VaaS: Videoconference as a Service

Pedro Rodriguez, Daniel Gallego, Javier Cervifio, Fernando Escribano, Juan Quemada, Joaquin Salvachtia

Departamento de Ingenieria de Sistemas Telematicos, Universidad Politécnica de Madrid,
Avda. Complutense 30, Ciudad Universitaria,
28040 Madrid, Spain
{prodriguez, dgallego, jcervino, fec, jquemada, jsalvachua}@dit.upm.es

Abstract — Internet is a place nowadays where interoperating
services are offered which can be integrated or mashed up in
order to fulfill user demands. This paper proposes a way to offer
videoconference as a web service over an interface which can be
used by third parties to enrich their applications. This interface
includes a security mechanism supporting delegated
authorization to allow integration into third party’s
environments. Via this interface virtual rooms are provided
where wusers can collaborate with audio, video, shared
applications, IM, etc. An implementation of these concepts is
described, including performance figures and validation results.
We would finally like to stress that this architecture has been
defined to support a scalable cloud computing service over the
Internet.

Cloud computing; Web; Real-Time
Collaboration; SOA; ROA.

Videoconferencing;

I. INTRODUCTION

A wide variety of services is accessed nowadays via open
interfaces, such that their functionalities can be combined
offering an extra value to final users. Today we can share our
photos in Flickr, with Twitter using widgets merged into
iGoogle. Why not integrating collaborative rooms where we
can work together with others. Internet services are becoming
more and more usual, and mash-ups and combinations which
generate added value are becoming a must in the Internet.

In this paper, we propose a new interface for integrating
collaborative videoconferencing as another service in those
mash-ups. It would provide to any web application a
videoconferencing service, executable from the browser. This
way, users can communicate among themselves easily.

Our proposal meets the following requirements:

e User management is taken care of by third parties’
applications while it leaves the authorization to them.

e [t focuses on conference rooms, where users meet to
collaborate.

e The security requirements have been designed to allow
integration into third party’s applications.

e The interface provides some Quality of Service (QoS)
inside each room to every application (or consumer
services) used.

In other words, this interface aims to transform a traditional
telecommunication service, such as videoconference, into a

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

resource that will be used by third parties. Furthermore, this
approach enables the transformation of a standard client-server
service into a Cloud Computing service which provides to
users access to a collaborative environment including audio,
video and shared applications. This architecture has been
named “Nuve”.

The structure of the paper is as follows: the next section
gives a summary of work closely related to this topic. Section 3
aims to place this work in context while the following two
sections introduce the conceptual model and define the
operations of this interface. Section 6 describes the designed
security mechanism to authenticate requests to the interface.
Finally, the last two sections present the results obtained and
detail the conclusions drawn from the work.

II. RELATED WORK

A variety of videoconferencing applications exist in
Internet such as [1], [2], [3], [4], etc. They all enable
collaborative videoconferencing with more or less
functionality. However, none of them provides a way for third
parties’ applications to take advantage of those resources. We
feel that videoconference and real-time collaboration tools in
general can be a very powerful complement for many existent
applications.

Our idea is based on telecommunication operator’s Data
Centers. While typical software and Web companies, such as
Google and Microsoft, are focusing their attention on terms like
Cloud Computing when in fact, ISPs have Data Centers more
sophisticated than they have. They can use these to house third
parties’ services, or, in the other hand, to restructure their own
services.

In our proposal, Nuve, the evolution began from the Marte
3.0 [5] client-server web-conferencing application developed
by our work group. It is based on rooms, and it provides users
with tools for performing web collaboration such as: video,
audio, instant messaging and desktop sharing.

III. VIDEOCONFERENCE AND CLOUD COMPUTING

There exist many videoconferencing applications but users
do not use them very frequently and do not extract all the
potential they have. This is probably because they cannot be
easily integrated in existing user environments. This is why we
think that by offering collaborative videoconferencing as a
Cloud Computing service, users will integrate it more easily
into their environments.

In [7], it is said that Cloud Computing distinguishes itself
from other computing paradigms in the following aspects:

e User-centric interfaces: using Web browsers. Nuve
allows users to connect videoconference rooms
through a Flex application executing in the web
browser. This application offers a common user
interface for all of them.

e On-demand service provisioning: this paradigm
provides resources and services for users on demand.
Nuve provides rooms to the services so users can use
it.

e (oS guaranteed offer: computing clouds guarantees
bandwidth, latency and so on. Nuve guarantees a
correct bandwidth to the services because it analyzes
the connection state and it modifies the communication
parameters to adapt it.

e Autonomous System: the cloud is autonomous and
transparent to users. Our objective is for Nuve to
become a videoconference room provider to higher
level services.

o Scalability and flexibility: the architecture is flexible,
so it can adapt and scale itself depending on the
number of users. In the present version of Nuve, this
property is not yet implemented, but in the future,
Nuve pretends to be scalable and flexible using
clusters.

©
User™

)|

Token Token

Fig. 1 Design of Videoconference as a Service

In addition, Nuve has some technological properties that
also play an important role in Cloud Computing. These
properties are described in [7]:

o Virtualization: in the present version there is only one
virtual machine. However, in the future many virtual
instances of Nuve could be started on demand, using
similar services like Amazon EC2 [8].

e Orchestration: using APIs, an application can be the
result of orchestrating a set of services. One of these
services could be Nuve.

o Web Service and Service Oriented Architecture: Nuve
offers an interface to control their resources, in other
words, the videoconference rooms.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

e Web 2.0: the Nuve user interface follows the
philosophy of the Rich Internet Applications (RIA),
using Flex applications to increase the usability.

In words of the NIST [6] “Cloud computing is a pay-per-
use model for enabling available, convenient, on-demand
network access to a shared pool of configurable computing
resources”. Thus, using REST interfaces to offer our Cloud
Computing services seems to be natural.

Regarding the API architecture in this context, the
objectives of our work were:

e Following the REST principles designing a generic,
simple, flexible, reusable and stateless interface,
useful to a multiconference service.

e Building a Cloud Computing oriented service that
follows the principles we are going to explain later.

e Implementing a proof of concept.

The API developed will allow us to do all this things in the
future.

IV. CONCEPTUAL MODEL

The main objective of Nuve architecture is to offer a
videoconference service for third parties. As such, others will
manage and control the communication while the system is the
responsible of maintaining the communication alive and
guarantee a Quality of Service. To understand this correctly,
first we need to define a model based on resources and actors
that will use those resources. In this section, we are going to
describe the resources and their functionality inside the service.

TABLE 1
RESOURCES FROM THE CONCEPTUAL MODEL

Resource Definition

Users It represents the third parties’ users who will
communicate with others in each room.

Tokens It is the ticket used to delegate the
authorization of users to third parties’
applications.

Services They are the third party’s applications that
manage the rooms and give access to users in
order to communicate in each of these rooms.

Rooms They are the virtual spaces where the users

will collaborate among themselves with
video, audio and desktop sharing.

The conceptual model this architecture follows is that of a
videoconference room provider (Fig. 1). We can define these
rooms as meeting points where users will be able to establish
conversations using audio, video and IM. Besides, they will be
able to share applications executed in their own desktops. The
management and control of these rooms is taken care of by
other services. For this reason, they will be responsible for
making these rooms accessible and giving users and other

services the needed authorizations (via tokens). In accordance
with this, we can define four basic resources (TABLE 1). Each of
those types of resources will be managed over the REST
interface of Nuve with the standard HTTP operations: GET,
POST, PUT and DELETE.

A. Users

A Nuve user is a person who has accessed a room and is
communicating with other users from Nuve in the same room.

Every user can share his audio from his microphone or send
the video obtained from his webcam. Besides, he can show or
give control over his applications that are being executed in his
computer. Also, he can chat to other users using the IM client
incorporated in the room. All of these things are done using an
application that is executing in the web browser through the
user’s Flash Player.

Using Flash Player as base for a videoconference
application allows us to assert (based on [9]) that, in the great
majority of desktop computers it is not necessary to install any
kind of software, apart from the software that is already
installed. To understand better this statement, we could say, for
instance that any computer which has already accessed a video
from Youtube, can access a Nuve videoconference without any
problem.

Additionally, if a user wants to share applications executed
in his computer, he must install the Java Virtual Machine.
However, as we can see in [9], the Java Virtual Machine is
usually installed in the great majority of computers.

In the real world, every participant in a meeting plays a
different role so, in Nuve, there are three roles for users:

1) Observer
The observer user is present in the room and can see and
listen to everything that is happening, but he cannot take part.

2) Participant
This role represents those users that can speak with the rest
sending their video, audio, IM and desktop applications.

3) Administrator
Administrator role allows changing other users control over
their videos, audios, IM and applications. Also, administrators
can change the mode with which the users show themselves to

everyone in the room.

B. Rooms

Rooms are the main resource in which the Nuve service
model is based on. As we defined previously, a room is a
virtual space where the users can communicate among
themselves in meetings. Depending on the character of the
meeting, a Nuve room may be equivalent in the real world to a
company meeting room, an auditorium, a round table, a
university class or the living room of a house where friends
gather to speak about daily events. The objective of the
meeting is defined by the service and his users. The Nuve aim
is to guarantee bandwidth and Quality of Service in all the
rooms.

The possible communication channels among users are
voice, video, instant messaging (IM) and desktop sharing.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

C. Services

This resource represents those consumer services that want
to use the rooms provided by Nuve. To understand it well, we
can use Facebook as an example of a service as it could be
arranged for its users to participate in a Nuve conference.
When we add a new service in Nuve, in fact we create a shared
key between them. This key is used by the service to make
calls to REST methods from the API. From now on, the service
can create, edit and delete rooms, giving access to its users or
denying it.

D. Tokens

Although we will see them in detail in the API security
section, we can define the tokens here as a resource necessary
for the whole user’s authentication between the service
provider (Nuve) and the consumer. A token represents the
entrance key for a user in an existing session in Nuve. The
service is the one who requests the token through the REST
interface. Finally, it provides the token to the user so he or she
can connect to the session.

V. NUVEAPI

In this section we will explain the REST architecture done
in this work (illustrated in Fig. 2), which, as we said before, is
based on four resources: users, rooms, services and tokens. We
will see which HTTP operations are enabled for each one and
what is expected to send and received in each call.

Consumer services will send HTTP requests to this
interface, asking for the creation/deletion of rooms, giving
access to users and retrieving information about conferences.
End users of these services could take the role of administrators
who will create, delete and modify rooms, or it could be done
by the service automatically. Even third parties could create a
wrapper in order to offer different kinds of services that would
include videoconferencing rooms, and would manage them
through protocols like SOAP, XMPP, etc.

/

Phs
e

I

I

I

I

I
O

i
i3 o\ Service
i8 X
: 2
2 3
8 AR Yo e S N TS
! Marte API : ‘. REST Security Filter
| User Access | User Access! ; Nuve
I Controller ! Controller \ “lRoom Manager Service
-t - Manager
User User Token y /room Iservice
| Token consumer Itoken
T
i
d N
' S
RTMP Server
a a ® Marte
(((
SRER RSP CRGRGR

Fig. 2 Layer architecture
In order to support the usage of rooms by the services, the

information about resources should be submitted in different
ways. In our case, we have chosen the next three data structures

that are the most used nowadays in the World Wide Web:
JSON [10] (which is the JavaScript serialization of objects,
very important for objects implemented with this architecture),
XML (that is a markup language with data structures
compatible with JSON and is implemented in almost all
application servers), and at last, HTML which is used mainly
for making data representation easier to other services.

The API has been designed according to the
recommendations from [11] for the purpose of making a good
use of the REST philosophy. As it is usually recommended
when designing this kind of APIs, our work proposes different
commands using HTTP methods (GET, POST, PUT and
DELETE) on the next four resources:

A. User

It represents users, providing different services for
obtaining a list of them as well as information about one in
particular.

We could get information about a user sending a GET
HTTP request to a URL with the next structure:
/room/{id}/user/{username}, being {id} the room identifier to
which the user is supposed to be connected and {username} the
name that the user has in this room. The response can be sent
back in any of these formats: XML, JSON and HTTP. An
example for this kind of communication would start with:

GET /room/321/user/Bob HTTP/1.1
Accept: application/xml
[Security info]

[CRLF]

The response would have the next structure:

HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: 60

[CRLF]
<user><username>Bob</username><role>participant</r
ole><status>online</status></users>

Furthermore, we could also ask for the entire list of
connected users by sending a GET command to the URL
/room/{id}/user/. We could even throw a user out from the
room by sending a DELETE message to
/room/{id}/user/{username}.

On this resource we cannot create users, although it could
be useful if we would want to invite users to one room.
However, since a user is going to connect directly to Nuve, we
decided to let the implementation of this functionality to
consumer services. A use case could be a scenario in which a
user would send an email to other person with the link to the
room. If the other user would click the link it would take him to
the room.

In short, and referring to tables 1 and 2, it is possible to
request information in XML, JSON or HTML format of the
resource which represents the user who is connected to the
Nuve’s room.

B. Room

It represents the space in which users can collaborate and
share their video, audio and data. We can perform different

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

operations such as create, modify, delete, list rooms and even
give access to users. As we said before, this is the main
resource of Nuve and, as such, it is important for us to have
perfect control and get detailed information in various formats.

This resource designed to be directly managed by consumer
services or by users that could interact with it through their
respective services.

Regarding the available operations, we will start with those
of them that are read-only, which are the same that in the case
of the resource “user”.

Any service could request information about any of the
rooms which belong to it. For instance, by sending a method
GET to /roon/ if it wants to get a list of all of its rooms, or to
/room/{id} if it wants information about only one of them. The
information returned by this way can be represented in XML,
JSON or HTML format, and an example of the HTML one is
below:

<noscripts>

<object id="MarteRoom” >

<param name="movie” value="Marte.swf”/>
<param name="quality” value="high”/>

<embed src="Marte.swf”
quality="high”
type="application/x-shockwave-flash”

play="true” />
</object>
</noscript>

This example shows part of the code of a web page which
would be useful to include in the Nuve client that, as we
mentioned before, is a Flash application.

Regarding the “write” requests, the first one would be the
creation of a conferencing room that, as it usually occurs in
REST architectures, is accessible through a POST method to
the collection URL. In this case an example for this would be:

POST /room HTTP/1.1
Content-Type: application/json
Content-Length: 26

[Security info]

[CRLF]
{“room” : { *name” : "MyRoom” } }

The information sent to the server could be either in XML
format or in JSON (that is the case of this example):

The response of the server would be the next:

HTTP/1.1 301 Moved Permanently
Content-Type: application/json
Content-Length: 26

Location: /room/MyRoom

[CRLF]

{“room” : { *“name” : "MyRoom” } }

As we see in this example, the response in REST models to
the request for the creation of a resource by means of a POST
method is a message of the type “Moved Permanently”, and the

response includes among its headers one that shows the URL
where the information of the room is located.

The other writing operations are used to update and delete
rooms. The first one is a PUT request sent to the URL of the
room (in the example it would be /room/MyRoom) with new
information about the resource. The response for this request
would be a “200 OK”.

The last option would be to delete the room. This can be
done through the DELETE operation, as we can see at
example:

DELETE /room/MyRoom HTTP/1.1
[Security info]
[CRLF]

The response in the case of Nuve successfully removing the
room would be a “200 OK”.

C. Service

Nuve’s API allows adding and removing services that are
authorized to use its Rooms. Furthermore, we can ask for the
entire list of services through a “root” service with special
permissions. As in previous cases, to create a service we will
use a POST operation to the URL of the resource collection
(/service), and to delete an existent service we will do the same
with the DELETE operation to the URL of the resource which
we want to remove (/service/{service_id}). It is important to
keep in mind that a service can only be removed by the service
that owns it or by the “root” service.

Information about a resource can be represented in JSON,
XML or HTML format, but we can only create a service by
sending information with the first two ones.

Below is an example of a service described in XML format:

<services>
<name>Facebook</name>
<id>1230kopwgeop21893</id>
<key>u94832er893wjhr893j98</key>
</services>

We will see all this parameters in greater detail in a later
section, when we talk about the security that we have
implemented in this APIL.

As we saw before, we can retrieve information through a
service with special permissions. In fact, this service is the only
one allowed to manage the ownerships of the rest of services,
controlling the creation and deletion of their rooms. Therefore,
it is a integral part of the entire architecture. Its aim is to
facilitate the work of administrators and that is why it is
possible to provide information of each service in HTML
format.

D. Token

The last resource of this API is the one that allow us to give
access to end users. In the next section we will explain in detail
its functionality, but now we are going to define the operation
that can be used to create them. This operation is a little
different because this is a special resource and, as we have

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

already said thought essentially to authenticate users of other
services. Besides it can be used to check that these users who
are going to take part in conferences come from services that
are the owners of such conferences.

The typical use case, for instance, could be one in which
one of these resources takes part is the creation of one token.
Tokens being nothing more than unique identifiers randomly
created that have a limited time to live. In other words, some
minutes later (usually three minutes), these token cannot be
used and they are removed from the system. The way to create
them is shown in the next example:

POST /room/MyRoom/token HTTP/1.1
Content-Type: application/xml
Content-Length: 63
[Security info]
[CRLF]
<token>
<username>Bob</username>
<rolesparticipant</role>
</tokens>
When the server receives this request, Nuve creates a new
unique identifier and relate it through a database to a username,
arole and a room. Thanks to this, when a user wants to connect
to one session, Nuve can retrieve this data from the database in
order to know the room where the user wants to participate,
with which username, and what role the user will play in the
session. The response of Nuve would be the next:

HTTP/1.1 301 Moved Permanently
Content-Type: application/xml
Content-Length: 26
Location: /room/MyRoom/token/123p2j13io21
[CRLF]
<token>
<username>Bob</username>
<rolesparticipant</role>
<id>123p2j13i021</id>
</token>

It is necessary to know that each operation has the scope of
the service that requests it and Nuve is aware of it thanks to the
security information that the service includes in each of the
requests. Also, as stated above, there is a special service called
“root” that has enough permissions to operate over everything
else.

We can see a summary of all operations that each service
can use on each resource. The first table explains the operations
that we can do with information in XML and JSON format, and
the second one is for information represented with HTML.

TABLE 2
HTTP METHODS USED FOR XML/JSON CONTENTS

o | 8| = 3

22|55

53!

/user X X

/room X X X X
/token X

/service X X X

TABLE 3
HTTP METHODS USED FOR HTML CONTENTS

-)

ol 3| =2|B

t 7] = tr

- — — -

tr

/user X X

/room X X
/token

/service X X

We can deduce the importance of the service authentication
from the description that we have made through this section.
Due to this, in the next one we will comment further details
about it.

VI. SECURITY

This section describes the architecture of the solution
implemented in order to provide the system with a security
layer. The adopted mechanism is based on the combination of
an extension to the HTTP header and the use of tokens for final
user access.

A. Description of the problem and previous experiences

The next subsections explain the different approaches
considered when designing the security solution for Nuve.
Firstly, a general definition of what is considered as security in
this kind of applications is given. After that, a brief analysis of
the existing implementations is presented in order to provide
some background on the existent works.

1) Security requirements in collaborative software

Before focusing on the problem, it is important to define the
general security concerns in collaborative software (CSCW:
Computer Supported Collaborative Software from now on).

A wide variety of software applications fall under the
definition of CSCW, ranging from relatively simple document
repositories to full blown real time multimedia systems that
allow for much more complex interactions among users. The
collaborative software matrix [12] perfectly illustrates that fact.

Due to that environment variety, security in this context is a
little hard to define. A number of studies have been published
trying to unify the definition of security requirements as well as
the notation used to describe them properly ([13] and [14]). As
a result of the analysis of those publications it is possible to
extract a subset of rules that try to cover the most critical
security problems:

e Participants follow the established

workflow.

previously

o The existent roles are consistent as well as the
constraints imposed to them.

¢ Only authorized users can access the system.

o Users enter the system with the corresponding roles.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:lldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

¢ Any temporal or conditional constraints can be applied
to the resources.

e Each user’s private data cannot be accessed by anyone
else.

When it comes to videoconferencing (same place, different
time in the matrix) the number of roles usually is very limited,
simplifying interaction compared to other schemes with more
complex workflows.

According to this, we reach the basic conclusion that in a
context of videoconference where the usual workflow is quite
simple, the main security concerns come from the
authentication of the users and their authorization so they have
access to the right resources depending on their roles.

2) REST Authentication

Having analyzed the security needs in a general context, it
is time to study the different mechanisms that have already
been implemented and published but focusing on REST which
is the interface used in our system.

The most important alternatives researched and, as such,
shown in this paper are: Amazon S3 [15] and OAuth [16]. Both
were chosen because they are used broadly today and are
proven to work.

First of all, it has to be noted that both are based, above all,
on modifications of the standard HTTP authorization header
defined in [17].

To sum the process up, it consists on the server responding
to non authorized requests with a 401 code including a WWW-
Authenticate field which specifies a challenge for the client.
The next call coming from the client should include an
Authorization field which is completed with the data implied
by the challenge. Finally, the server should check the reply and
process the request if it meets the requirements.

No specific type of authentication is enforced although in
[18] two are proposed: Basic and Digest. The first one is really
simple including only two fields (name and password) which
are transmitted in plain text. Digest authentication is a little
more complex as it proposes the use of MDS5 [19]
cryptographic hashing and nonce values to avoid replay
attacks.

After this brief digression we switch our focus back to the
studied systems. Amazon S3 is an online storage service
offered by Amazon Web Serviced designed to make life easier
for web applications developers with important needs in terms
of data space but lacking the required infrastructure. It offers its
users both SOAP and REST interfaces allowing them to
perform various actions like adding or removing data. It is a
paid service and, as such, it is extremely important for its users
to be authenticated.

The modification of the HTTP header developed by
Amazon is called “AWS”. In this type of authentication, the
reply to the initial 401 code is to introduce in the said header
the following line: Authorization: AWS
AWSAccessKeyld:Signature where AWSAccessKeyld is

given by Amazon to the client after registering as well as
another key which will be used (together with a string
containing several values) to calculate the signature by means
of the HMAC_SHALI algorithm.

This signature can be easily reproduced at server-side
because the client’s id and key are already known.

The other studied case we will explain here is the OAuth
protocol which, among other security mechanisms, includes
one similar to ones explained above. OAuth allows a user to
grant access to their information on one site (the Service
Provider), to another site (called Consumer), without sharing
all of their identity. The communication between the provider
and the consumer is not very different in concept to the one we
see in Nuve.

The use of the HTTP header is quite similar to Amazon’s
but the information provided in it is not always the same and
changes depending on the action requested. As a consequence,
the data included in the header is not only used for
authentication but also for application level purposes.

Furthermore, and without getting into too much detail,
OAuth authentication uses a token which is given to the
consumer to access the provider’s resources. In the process, the
client gives his or her credentials to the provider but never to
the consumer.

To conclude, both alternatives aim to authenticate and
authorize the agent that is requesting the operations. We
conclude that, in the case of Nuve, this type of mechanism
satisfies the security requirements obtained from the first part
of this section. However, it is necessary to develop a more
specific solution for our system.

B. Security in Nuve: MAuth
1) HTTP Authorization

Regarding HTTP Authorization, the path chosen is similar
to the ones described above, that is, an extension to the HTTP
standard header. However, like OAuth, the header is also used
to carry parameters used by the application.

The full header containing all possible parameters used is as
follows:

Authorization: MAuth
realm="http://marte3.dit.upm.es”,
mauth_signature_method="HMAC_SHAl”,
mauth_serviceid="ServiceName”,
mauth_signature="jlsa731232=",
mauth_timestamp="1231321321",
mauth_cnonce="123123aadf”,
mauth_version=%3.1",
mauth_username=“user”,
mauth_role="participant”

Below we describe individually each one of them:

e mauth_signature_method: It indicates the signature
method used to sign the request. HMAC_SHAL is the
only one supported. The key used in the process is
simetric and is exchanged off channel.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

e mauth_serviceid: A unique identifier for the service. It
is used by Nuve to obtain the key and for several other
purposes at application level.

e mauth_signature: The signature generated by the
method explained above.

e mauth_timestamp: Unless otherwise specified, the
number of seconds since January 1, 1970 00:00:00
GMT. The value must be a positive integer and must
be equal or greater than the timestamp used in previous
requests.

e mauth_cnonce: A positive integer that must be
different for each request with the same timestamp.
Used to prevent replay attacks.

e mauth_version: Current version number.

All the parameters mentioned above are obligatory. The
next two are only used for requesting access for a user to a
room.

e mauth_username: Name of the user trying to access the
conference.

e mauth_role: Role of the user in the conference. The
possible roles a user can take in a room are:
“participant”, “administrator”, and “observer”. Each
role defines limits to what a user can do while the
conference is taking place.

The string used to calculate the signature varies depending
on the parameters included in the header.

The format of the string is:

(mauth_serviceid, mauth_timestamp,
[mauth_username, mauth_role])

mauth_cnonce,

The parameters between square brackets are only present
when needed.

To better understand the flow of the authentication, let’s
study a particular case. A service wants to obtain the list of the
existent conference rooms.

Initially, the service issues a request to Nuve:

GET /rooms HTTP/1.1
Host: marte3.dit.upm.es

The request did not include authorization information so the
Nuve server replies with a 401 code indicating that the request
was not authorized and providing information about the
authentication type that should be used.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: MAuth,
realm="marte3.dit.upm.es”

Now, the service knows that Nuve uses MAuth to
authenticate requests and must fill in every parameter to have
its request approved and processed:

GET /rooms HTTP/1.1
WWW-Authenticate: MAuth,
realm="marte3.dit.upm.es”,

Fig. 3 Authentication messages

mauth_signature_method="HMAC_SHAl”,
mauth_serviceid="global”,
mauth_signature="dasawaraj212312”,
mauth_timestamp=”32132131",
mauth_cnonce="654sa5d6asdads”,
mauth_version="3.1"

In this particular case, we are not using mauth_username
and mauth_role as they are not needed for this request.

Once this point is reached, the server has all the needed data
to verify the authenticity of the request, if everything is right it
replies the service with a message including the list.

2) User authentication: tokens

This subsection gives a detailed explanation of the process
of authenticating users in Nuve without the need of directly
exchanging information between the final users’ pc and the
Nuve server.

Tomcat Server
 Hibernate [RedS O\ 1 jersey
/// \\‘\ Marte \ Nuve
HsSQLDB Application | Rest API
P il
(T
T il
.
b, - 7/
1
[Apache Mina]
\ ; J

Sockets

Fig. 4 Implemented code modules

This is achieved via the previously mentioned token. Only
users that own a valid token have access to a Nuve conference.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:lldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

As explained above, tokens are generated dynamically every
time a service asks for one, besides, information concerning the
user (the service it belongs to and the role he or she will play)
is stored in the server. Furthermore, tokens have an expiration
date rendering them useless after a given period of time.

The usual workflow followed after the creation of a
conference is illustrated in Fig.3.

1. The user requests access to a videoconference room. In
order to do that, he or she probably has previously identified
himself in the context of the service.

2. The service issues a request to Nuve asking for access to
the conference for that specific user. That request includes all
the authorization data mentioned before.

3. If the authentication is successful, Nuve sends a valid
token back to the service.

4. The client is redirected to a dynamically generated web
page which contains the Flash client needed to participate in
the conference. The token contains data about the conference
room and the user’s role so he or she does not have to introduce
any information and can only access the conference that was
requested by the service.

5. The user can start interacting with others.

VII. RESULTS

This section describes the implementation of a proof of
concept that we used to test the new architecture and draw
conclusions about the results. Firstly, we will give a brief
explanation about the test environment for this implementation
detailing each of the components used and finally we will
present all the tests performed and the results obtained from
them.

A. Implementation

The API implementation has its roots in the Marte 3.0
application which, as we have explained before, was developed
in a previous work. This application used an Apache Tomcat
server on top of which a Red5 server was installed. Red5
allows for voice/video communications to be established
among Adobe Flex/Flash clients. As Tomcat was an already set
piece of the architecture we decided to use a Java library and
we chose Jersey [20], developed by Sun and quite useful for
creating RestFul APIs easily.

The working API had to embody the theories exposed
throughout this article, so we started by defining the four
mentioned resources (rooms, services, users and tokens). The
logic behind the creation, modification, removal and reading of
each of the resources was in its core a simple call to already
implemented Marte classes so we did not have to rework all the
parts concerning the management of the application. The most
important parts reused from Marte are the following:

The RoomRegistry component takes care of all the
functionality regarding creation and removal of rooms.
Besides, it does so safely avoiding all the possible problems
that might come up when performing those actions. For
instance, when a room is deleted, RoomRegistry disconnects all
the users present in those rooms providing the needed

explanation to the clients. Furthermore, it checks whether a
service is authorized to delete a room.

The ServiceRegistry module is quite similar but it deals
with services. When a service is created, it performs serveral
actions like analyzing the existence of any conflicts with other
subscribed services and when a service is deleted it deletes all
its owned rooms by using the RoomRegistry component.

The last component used from Marte 3.0 is the
UserRegistry which allows us to add or remove users from a
room. For instance, we will use this component when a room is
deleted via RoomRegistry to remove all the users from it.

Finally, to take care of all the persistence needs of the
application, a HSQLDB database is used through Hibernate. It
only stores data about subscribed services and rooms so two
related tables were created on for each.

In Fig.5 the logic behind the removal of a service is shown
as an example.

Delete Service
No
Has

Fig. 5 Service deletion programming logic

B. Test environment

The objective of these tests was to measure the capacity of
the Nuve server in terms of the number of users that was able
to support, the bandwidth of a common session, monitoring the
CPU usage of the machine in which the server is hosted.

The test system was a VMWare virtual machine running on
top of an Intel Core 2 Duo with 2 GB of RAM. The virtual
machine is limited to one CPU and 512 MB of RAM. The
operating system used is an Ubuntu Linux 8.10.

In order to get this data we deployed the previous
implementation in a machine to which different users from the
same subnet were connected, all of this through an Ethernet
connection and a Switch that supports a bandwidth of 1 Gbps.
All the users and the server had network interfaces of 1 Gbps.

Regarding the bandwidth consumption we show different
figures that we explain below.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:lldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

—e—Realdata —#&— Theoreticaldata

350
300 =
250 //

2 200 A

= =

£ 150 //

100 =
/n/
50 ’/4‘
o 4
0 1 2 3 4 5 6 7 8

Number of users

Fig. 6 Bandwidth consumed by the audio

—+—Realdata —+—Theoreticaldata

1000

900
800 /!

700 ///

600

500
g
400 =

300 =

200 ——

100 —

KBps

i

Number of users

Fig. 7 Bandwidth consumed by both audio and video

At Fig. 6 we show the measured data on bandwidth that was
used during a conference in which users only communicated
using their voice and they did not use webcam or screen
sharing. During these tests all users sent audio through their
microphones at all times and simultaneously. We can also see
an empirical approximation to these results that represents the
next equation:

— 2
BWiotar = Nusers” * BWauaio

Being BW;,;q;the bandwidth consumed by the centralized
server (which contains the Marte application), Nyse,s is the
number of users that are connected to the videoconference and
BW 44410 is the bandwidth consumed by the audio of each user
(in the testing all users consume the same bandwidth).

Based on the bandwidth measured during the tests and
applying the equation we get an approximated value for the
bandwidth used by each user, that is 5 KBps.

Fig. 7 shows the bandwidth consumed by a session like the
previous one, but in this case users are also sharing the video
streams produced by their webcams. This test helps us to
calculate the average bandwidth consumed by each user. We
assume that the worst case is that in which all users are
continuously in movement (that is the instant in which more
bandwidth is going to be used). In this case the measured
values should be represented by the next equation:

B Wtotal = Nusers2 * (BWaudio + Bindeo)

We can get from this equation that the bandwidth consumed
by each user that is sharing its video is 16KBps.

35

30 b
25 "/
20
15 ==
10 //

5 ///

0 “w_/

0 1 2 3 4 5 6 7 8

Number of users

Fig. 8 CPU percentage consumed by the audio

At Fig. 8 we see how the percentage of CPU consumed
varies in an audio conference, while at Fig. 9 we see the same
data but in a conference that includes video and audio. As a
result, we can infer that there are not many differences between
videoconferences and audio conferences in terms of CPU usage
in the server.

35

30

25

20

15 //
10 //
5 —
/_/‘
: 0 1 2 3 4 5 6

Number of users

Fig. 9 CPU percentage consumed by both audio and video

It is important to notice that these tests were made in
scenarios in which all users were connected to the same
conference room. In a test with many rooms, the maximum
bandwidth capacity of the server could be calculated by the
next equation:

BWiotar = Z BWgoomi = Z Nysers fromiz * (BWaygio + BWyigeo)
i i

VIII. CONCLUSIONS AND FUTURE WORK

Throughout this paper we have shown the main features of
the proposed architecture in the context of other Cloud
Computing systems. We have detailed the resources oriented
architecture of Nuve and as well as provided a description of
the service interface. A prototype of a Nuve system has been
described validated and performance measures have been
provided, showing that this architecture can be easily
implemented in a cost-effective way. The extension of this
implementation to scalable Cloud Computing services which
could provide tons of virtual rooms to users seems to be
straight forward by adding a virtual room allocator among the
Cloud of virtual room servers.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

The most critical part of this work has focused on the
development of a security mechanism which enabling the
integration of the service into third parties’ applications and
mash-ups.

The same core system has been reused in various projects
we are working on. As part of these projects we have
successfully installed the core in Linux, Windows, Mac OS X
and Solaris. That is, we only have to maintain one group of
physical CPUs which, in turn, have virtual machines running
on top. The different projects are represented as services and
they can all share the same, unmodified, core. Besides, while
currently new virtual machines have to be set up by hand, we
are working on the automation of the process. As a showcase
we have integrated Nuve into Google Wave [21].

The Flex/Flash Rich Internet Applications (RIA)
development framework from Adobe has proved to be very
effective for implementing the prototype. The old Marte 3.0
client-server system was transformed into the Nuve
architecture in three months by two persons working 60% of
their time on it which seems to be very reasonable resource
expenditure for such a development.

Using the Flex/Flash RIA based videoconferencing has the
additional benefit of avoiding the user to have to install any
application in most cases because most browsers today have
the Flash Player plug-in installed.

Finally, even though the tests are focused on measuring the
limits of the system and do not represent a real scenario where
usually one user sends more information than the others, they
serve us to estimate the maximum video and audio bandwidth
consumption by a normal user in this first implementation.
Regarding server CPU usage, the results show that in future
works we have to design a low-level architecture that can be
scaled through several server machines without overloading
any of them. In order to achieve this scalability and guarantee
some QoS, we will need to instantiate virtual machines and
turn then on and off. This motivates us to follow the Cloud
Computing principles.

REFERENCES

[1] Google Video Chat. [URL] http://mail.google.com/videochat

[2] Skype. [URL] http://www.skype.com/

[3] Ribbit. [URL] http://www.ribbit.com/

[4] ooVoo. [URL] http://www.00voo.com

[5] J. Cervifio, P. Rodriguez, J. Salvachiia, G. Huecas y F. Escribano,
“Marte 3.0: una videoconferencia 2.0” JITEL 2008, pps: 209-216 16-18,
September 2008.

[6] P. Mell and T. Grance, “Draft NIST Working Definition of Cloud
Computing”, January 2009.

[71 L. Wang, G. Von Laszewski, M. Kunze and J. Tao, “Cloud Computing:
a Perspective Study”, Dec. 2008.

[8] Amazon Elastic Compute Cloud (Amazon EC2) [URL]
http://aws.amazon.com/ec2/, access on June 2009.
[9] Flash Player Penetration [URL]

http://www.adobe.com/products/player_census/flashplayer/, access on
June 2009.

[10] JSON [URL] http://www.json.org/, access on June 2009

[11] Cesare Pautasso and Erik Wilde, “From SOA to REST - Designing and
Implementing RESTful Services”. Tutorial at 18th Int. World Wide Web

Conference, Madrid 2009. [URL] http://www2009.org/tutorials/T9-
F.html, access on June 2009.

[12] R. Johansen, “Groupware: Computer support for business teams”. New
York: The Free Press 1988.

[13] Tanvir Ahmed, Anand R. Tripathi, “Static Verification of Security
Requirements in Role Based CSCW Systems”, Symposium on Access
Control Models and Technologies, 196-203 Como, 2003. ISBN: 1-
58113-681-1.

[14] A. Tripathi, T. Ahmed, and R. Kumar. “Specification of Secure
Distributed Collaboration Systems. IEEE International Symposium on
Autonomous Distributed Systems (ISADS), April 2003.

[15] Amazon S3 [URL] http://aws.amazon.com/s3/, access on June 2009
[16] OAuth [URL] http://oauth.net/, access on June 2009.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach and T.
Berners-Lee, "Hypertext Transfer Protocol - HTTP/1.1", RFC 2616,
June 1999.

[18] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A.
Luotonen, E. Sink and L. Stewart, "HTTP Authentication: Basic and
Digest Access Authentication", RFC 2617, June 1999.

[19] R. Rivest, “The MD5 Message-Digest Algorithm”, RFC 1321, April
1992.

[20] JSR 311: JAX-RS: The Java API for RESTful Web Services [URL]
http://jcp.org/en/jsr/detail?id=311, access on June 2009.

[21] Google Wave. [URL] http://wave.google.com

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8285
http:lldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8285

