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Abstract—Distributed systems will be increasingly built on
top of wireless networks, such as sensor networks or hand-
held devices with advanced sensing and computational abilities.
Supporting cooperative processes executed by such unreliable
and dynamic system components poses a various number of
new technical challenges. In terms of recovery, limited resource
capabilities have be considered during re-scheduling of failed
process activities. In terms of concurrency, a non-blocking
protocol is required to allow a high degree of parallelism. In
this paper, we introduce a flexible and resource-oriented failure
handling mechanism for cooperative processes in hierarchical and
distributed systems. The objective is to ensure both - transactional
semantics as well as the selection of suitable nodes with respect
to available resource capabilities. Based on a nested execution
model, we develop a multi-stage algorithm that uses constraint
solving techniques in a parallel fashion thus achieving a more
efficient recovery. We evaluate our proposed techniques in a pro-
totype implementation, and demonstrate significant performance
gains by using a parallel re-scheduling.

I. INTRODUCTION

Distributed information systems are increasingly built by
commodity hardware and software, usually in form of clusters
of workstations that are organized in hierarchies and connected
via a network. Distributed processes in turn are sequences
of computational steps executed over different clusters and
platforms. Business processes are a well-known example.
Corresponding instances of a business process are usually
executed by Workflow Management Systems to accomplish
important tasks within an organization or across different
organizations. In recent years, the computing and resource
capacities of small, embedded and wireless networking devices
have matured sufficiently to enable the execution of real-time
and cooperative processes on top of these devices. Hence,
process supporting systems can be utilized in other application
domains beyond business computing, such as disaster recovery,
wilderness exploration and military operations. However, the
integration of resource constrained devices poses new techni-
cal challenges for ensuring a robust process execution.

To this end we propose the development of a general-
propose framework for supporting cooperative processes in
dynamic and unreliable systems (CooPiuS). The CooPiuS
framework allows the process designer to efficiently deploy
and query processes in such challenging environments. Over-
all, we expect the CoopiuS framework to consist of three major
components; see also Figure 1.
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Fig. 1. Components of Our CooPiuS Framework

Rather on focusing on the Metadata Component which deals
with metadata management, registration and publishing of new
processes [1], [2], [3], [4], we investigate the Scheduling and
Execution Component in this paper. While previous work of
our research has been focused on the design of a heuristic,
data-flow oriented scheduling at design-time [5], we study
in this paper how to ensure an efficient recovery in the
case of physical failures during run-time. Our objectives for
building a robust Execution Engine are twofold: On the one
side, the failure handling mechanism must ensure transactional
semantics, i.e. serializability and atomicity. On the other side,
it must select most suitable nodes with respect to available
resource capabilities to guarantee a reliable re-execution.

A. Failure Recovery for Cooperative Processes

Due to the unreliable and dynamic execution environment,
an appropriate recovery algorithm is required to guarantee
correct process execution even in the case of unexpected
physical failures, e.g. node failures, cluster crash, or tem-
porary communication errors. Cooperative processes are not
independent from each other, but they access shared, persistent
data thus being subject to transactional semantics. Even within
one process instance, several concurrent threads may access
the same resource. Hence, regarding concurrency control, the
control flow of cooperative processes is more complex than a
flat transaction. Since locking of resources is not acceptable
for long-running processes, the challenge is to find the right
balance between allowed interaction and parallelism on the
one side while still guaranteeing correctness on the other side.
In terms of recovery, different alternatives can be chosen to
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a,: update table pollution;

a,: select value from pollution;

a,: update table injured_humans;

: select order_Document;

: select number of injured_humans;

ag: insert required_bed into order_Document;

Fig. 2. Example of a Cooperative Process

re-execute failed activities. Here, the challenge during failure
recovery is to find most suitable candidate devices with respect
to current resource capabilities. Since resource capabilities
are limited, those devices must be selected which have suf-
ficient resources to re-execute the failed process activities.
Furthermore, due to operational dependencies, the failure of
one activity may force the compensation and re-execution of
previous, successfully executed activities.

B. Motivating Examples

To illustrate the challenges above, consider following ap-

plication scenario in the context of a disaster response (as
depicted in Figure 2): During a disaster response, multiple
wireless networks operate at the disaster location, such as
groups of fire workers equipped with hand-held devices and
sensor networks. They may execute location-based emergency
activities and gather important data about the disaster. Fol-
lowing problems may appear during a concurrent execution
of such response activities:
(a) Isolation Problem: Concurrent execution on the same data
between two processes or even within one single process may
lead to temporal data inconsistencies. Therefore, a concurrency
control mechanism is needed to detect such conflicting execu-
tions.

Example 1.1 Suppose a group of firefighters counting the
number of injured people in a certain area and organizing
the subsequent ordering of required beds respectively. Now,
consider the scenario where multiple activities {as3, a4, a5, ag)
are executed concurrently, i.e. any concurrent execution order
is possible. So, it may happen that one group member re-
trieves the number of injured people (as) to update the order
document while another group member concurrently updates
the number of injured people (a3). It may also happen that a
third firefighter accesses the order document (a4) to forward
it to its regional operation center before the current number
about injured humans is inserted into the document (ag). O
(b) Atomicity Problem: Due to operational dependencies,
recovery of failed activities in a process may affect activities
executed previously in the same process as well activities
running in other processes. Hence, a recovery mechanism is
needed that aborts, compensates and eventually re-executes
already completed or running activities.
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Example 1.2 Suppose a sensor network that measures the
pollution in a certain area where the group of firefighters oper-
ates (a1). The pollution values must be always retrieved before
any emergency operation starts (as). If for some reasons the
emergency activities executed by the group fail and must be
re-executed by another group, the pollution value must be
retrieved again before a re-assignment of failed emergency
activities can be conducted. Hence, the emergency activities
are not only re-executed but also previous executed activities
are indirectly affected by the failure and must be executed
again. O

C. Contributions and Outline

This paper aims to develop an unified model for both -
concurrency control and recovery applicable for hierarchical
processes executed on top of wireless networks. In particu-
lar, we develop a failure handling mechanism that considers
limited resource capabilities and selects optimal compensation
nodes for re-execution of failed activities. In summary, the key
contributions made in this paper are the following:

o A nested execution model is introduced that covers the
hierarchical execution of cooperative process activities
in distributed applications, such as the disaster recovery,
more accurately than earlier research.

o We introduce correctness criteria for cooperative pro-
cesses applicable on each level of the execution tree or
across multiple execution trees.

« We develop an optimistic recovery mechanism that con-
sists of the following steps: (a) building the failure
scope graph, (b) generating the corresponding constraint
graph, and (c) a physical re-scheduling (instantiation) of
the constraint graph optimized with respect to available
(possibly limited) resource capabilities.

The remainder of the paper is organized as follows: Section
2 discusses related work in the context of process recovery
and compares different failure handling protocols. In Section
3, we introduce the system and process model and present
our recovery algorithm in Section 4. Experimental results of
a parallel re-scheduling using multiple constraint solvers are
summarized in Section 5. We conclude and outline future
research questions in Section 6.



II. RELATED WORK

There is a plethora of research work on failure handling and
recovery for processes. We have evaluated related research in
following fields of computer science:

Database Systems: In the transaction theory, there are
several nested transaction models [6][7]. They support failure
recovery in different ways but they have all in common that
there is a lack of flexibility required for long-running, hier-
archical processes. Using our approach the process designer
can decide how far recovery should be pursued in the process
hierarchy. Additionally, our recovery algorithm identifies a
most suitable compensation and re-execution with respect
to limited resource capabilities. In [8] failure handling for
transactional hierarchies are proposed based on a hierarchical,
nested execution model. Our work can be seen as an extension
of [8] whereas our research work introduces an unified model
for both - recovery and concurrency. Additionally, we develop
an optimistic forward recovery algorithm that finds suitable
compensation and re-execution nodes with respect to available
resource capabilities.

Workflow Management Systems: In the past, a series
of commercial and research Workflow Management Systems
(WFMSs) have been developed. In particular, the problem of
recovery has been considered in a number of research projects.
[9] introduces the notion of a sphere of joint compensation,
which is a subset of a process’ activities. If one activity of a
sphere fails, the whole sphere has to be backed out (either by
compensating each step that succeeded so far or by executing
a special higher-level compensating activity). An extension of
this work can be found in [10] where spheres of isolation
are introduced for transactional workflows. Contrary to [9]
we assume activities to be compensatable and retriable and
so, we focus on identifying most suitable compensation and
re-execution nodes to guarantee the continuation of failed
activities. We deal with strict resource allocation constraints
that must be considered during the recovery. In addition,
we propose a hierarchical execution model where different
recovery strategies can be performed.

[11] proposes a recovery mechanism in WFMSs by incor-
porating exception handling and transactional atomicity. The
key idea is that process supporting systems, such as a WFEMS,
should be treated as a programming environment thus sepa-
rating failure handling concepts from normal flow of control.
While the incorporation of exception handlers with the concept
of atomicity is an elegant way to combine backward and
forward recovery, this framework does not support a flexible
and efficient recovery for hierarchical processes in resource-
constrained systems. In [12], an unified model for recovery and
concurrency is proposed for transactional processes. Here, the
goal is to design a middleware architecture that builds upon a
strong theory regarding correct process execution. Again, our
work can be seen as extension to [12] whereas we extend the
process model and design an appropriate recovery algorithm
that can be used in a flexible way. It is also important to note
the differences between our notion of failure handling and the
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recent work on adaptive workflows and workflow evolution
[13]. While our research is focused on finding an optimal
set of nodes for compensation and re-execution of failed
activities, they try to adapt the running workflow instance due
to unexpected failures. These issues are beyond the scope of
our work.

Mobile and Distributed Systems: In [14], workflows are
modeled by task graphs which are embedded into a mobile
ad-hoc network to discover suitable devices. If node failures
appear, a re-instantiation of the task graph is performed
with respect to node capabilities. [14] uses different met-
rics to find a good embedding, e.g. the average dilation
that indicates the path length between communicating nodes.
However, this approach does not consider any transactional
semantic, such as concurrency or atomicity. [15] discusses
transactional issues that appear when sensor networks are
integrated into traditional business processes. In particular, a
concurrency control mechanism is introduced that deals with
continuous queries and conflicting updates. The key idea is
that during the validation phase of the proposed optimistic
protocol, update transactions have always a higher priority
compared to so-called continuous query transactions. In [16],
logging mechanism are investigated to improve execution and
recovery performance. In terms of recovery, the idea is to
save messages to the log in an application checkpoint. In a
failure case, the component state can be recovered by going
back to the last logged message and to continue from there.
In this work, there are no resource allocation constraints and
the recovery mechanism is very simple. However, recovery
in a hierarchical process execution with many operational
dependencies becomes much complicated.

III. SYSTEM AND PROCESS MODEL

System Model. For this work, we assume the accomplish-
ment of distributed processes, e.g. for disaster recovery, in a
hierarchical fashion by different system layers. Thereby, each
system layer is organized into cluster of devices or groups of
humans respectively. Each cluster consists of several resources
with a bounded capacity, e.g. pre-defined threshold for energy
consumption or number of activities to be executed. On the
top level, a global system component, referred to as controller,
allows us to to maintain a consistent global view on the
processes executed on lower system layers. For example, a
national crisis squad may act as a controller during a disaster
response. Networks on the bottom system levels execute
location-based process activities and either passively forward
their resulting data to higher layers or actively receive process
directives from those. Examples for such local networks may
be groups of firefighters operating at the disaster location.
We also rely on cluster services, such as standard group
communication software to manage membership as well other
group functionalities [17].

Finally, we assume that there are one or more data contain-
ers on each system layer, e.g. a cluster of databases. Processes
on the same system layer are allowed to concurrently access
and to manipulate shared persistent data without waiting
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for a commitment. However, concurrent access of processes
on higher system layers to data containers on lower layers
is prohibited; instead data is exchanged through a request-
response communication.
Process Model. In the following, we focus on the run-time
execution model of a process that evolves during the execution
of a concrete occurrence or instance of the corresponding pro-
cess specification model. Thereby, a process instance P may
contain any number of nested sub-processes {P1, Py, .., P, }.
P, represents the top level process that may trigger new sub-
processes executed by lower system layers which in turn may
initiate further sub-processes eventually forming a process
tree. Sibling sub-processes may be executed sequentially or
concurrently. While a sibling sub-process is running, its parent
process may continue and spawn other child processes without
any suspension. However, the failure of a child process may
force the parent to a compensation and re-execution. Assume
that the tree T'(P) in Figure 3 reflects a response process
after a disaster. P; is the top-level process initiated by the
controller, e.g. a national crisis squad. P, and P; are sibling
sub-processes, whereas P, is the observed execution order of
the process in Figure 2 (renaming a with b). We will use the
execution tree T'(P) throughout the paper. Formally, such a
nested process structure is defined as follows:

Definition 1: (Multi-Block Execution Tree). An execution
tree of a process P, denoted as T'(P), consists of

(1) hierarchically organized blocks T'(P) = (P,..., P),
where each block P; with ¢ = 1..n forms a multi-activity
node of the execution tree T'(P).

(2) control flow edges —C (P; x P;) linking together blocks
P;,P; € T(P) along the execution tree T'(P). O

Each block represents a sub-process P; executed on one
of the corresponding system layers. It consists of multiple
(atomic) activities which are executed in a required order. A
block can be formalized as follows:

Definition 2: (Block or Multi-Activity Tree Node). A block
P; of the execution tree T(P), is a tuple (A;, <;) reflecting
the execution of one sub-process where
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1 A = {af",af", ...,af"} U {C;, A;} is the set of ac-
tivities executed within a block P; including designated
commit C; and abort activity A;.

(2) <;C (A; x A;) reflects the partial order between two ac-
tivities in .4;, referred to as required execution order. O

Blocks are linked with each other according to required
control and data flow whereas conditional branching, parallel
splitting and joining can be used as control structures within
a block.

A. Commit Scope

Each block P; of an execution tree has its own data
container, e.g. a database. This way, several data containers
are formed to a cluster on which sub-processes executed on
the same system layer may concurrently access and store their
results. The data container on the top-level reflects the process
data container where all resulting data are gathered from lower
levels. However, each block also has the opportunity either to
store its result in its own data container or to make it visible to
data containers belonging to other blocks on the same system
level. Hence, a block of activities can terminate by

o committing to the block-root, i.e. checking-in its results
to the data container of the next higher block, making its
effects visible to the parent process, and by

« committing to block-neighbor, i.e. checking-in its results
to the data container of the neighbor block on the same
system level, and by

« committing to its own data container, i.e. checking-
in its results to a database, making its effects visible
for neighbor blocks (sibling sub-processes) on the same
system level.

B. Process Executions

Additional to the regular activities observed during the exe-
cution, a correct execution may also contain activities required
to compensate sub-processes or even the whole process itself.
As a consequence, the execution characteristics of blocks are
based on the notions of compensatable and retriable activities



[11], [18]. A compensatable activity is one that can be un-
done (its effects) in case the process fails. The compensating
activity may be directly related to the failed activity (e.g., a
transactional undo) or be a semantic compensation (e.g., a
letter is sent notifying the user of a given mistake). Further on,
retriable activites are the one that can be re-executed several
times in the case of a failure. Fither an alternative path is
chosen or the same failed activity is re-executed again. Note
that the execution characteristics are not mutually exclusive,
i.e. an activity may be both compensatable and retriable or just
retriable or compensatable. We introduce A = {(a;) )~}
as the set that consists all activities required to compensate
failed activities within a block P;.

Figure 4 shows possible failures and re-executions that may
appear in block P, (process ID omitted due to convenience
reasons). The superscript ¢ indicates a compensatable activity
while r stands for retriable. In Figure 4, the standard execution
is compared with possible failures of bf 2 and b‘._—,lD 2. Note that
the compensation may not always consists of one - ideally
the inverse activity (i). In our example here, there is another
alternative to compensate failed activity bf 2 (ii).
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(compensation via inverse activity)
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(multiple compensating activities)

Fig. 4. Possible (Re)-Executions and Compensations

C. Constraints on Process Executions

So far, we have seen a block as a multi-activity node where
its activities are executed in a required order. So, ordering
constraints within a block (denoted as <;) and ordering
constraints along tree blocks (denoted as —) are given as one
constraint class to be fulfilled during the process executions.
However, there are also resource allocation constraints as
second constraint class that need to be considered during the
execution [1], [5].

Example 3.1. (resource allocation constraint): if activity 1
is executed by some resource, activity 2 should be executed by
the same or similar resource (i.e. a resource within the same
cluster or a certain distance), whereas the total time for the
execution should not exceed a certain threshold. O

In general, resource allocation constraints can be subdivided
into so-called control constraints and cost constraints. While
control constraints refer to the control and data flow depen-
dencies of executing tasks, cost constraints describe a certain
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cost function which has to be fulfilled during task execution.
With respect to cost constraints, integrating devices or humans
with a finite energy capacity requires an optimal selection of
available resources, especially in the case of physical failures.
So, let Cp = {c1,¢2,-..,cm } be the set that consists of all
given resource allocation constraints for one process P where
each ¢; € Cp may be either a control or a cost constraint.

D. Process Termination

Given the hierarchical structure of a process with guaranteed
termination (either an abort or a commit), a process schedule
reflects the concurrent execution of multiple tree blocks. So,
the definition of a schedule is defined over a set of sub-
processes, Pg, which includes both - regular as well as
compensation and recovery related activities. In summary, we
formally define a process schedule as follows:

Definition 3: (Process Schedule). A process schedule S is
a quadruple (Pg, Ag, <g,Cs) where

(1) Pg is the set of (sub-)processes or blocks respectively
observed during the sequential or concurrent execution.
Ag is the set of all executed block activities.
<sC (As x Ag) reflects the partial order between two
activities in Ag, referred to as observed execution order.
Cs is the set of all given resource allocation constraints
to be considered during the execution. O

2
3

(C))

This definition includes partial as well as complete sched-
ules. We also consider the set of given resource allocation
constraints in the definition. In the case of failures where re-
scheduling of activities is required, these constraints must be
considered to guarantee a correct process schedule.

IV. FAILURE HANDLING

In this section, we propose our failure handling mechanism
based on the system and execution model. In particular, we
are interested in a recovery algorithm that finds a new correct
process schedule that optimizes given resource allocation
constraints. Thereby, we assume that the process activities are
both - compensatable and retriable, i.e. it is guaranteed that
failed activities eventually commit after a finite sequence of
invocations or by choosing alternative paths. Therefore, our
failure handling belongs to the class of optimistic forward
recovery algorithm.

A. General Failure Handling Steps

In general, the recovery algorithm consists of the following
three major steps:
1.Determining the failure scope. We first need to select all
activities that are affected by failures and conflicts. Hence,
in a first step, the failure scope graph Fsg := o (71, ..., Trm)
is determined for a given set of execution trees {11, ..., Tpn}
using the operator o.
2.Constructing the constraint graph. In a second step,
the corresponding constraint graph Cq = p(Fsg) is built
using the construction operator p. The constraint graph is
an extension of the failure scope graph Fsg reflecting given
resource allocation constraints associated with Fsg.
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3.Re-Scheduling. After the failure scope graph is created, a
re-scheduling of the failure scope graph Fgg to distributed
resource cluster {G1,...,G} is executed by instantiating its
corresponding constraint graph Cg. For this purpose, the
mapping Operator @ qpp(Cc) selects from the set of possible
candidate mappings an optimized mapping with respect to Cg.

Note that multiple failure scope and constraint graphs may
exist due to possible alternatives that can be executed in a
failure case. The goal is to find a best mapping for a constraint
graph that optimally fulfills given resource constraints. More-
over, since failures and conflicting activities may also appear
during the re-execution phase, the recovery algorithm may be
invoked several times until a correct process schedule is found.
In the following, we will distinguish between failure handling
inside a block and across multiple blocks respectively.

B. Failure Handling Inside a Block

Failure Handling inside a block or in a flat sub-process
respectively is based on conflicting activities and abort de-
pendencies between different activities inside a block.
Conflicting Activities. Two activities (af" , aﬁl) are in con-
flict if they do not commute. Let < vaf" ag’;lw > de-
scribe a prefix of activities v executed before activity pair
< afjaﬁl > and a suffix of activities w executed after these
two activities. Then, two activities < afj aﬁl > are in conflict
if following holds:

<wa;’a;lw > #F <wvelia’w> (1)

The resulting effects of two activities (afj ,aﬁl) are dif-
ferent for different invocation orders of these activities, i.e.
commutativity between (af",aﬁl) is not given.
Abort-Dependent Activities. Two activities (afj , akpj_l) may
have abort dependencies, i.e. if activity akpj_l fails then activity
akpj previously executed must be also compensated and re-
executed. In other words, if aﬁ 1 succeeds, then afj can suc-
ceed. Formally, we can specify an abort or failure dependency
as follows:

P; P;
akﬁ_l —fail O’ 2
While conflict pairs are detected by the execution engine

during run-time, abort-dependencies are marked by the process
designer at design-time. Based on (1) and (2), we can now
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define correctness criteria for a single block P; within an
execution tree T'(P).

Definition 4: (Block Serializablity (B-SR)). A block or sub-
process P; respectively is serializable, if its committed and
active projection C'A(P;) is conflict-equivalent to a serial
process schedule S(P;). O

Several concurrent threads, e.g. due to an AND-branch (see
also Figure 5), may access on shared data causing conflicts
as defined above. Hence, a block P; is serializable if there is
a conflict-equivalent serial execution of concurrent threads in
P;, i.e. the resulting effects are the same as the (observed)
concurrent thread execution. Formally, block serializability
implies that the corresponding serialization graph for block
P; is acyclic.

Definition 5: (Block Recoverability (B-RC)). A block or
sub-process P; respectively is recoverable, if for each failed
activity the set of abort-dependent activities A(P;) is compen-
sated and re-executed successfully including the failed activity
itself. O

As shown in Figure 5, activity b2P2 is abort-dependent on
activities <b§",b§2>. If either of activities <b§2,b§2> fails,
already completed activity bg 2 must be re-executed.

In the following, we describe the recovery steps for handling
failures within one single block P; which consider conflicting,
aborting and abort-dependent activities.

1.Step (c-operator): First, we determine the failure scope.
Let the set CP(P;) = {cpi(ay’,a;’),.,cpn(ag’,ar?)}
describe all conflict pairs cp; within block F;, i.e. the nodes
contained in the respective cyclic serialization graph of P;.

4)2
y 3[* b:z Yl e » conflict edge
O ........ A - ,‘ """ > abort edge
08 O
3 4

Fig. 6. Failure Scope Graph Fsg(P2) for Block P>

Further on, assume that k activities in P; fail and must be
aborted. Then, Uf=1 A;(P;) is the set of all abort-dependent
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activities including the k aborted activities. The failure scope
graph Fsg = (V, E) is formally constructed as a set of nodes
V and edges E with

o V= CP(P)UU A;(Pj)

o E := E_ (conflict edges) U E, (abort edges)

Example 4.1. In Figure 6, the failure scope graph is depicted
for our running example P,. The block P2 consists of two
conflict pairs cp; (b52,b52) and sz(b62,b4 ) and there are
two abort dependencies between (b52,b52) and (b2,bE2)
respectively. O

2.Step (u-operator): Given the failure scope graph Fsg,
we derive the corresponding constraint graph C¢ from Fsg
by annotating the nodes of Fisg with a control variable X; and
cost variable Y;. These variables represent possible control and
cost constraints for each activity a; that must be considered
during the re-scheduling step. The edges between the nodes
of Cg reflects constraints linking participating nodes together
- also referred to as constraint scope.

Example 4.2. In Figure 8, Cg, represents one possible
constraint graph for Fsg(P;). Assume the presence of several
resource allocation constraints between activities, such as
¢ € Cs : <b§2,bP 2 b must be executed by cluster G

and c3 €Cs : <b52, b62> should be executed by cluster Go.

b2, x,,5)O b2,x,,5)0
e ey el
b2 ’XSvYS)/\(b X4¥y) (bﬁ,xs,ys)/\(b«,, I’Y3l)
N G Y-
\/ \ 4 \‘/

\%’»X«S»Y«s

e
A

Co Co

1 2
Fig. 8. Different Constraint Graphs for Fsg(P2)

3.Step (¢-operator): After the determination of the failure
scope, we are now able to re-schedule the activities of Fisg by
instantiating its constraint graph. The objective is to identify
physical nodes with sufficient resource capabilities to carry
over failed activities.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8306
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8306

Constraint Solutions

Re-Scheduling ¢mapp (CGl) S' = asg(G), 35g(Gy)}

Overview

For this purpose, we select from the set of possible instantia-
tions for the constraint graph the best instantiation with respect
to given resource constraints. Re-scheduling can be formally
described as a mapping or embedding process of a constraint
graph to a network graph of & strong components {G1, ..., G}
where each component corresponds to a cluster of resources:

VCGi : ¢mapp(CG,') - {Gl» ceey Gk}

Constraint programming has proven its feasibility in solving
real-world scheduling and planning problems where various
complex constraints must be considered [19], [20]. Therefore,
we translate the re-scheduling problem into a constraint satis-
faction problem (CSP) as follows:

Definition 6: (Re-Scheduling as a CSP). The mapping op-
erator Pmqpp gets a triple <{(afj,X,~,)}¢)}, {G1, ..., Gk},Cs>
as input where

-V, = {(az ,X,,yz)la 7€ V} is the set of variables
where X; is the control variable and ); is the corre-
sponding cost variable.

- Dy = {G4,...,Gy} is the corresponding domain.

— C4 C Cs is the set of constraints. Each constraint ¢; €
Cy is a pair (o, p) where « is a list of distinct variables
from Vy and p is a |a|-ary relation over Dy. O

V, is assembled by conflicting and aborting activities. It also
includes all abort-dependent activities as well as the necessary
compensation steps. Each of these activities is assigned to a
control and cost varlable thus building a triple of the form
(az X, Vi) or ((a; ) 1 X;, ;) respectively. The value for
the control varlable indicates the resource which the activity
will be re-executed on while the value for the cost variable
must fulfill an individual cost functions.

A solution is a mapping ¢mapp : Vg — Dy such that, for
each (o, p) € Cy, ¢(a) € p. Informally spoken, a solution is
an assignment of resources (chosen from Dy) to the control
variables of the corresponding activities to be re-scheduled.
The value for the cost variable depends on the chosen value
for the control variable. The assignment should fulfill control
as well as cost constraints. Consequently, a best solution is
a dedicated solution from the set of possible solutions that
optimizes a given objective function. For our purpose, a best
solution fulfills control constraints whereas cost constraints are
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Fig. 9. Conflicts and Abort Dependencies Across Multiple Blocks

optimized, e.g. minimized for each individual cluster G;. To
achieve an efficient re-scheduling, we parallelize the mapping
process of a single constraint graph by utilizing multiple
constraint solvers. Thereby, each cluster has its own constraint
solver acting as a local scheduler only having knowledge
about its cluster members. Each constraint solver, denoted
as (g,, only re-calculates a subset of the constraint graph,
i.e. it takes those activities afj € Vy as input which have
been executed by resources within its cluster G;. This way,
the re-scheduling task is divided into several smaller CSPs
which are solved in parallel. In addition, the constraint solver
will use a reduced domain for its re-calculation. It excludes
resources being currently down and not available. After all,
we achieve a fast re-scheduling by allowing a distributed and
parallel constraint solving with reduced domains. The question
how to initially schedule activities to blank resources at design
time is out of scope in this paper, instead we refer to [5] for
the interested reader.
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Fig. 10. Parallel Constraint Solving for Cg,

Example 4.3. Continuing Example 4.2 with constraint graph
Ca,» assume the presence of two clusters (G1,G2), whereas

NN A > must be re-executed by resources

of G (control constraint ¢;) and activities <b§2,bf;2 must
be re-executed by resources of Gy (control constraint cg).
Control constraints {cs, c4) are the negation of {(c;, cz) forcing
an execution in different clusters. Then, we can build two
constraint satisfaction problems C'SP; and CSP,, where each
cluster acts as a local scheduler solving its own CSP as shown
in Figure 10. O

activities
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C. Failure Handling Across Multiple Blocks

So far, we have just considered concurrency control and
failure handling for one single block P; of an execution tree
T(P). In practice however, multiple blocks may be executed
concurrently at the same level. Hence, conflicts may also ap-
pear between these so-called sibling blocks. Additionally, abort
dependencies will not be only limited to activities within one
block but may also affect parent or sibling blocks. Therefore,
we enhance our correctness criteria introduced in the previous
subsection to allow failure handling across multiple blocks.
B-SR and B-RC are necessary but not sufficient conditions
for correct process execution across multiple blocks. Due to
conflicts between sibling blocks, the concurrent execution may
not be serializable even if each participating block fulfills B-
SR.

Definition 7: (Level Serializability (L-SR)). Multiple blo-
cks < B;,Q;, ..., Z; > on level i are level-serializable, if the
committed and active projection CA(P;, Q;, ..., Z;) is conflict-
equivalent to a serial process schedule. O

Accordingly, B-RC is not enough to guarantee recoverability
across sibling blocks or along the execution trees. Instead, one
failure in a single block may affect other sibling or parent
blocks creating undesirable long abort chains.

Definition 8: (Level (L-RC) and Multi-Level Recoverabil-
ity (ML-RC)). Multiple blocks (P;, Q;, ..., Z;) on level i are
level-recoverable, if for each failed act1v1ty the sets of abort-
dependent activities A(P;), A(Q;), ..., A(Z;) are compensated
and re-executed successfully including the failed activity itself.
If compensation and re-execution for abort-dependent activi-
ties along the affected execution tree is also guaranteed, then
the corresponding process is multi-level recoverable. O

To ensure L-SR and L-RC, the same recovery steps take
place as in the case of B-SR and B-RC respectively. The only
difference is that all conflict pairs and abort-dependent activi-
ties spawn over multiple blocks on the same level are collected
to build the corresponding failure scope graph (1.Step). Then
the corresponding constraint graphs are constructed (2.Step)
before the best instantiation with respect to available resource
capabilities is chosen. (3.Step).

Deferred Recovery and Partial Commit. However, com-
pensating and re-executing abort-dependent activities along an
execution tree to ensure ML-RC is much more challenging. In
particular, we have to deal with the problem of abort chains or
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cascading aborts respectively. Even if it is assumed that most
process activities are compensatable and retriable, a recovery
along execution trees may negatively affect the interaction
between sibling blocks. Important results of some process
activities not affected by the failure may be hold back (data
is not visible) until failed and abort-dependent activities are
compensated and re-executed successfully. Meanwhile other
processes may wait for results to continue their execution thus
leading to an unnecessary blocking state.

The key idea to avoid long blocking phases is to mark
sections within a block as optional before the execution starts,
e.g. one specific path within a branch in a block. The process
designer marks activities as optional if their results are not
needed for further processing of other concurrent processes.
This way, we are able to speed up the recovery by excluding
these optional activities from the failure scope. In other words,
we allow a partial commit where effects of non-optional
activities are made visible for other sub-processes. Failed
activities within an optional section may be re-scheduled later;
meanwhile results of those activities are treated as invalid.
Formally, we adapt our failure handling mechanism as follows:

1.Step(c-operator): Again, first all conflict pairs belonging
to the corresponding cyclic serialization graph are inserted
into the failure scope graph Fsg. To reduce the size Fsg
and to minimize the time effort needed for compensation and
re-execution, only failed and abort-dependent activities are
included in Fgg that are not part of an optional block section.

2.Step(u-operator): By reducing the size of the failure
scope graph, we also reduce the number of variables of its
corresponding constraint graph. Also, possible constraints are
excluded thus eliminating edges in the constraint graph.

3.Step(¢-operator): The mapping or instantiation process
respectively may now affect less constraint solvers due to
the exclusion of variables. Since the variable, constraint and
domain set is reduced, the overall solving procedure will speed
up.

Example 4.3. In Figure 12, an additional block Pj is added
that has an abort-dependency with its parent block Ps, i.e. the
abort-dependency df“ — fail cé) 3 exists. Given the observed
schedule and abort-dependencies, assume now that dg“ fails
forcing a compensation and re-execution of all other activities
in block P4 as well as the path activities <c4P %, csp 3> of block
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Ps. However, <cf 3,05 3> belong to an optional path section
(depicted within dotted rectangle) and therefore our recovery
algorithm will exclude those from the failure scope. O

St ""ap:[ional

Py
d;

Fig. 12. Optional Block Section in P3

V. IMPLEMENTATION AND EVALUATION RESULTS

We have implemented and tested our framework in a Java-
based prototype using a PC with 2GHz (dual core) and 4GB
RAM. Our prototype uses multiple instances of an off-the-
self constraint solver Choco [21] to solve constraint graphs
of different sizes in a parallel fashion. Choco itself is a Java-
based library for constraint satisfaction problems, constraint
programming and explanation-based constraint solving. It sup-
ports a variety of constraints including basic constraints on
Integer Variables, such as eq, neq, leq, geq and allows the user
to define different search strategies.

Activities and resources are described as database tuples in a
MySQL database each containing additional information, such
as control/data flow dependencies (in case of activity tuples)
and ID, current consumption, as well as cluster affiliation
(in case of resource tuples). We also store the status of an
activity, such as ready, running, failed, committed, compen-
sated. Control and cost constraints are modeled as respective
Choco constraints. As soon as the activity status changes to
failed, our recovery algorithm implemented in Java identifies
the failure scope, builds the corresponding constraint graph(s)
and performs the allocation by starting multiple Choco threads.

As metric we have measured the re-instantiation time
needed to map corresponding constraint graphs to the network
graph. For our experiments, we considered the number of
activities a, the number of resources r and the number of
constraint solvers s as configurable parameters.

The summary of our findings are the following:

o For the re-instantiation time, the number of constraint
solver participating during the re-scheduling step are
more crucial than the number of activities to be re-
scheduled. The use of more constraint solvers reduces
the domain size to be traversed through by each single
constraint solver thus improving the overall solving time.
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o The cluster size also greatly influences the re-instantiation
time. On the one side, a bigger cluster may require more
calculation time due to more variable assignments to be
checked. On the other side, it may satisfy control and
cost constraints more likely than smaller clusters. Hence,
it must be always traded off between cluster size and
constraint satisfaction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explored the issues in supporting a
flexible failure handling for cooperative processes on top of
distributed and resource constrained networks. In particular,
we have focused on an efficient re-scheduling procedure that
finds an optimal schedule with respect to limited resource
capabilities in a distributed fashion. We allow a flexible failure
handling for hierarchical processes by compensating and re-
executing either just a block of the execution tree or along
multiple blocks and levels of the execution tree. Based on our
prototype implementation, we have shown that the number of
participating constraint solvers has a bigger impact on the re-
instantiation time than the number of activities.

Future work will include the development of a query engine
part of our Logging and Analysis Component that can be used
to efficiently retrieve huge amount of distributed process data
through a SQL-like interface. Thereby, the query engine must
cope with physical failures and resource constraints.
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