.us">
www.citibank.com where visible link is
http://www.citibank.com but the actual link is
http://www.citibank.com.us.ebanking.us.

e Using a bug in a real webpage to redirect to
phishing web page. For example, the bug of eBay
website: http://cgi.ebay.com/ws/eBayISAPI.
dl1?MfcISAPICommand=RedirectToDomain\
&DomainUrl=PHISHINGLINK can direct you to
any specified PHISHINGLINK.

« Replacing similar characters in the real link. For example
replace Is (uppercase i) with 1 (lowercase of L) or 1
(Arabic number one), such as WWW.CITIBANK.COM to
WWW.CL1T1BANK.COM.

e Encoding the URL to disguise its true value
using hex, dword, or octal encoding. For example,
http://www.visa.com@%$32%32%30%2E%$36%38%2E%
32%31%34%2E%32%31%33 translates into 220.68.214.213
instead of www.visa.com.

o The URL is actually a part of an image, which uses map
coordinates to define the click area and the real URL,
with the fake URL from the <a> tag being displayed.

o« Using a URL masking service such as cjb.net
or tinyurl.com. For example, http://jne9rrfj4.
CjB.neT/?uudzQYRgY1GNEn can hide actual URL and
redirect the user to the phishing website.

o Link points to a page on a legitimate site which can
redirect the user to the phishing website. For exam-
ple, http://www.google.com/url?g=http://www.
geocities.com/mibmib4321/ where the mibmib4321
site contains a redirect to 218.214.130.51.

o Using the “@” sign. Everything to the left of “@”
is ignored while everything to the right is considered.
For example, http://www.usbank.com/update.pl@
81.109.43.102/usb/upd.pl redirects user to 81.
109.43.102/usb/upd.pl instead of http://www.
usbank.com/update.pl.

e Using a credible looking text string within the
URL. For example, http://81.109.43.102/ebay/
account_update/now.php uses ebay keyword in the
URL.

Once the user is lured to the bogus website, the attacker
needs to present a convincing user experience. The techniques
used by the attackers to create bogus web sites can be

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8310
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

categorized in three different ways [6]:

o Using the downloaded webpage from real website to
make the phishing webpage appear and react exactly the
same as the real one.

« Using script or add-in to web browser to hide the address
bar in order to spoof users to believe they have entered
the correct website.

o Using visual based content (E.g., image, flash, video,
etc.) rather than HTML to avoid HTML based phishing
detection.

ITT. RELATED WORK

In recent years, a number of anti-phishing techniques have
been developed and in this section, we highlight a subset of
those anti phishing techniques, which are closely related to
our work.

EBay toolbar [7] can identify if any particular URL which
is trying to phish ebay.com. However, the problem is that
this toolbar does not work if a URL is trying to phish some
other website.

Microsoft and AOL used Black List Approach [8] [9] by
integrating black list-based anti phishing support into their
browsers. It blocks users from entering any information while
he/she is at a known phishing website. However it is ineffective
because there is always a window of vulnerability during
which users are susceptible to attacks.

PhishingGuard [10] makes use of a white listing approach.
The basic idea is that a website is identified by its IP address.
The white list contains only trusted URLs. Whenever any
website is visited, it is checked in the white list. If the URL
is found in the white list, but the IP address is different, then
this URL is classified as phishing. If the URL is similar but
not same, then a warning is given. This tool is also capable
of detecting pharming.

Bayesian Anti Phishing toolbar [11] is a Mozilla Firefox ex-
tension. It is designed to help users identify phishing websites
and protect their sensitive information. It also uses a white list
based approach. For a given website, the B-APT toolbar sends
the URL to the DOM analyzer. The DOM analyzer then checks
if the given URL is present in white list. If it is in the white
list, it means it is a legitimate website. If it is not, then DOM
analyzer tokenizes the given website and then forwards the
tokens to a scoring module. This scoring module consults the
database of tokens and computes a score. If the score exceeds
a pre-set threshold, then the URL is classified as phishing.

AntiPhish [12] is a Mozilla browser extension that aims
to protect inexperienced users against spoofed website-based
phishing attacks. AntiPhish keeps track of the sensitive infor-
mation of a user and generates warning whenever the user
types sensitive information into a form on a non trusted
website. Most of the browsers such as Mozilla have function-
ality that allows form content to be stored and automatically
inserted if the user desires. AntiPhish takes this common
functionality one step further and also tracks where this
information is sent. It also stores the mapping of where this

to find out about the decision. If it is not present in unknown
list, content analysis would be performed, which would return
a URL (CA URL) whose content is similar to the content of
the queried URL. We would store this queried URL and CA
URL in the unknown list. Afterwards, we would route to the
PVC handling that CA URL. Then we would search for that
queried URL inside the three lists of that PVC: white list,
gray list and black list. If the queried URL is not present in
these three lists, then the user would be informed that decision
could not be made. However in the background, search would
be carried out in the archived black list. If the queried URL is
found in the archived black list, then this URL would be moved
back to black list; so that next time if someone tries to query
this URL again, this URL would be found in the black list
and URL would be returned as phishing. Then owner of that
PVC handling URL with the similar content as the content of
the queried URL, would have an option of putting that URL
in the appropriate list. In this situation, there would be two
PVCs in the system handling such a URL: one for content
similarity and the other for URL similarity. Pseudo code for
search algorithm is shown in Algorithm 2. Whenever search
is initiated in order to determine whether the queried URL is
phishing, function search(0,null,URL,IP address to which one
is connected) is called. It will return 1 if URL is not phishing,
0 if URL is suspected and -1 if URL is phishing.

Algorithm 2 search(index, final_URL, URL,IP address)

tld_domain «— tld of domain handled by this PVC
host — domain part of URL
domain — domain handled by this PVC
tld — tld part of URL
determine i such that TLD Array[i] = tld
if tld_domain handled by this
url is not in ip address format then
IP address «— get ip address from TLDArray[i] randomly
search(0, null, URL, IP address)
else
for : = 1 to length do
find j where array[i][j] = host[i]
if host[i] # domain[i] then
IP address — get ip address from DN Array(i][j] randomly
if IP address = null then
if queried URL is present in white list then
return 1
else if queried URL is present in gray list then
return 0
else if queried URL is present in black list then
return -1
else if final_URL # null then
put final_URL in gray list
return 0
else if URL is present in unknown list then
CA_URL « extract corresponding URL
search(0,URL,CA_URL,IP address of current PVC)
else
perform content analysis model and get CA_URL
store URL along with CA_URL in unknown list
search(0,URL,CA_URL,IP address of current PVC)
end if
else
search(i, final_URL, URL,IP address)
end if
end if
end for

end if

PVC # tld AND

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8310
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8310

Visa.org

Fig. 3. Hypothetical example showing how routing would take place from
PVC handling visa.org to PVC handling cneia.com. In this case, we assume
search starts from visa.org

Fig. 4. Routing entries for PVC handling visa.org

C. Example of Routings

Example 1: The Figure 3 shows how we could route to the
PVC handling cneia.com from the PVC handling visa.org
assuming routing entries for PVC handling visa.org are as
shown in Figure 4. In this scenario, we will first check if
TLD of the queried URL is the same as the TLD of the
domain handled by the PVC handling visa.org . Since it
is not the same, the IP address of the domain with the TLD
com would be extracted from TLDArray. It could be possible
we extract the IP address of the PVC handling cnet . com. So
in this case, we would route to the PVC handling cnet . com.
Then we determine the longest prefix shared by cnet . com and
cneia.com. In this case it is cne. Since the fourth character
is not the same, we extract one of the IP addresses stored
in the fourth row and column containing character “i” of the
DNArray. Extracted IP addresses would be the IP address of
PVC, which handles domain whose prefix is cnei. In this case
we route to the PVC handling domain cneia.com.

Example 2: Suppose we are querying the URL cneibbc.
com whose content is similar to the content in rbc.ca and
currently no PVC has an entry for cneibbc.com. Assume
cneia.com routing table entries are as shown in Figure 5.
Figure 6 shows how routing would take place in such a case.
Example 3: Suppose we would like to search for cneiaf.
com, and assume there is no PVC which handles cneiaf.

Contains pointers
to PVCs handling

Contains pointers Contains pointers domain whose
to PVCs handling to PVCs handling name starts with Contains pointer
domain whose tld domain whose tid :F and whose & to PVC handling
is ‘org such is ‘ca’ such as is ‘com’ such as cne.com
uno.org rbc.ca rbc.com
[com| org |....... Foeatfi | e
alblc|d]e]....... i n qlr
alb|c|d]|e]....... i n qlr
albfc|d|e]....... i n qlr
alblcldle].i.. i n qlr
alblecldle| i i n qlr
alb|c|d|e]....... i n qlr

